Pd-Catalysed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides at Low Catalyst Loadings in Water for the Synthesis of Industrial Important Fungicides

Patrizio Orecchia,^a Desislava Slavcheva Petkova,^b Roland Goetz,^b Frank Rominger,^c A. Stephen K.

Hashmi,^{a,c} Thomas Schaub*,^{a,b}

^a Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg,

Germany

- ^b BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120
 Heidelberg, Germany

Supporting Information

Table of Contents

1. General Information	S3
2. Optimisation study for Suzuki-Miyaura Cross-Coupling in Water	S4
3. Study on the Reaction Phases	S12
4. Suzuki-Miyaura Cross-Coupling of Aryl Chlorides at Ppm Level in Water	S15
4.1 General Procedure for the Preparation of the Stock Solution	S15
4.2 General Procedure for Suzuki-Miyaura Cross-Coupling of Aryl Chloride with RB(OH)2(GP1)	S15
4.3 General Procedure for Suzuki-Miyaura Cross-Coupling of Aryl Halides (GP2)	S16
4.4 Substrate Scope of Substituted Nucleophiles	S17
4.5 Substrate Scope of Substituted Electrophiles	S23
5. Scale-Up Experiments	S30
5.1 5.0 mmol Scale Experiments	S30
5.2 5-Gram Scale Experiment	S32
5.3 50-Gram Scale Experiment	S33
5.3.1 E-Factor calculation for 50-gram experiment	S33

6. Three-Steps Sequence Synthesis of Fungicides	S35
6.1 Boscalid (1) Synthesis	S35
6.2 Fluxapyroxad (2) Synthesis	S36
6.3 Bixafen (3) Synthesis	S37
7. NMR Spectra	S39
8. Crystallographic Data	S100
9. References	S139

1. General Information

All reactions were performed in flame-dried glassware using an MBraun glove box or conventional Schlenk techniques under a static pressure of argon (glove box) unless otherwise stated. Liquids and solutions were transferred with either syringes or glass pipettes. Solvents for catalyst stock solutions (cyclohexane, THF, ethyl acetate and toluene) were purchased by ACROS Organics with a purity of 99.99% (absolute) and used without further purification. Commercially available chemicals were purchased by Sigma Aldrich, TCI or Apollon Scientific. Commercial liquid substrates were degassed with three freeze-pump-thaw cycles and stored in a glove box over thermally activated 4-Å molecular sieves. Commercial solid substrates were dried under high vacuum prior to being stored in the glove box. 5-(Difluoromethyl)-1methyl-1H-pyrazole-4-carbonyl chloride (11) was synthesised according to previously reported method.^{S1} Analytical thin layer chromatography (TLC) was performed on pre-coated Macherey-Nagel ALUGRAM® SIL G/UV254 aluminium sheets. Standard flash chromatography was performed on an Isolera[™] Spektra Systems automated with high performance flash purification system using BIOTAGE® Cartridge Sfär Silica D10, using petrol ether and ethyl acetate (EtOAc) as eluents. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃, on a Bruker AVANCE III 300 or Bruker AVANCE III 500 spectrometers at the Organisches-Chemie Institut, Ruprecht-Karls-University Heidelberg. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CHCl₃: δ = 7.26 ppm for ¹H NMR and CDCl₃: δ = 77.16 ppm for ¹³C NMR). ¹⁹F chemical shifts are referenced in compliance with the unified scale as recommended by the IUPAC stating the chemical shift relative to CCl₃F and Me₄Si.^{S2} Data are reported as follows: chemical shift, multiplicity (br s = broad singlet, s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, t = triplet, m = multiplet), coupling constants (Hz), and integration. Gas liquid chromatography (GLC) was performed on an Agilent Technologies 6890N gas chromatograph equipped with a DB-5 capillary column (30 m × 0.32 mm, 0.25 μm film thickness) by CS-Chromatographie Service using the following program: He₂ carrier gas, injection temperature 250 °C, detector temperature 300 °C, flow rate: 3.42 mL/min; temperature program: start temperature 60 °C for 1 min, heating rate 5 °C/min, end temperature 120 °C, then heating rate 15 °C/min until 270 °C, end temperature 270 °C for 2 min. High resolution mass spectrometry (HRMS) analysis and X-Ray analysis were performed by the Analytical Facility at the Organisch-Chemisches Institut, Ruprecht-Karls-University Heidelberg. Elemental Analysis measurements were performed by the Mikroanalytisches Laboratorium der Chemischen Institute der Universität Heidelberg. Metal concentration determination by ICP-MS was conducted at the Kompetenzzentrum Analytik at BASF SE.

2. Optimisation study for Suzuki-Miyaura Cross-Coupling in Water

Scheme S1. Catalyst screening with surfactant.

Table S1. Screening of the catalyst systems.^a

entry	catalytic system	conversion (%) ^b	yield (%) ^b
1	Pd(dtbpf)Cl ₂	-	_
2	PEPPSI-Ipr	70	14
3	Pd(OAc) ₂ + PAd ₃	73	15
4	Pd(OAc) ₂ + SPhos	>99	79
5	Pd(OAc) ₂ + XPhos	>99	56
6	Pd(OAc) ₂ + MePhos	>99	86
7	Pd(OAc) ₂ + PPh ₃	>99	13
8	Pd(OAc) ₂ + P(<i>t</i> -Bu)Cy ₂	>99	95
9	Pd(OAc) ₂ + dppe	>99	27
10	Pd(OAc) ₂ + PCy ₃	>99	52
11	Pd(OAc) ₂ + P(o-tolyl) ₃	>99	72
12	Pd(OAc) ₂ + P(<i>t</i> -Bu ₂)Ph	68	53
13°	Pd(PPh ₃)Cl ₂	35	21

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl halide **4a**, 1.0 equiv of 4-chlorophenylboronic acid (**5a**), K₃PO₄ (3.0 equiv) and 10 μ L of the respective catalytic system (0.05 M in cyclohexane) (0.10 mol%) in 1.0 mL of SPGS-550-M/H₂O (2.0 wt%) at 50 °C for 20 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard. ^{*c*} TPGS-750-M/H₂O (2.0 wt%) was used instead of SPGS-550-M/H₂O (2.0 wt%).

Scheme S2. Base screening.

Table S2. Bases used.^a

entry	base	conversion (%) ^b	yield (%) ^b
1	K ₂ CO ₃	>99	88
2	Et ₃ N	>99	quant (97) ^c
3	NaOH	>99	quant (95) ^c
4	KOH	81	46
5	Na ₂ CO ₃	>99	88
6	DIPEA	>99	95

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.0 equiv of 4-chlorophenylboronic acid (**5a**), the respective base (2.0 equiv) and 5 μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.05 M in cyclohexane) (0.05 mol%) in 1.0 mL of H₂O at 60 °C for 20 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard. ^{*c*} Isolated yield. [DIPEA = di-*i*-propylethylamine].

Scheme S3. Temperature screening.

Table S3. Temperature screening.	Fable S3.	Temperature	screening. ^a
----------------------------------	-----------	-------------	-------------------------

entry	T (°C)	conversion (%) ^b	yield (%) ^b
1	75	20	5
2	100	38	38
3	120	56	42
4 ^c	120	>99	84

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.0 equiv of 4-chlorophenylboronic acid (**5a**), Et₃N (2.0 equiv) and 5 μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.005 mol%) in 1.0 mL of H₂O at 60 °C for 20 h. ^{*b*} Determined by GC

analysis after calibration, using mesitylene as internal standard. c The reaction was run with 0.50 mL of H₂O (1.0 M).

Scheme S4. Ligand amount screening.

Table S4. Ligand amount screening.^a

entry	equiv of L (X)	conversion (%) ^b	yield (%) ^b
1	2.0	93	77
2 ^c	4.0	87	60
3	4.0	98	91 (87) ^d
4 ^e	4.0	47	31
5 ^c	6.0	22	3
6	6.0	98	85 (81) ^d

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.0 equiv of 4-chlorophenylboronic acid (**5a**), Et₃N (2.0 equiv) and 5 μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane with different ratio of ligand) (0.005 mol%) in 1.0 mL of H₂O at 60 °C for 20 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard. ^{*c*} The reaction was run at 60 °C. ^{*d*} Isolated yield. ^{*e*} The reaction was run with 0.50 mL of H₂O (1.0 M).

Scheme S5. Base screening at higher temperature.

Table S5. Bases screened.^a

entry	base	conversion (%) ^b	yield (%) ^b
1	K ₂ CO ₃	>99	93 ^c
2	Na ₂ CO ₃	>99	97 ^c
3	K ₃ PO ₄	95	75
4	NaOH	95	80

5 Et ₃ N 80 63

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.1 equiv of 4-chlorophenylboronic acid (**5a**), the respective base (2.0 equiv) and 5 μL of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.005 mol%) in 1.0 mL of H₂O at 120 °C for 20 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard. ^c Isolated yield.

Scheme S6. Temperature screening under optimised conditions.

Table S6. Temperature screening.^a

entry	T (°C)	conversion (%) ^b	yield (%) ^b
1	80	>99	81
2	90	>99	84
3	100	>99	96 ^c
4	120	>99	78
5	140	>99	80

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.1 equiv of 4-chlorophenylboronic acid (**5a**), Na₂CO₃ (1.0 equiv) and 5 μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005M in cyclohexane) (0.005 mol%) in 0.50 mL of H₂O at the indicated temperature for 1 h. ^b Determined by GC analysis after calibration, using mesitylene as internal standard. ^c Isolated yield.

Scheme S7. Base screening under optimised conditions.

Table S7. Bases screened.^a

entry	base	conversion (%) ^b	yield (%) ^b
1	K ₃ PO ₄	89	68
2	K ₂ CO ₃	>99	83
3	Cs ₂ CO ₃	>99	96

4	NaOH	97	81
5	КОН	82	64

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.1 equiv of 4-chlorophenylboronic acid (**5a**), the respective base (1.0 equiv) and 5 μL of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.005 mol%) in 0.50 mL of H₂O at 100 °C for 1 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard.

Table S8. Catalyst loading investigation.^a

entry	catalyst loading (mol%)	X μL added of 0.0005M solution	conversion (%) ^b	yield (%) ^b
1	0.0005	5	65	35
2	0.0010	10	75	51
3	0.0025	25	81	67
4 ^c	0.0005	5	55	30
5 ^d	0.005	5	>99	96 ^e

^a Unless otherwise noted, all reactions were performed in a glovebox with 0.5 mmol of the aryl chloride **4a**, 1.1 equiv of 4-chlorophenylboronic acid (**5a**), Na₂CO₃ (1.0 equiv) and the respective μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.0005 M in cyclohexane) (0.0005–0.0025 mol%) in 0.50 mL of H₂O at 100 °C for 1 h. ^{*b*} Determined by GC analysis after calibration, using mesitylene as internal standard. ^{*c*} The reaction was run for 72 h. ^{*d*} Comparison experiment with 5 μ L of Pd(OAc)₂ + P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane). ^{*e*} Isolated yield. Scheme S9. Kinetic experiment under optimised conditions.^a

^a Four different experiments were set at the same time and analyzed by GC respectively after 5, 15, 30, 45 and 60 min.

Scheme S10. Kinetic experiment under optimised conditions in deuterated water.^a

^a Four different experiments were set at the same time and analyzed by GC respectively after 5, 15, 30, 45 and 60 min.

Figure S2. Plot of yield of product 6a vs time.

^a Four different experiments were set at the same time and analyzed by GC respectively after 5, 15, 30, 45 and 60 min. After 60 min, the final product **6a** was isolated in 94% yield as a yellow oil (110.2 mg).

Scheme S12. Removal of cyclohexane solvent.

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of the corresponding aryl boronic acid (**5a**, 86.0 mg, 1.1 equiv) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 0.50 mmol of 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 1.0 equiv). The tube was sealed and transferred outside the glovebox and full vacuum was applied to the tube for 10 s in order to remove the volatile cyclohexane. Finally, 0.50 mL of H₂O were added under a flow of Ar and the tube was placed in a preheated 100 °C oil bath for 1 h. After this time, the mixture was diluted with 5.0 mL of brine and extracted with EtOAc (3 x 2.0 mL). The combined organic phases were dried over MgSO₄ and filtered. After concentration under reduce pressure, the crude product was purified by flash column chromatography on silica gel to get the title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 107 mg, 96%) was obtained as a yellow solid. The spectroscopic data are in accordance with those previously reported.^{S3}

Scheme S13. Control experiments without catalyst.^a

w/o catalyst: no reaction

^a The experiment were done in a used pressure tube and using used stirrer bars according to the procedure described before.

3. Study on the Reaction Phases

3.1 Study on the Reaction Phases after 5 min

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of 4chlorophenylboronic acid (**5a**, 86.0 mg, 1.1 equiv) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol). The tube was sealed and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was finally placed in a preheated 100 °C oil bath for 5 min. After this time, the tube was put in an ice bath and 0.50 mL of EtOAc were added. The organic phase was then analyzed by GC and ICP-MS. The remaining water phase was analyzed by ¹¹B NMR spectroscopy and ICP-MS.

3.2 Study on the Reaction Phases after 60 min

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of 4chlorophenylboronic acid (**5a**, 86.0 mg, 1,1 equiv) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol). The tube was sealed and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was finally placed in a preheated 100 °C oil bath for 1 h. After this time, the tube was put in an ice bath and 0.50 mL of EtOAc were added. The organic phase was then analyzed by GC and ICP-MS. The remaining water phase was analyzed by ¹¹B NMR spectroscopy and ICP-MS.

Figure S5. ¹¹B NMR of the water phase after 60 min.

3.3 Study on the Water Effect on the Reaction

or conversion 37%; yield 13% w/ 0.1 mL H_2 O: conversion >99%; yield 85% (isolated yield 75%)

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of 4chlorophenylboronic acid (**5a**, 86.0 mg 1.1 equiv) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol). The tube was sealed and transferred outside the glovebox and placed in a preheated 100 °C oil bath for 1 h. After this time, the mixture was diluted with 2.0 mL of brine, and the solution was extracted with 3 x 2.0 mL EtOAc. The combined organic phases were dried over MgSO₄, filtered and the solution was repeated two times, giving the outcome reported in the scheme.

Similarly, in a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of 4-chlorophenylboronic acid (**5a**) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol). The tube was sealed and transferred outside the glovebox, where 0.1 mL of H2O were added under a flow of Ar. The tube was then placed in a preheated 100 °C oil bath for 1 h. After this time, the mixture was diluted with 2.0 mL of brine, and the solution was extracted with 3 x 2.0 mL EtOAc. The combined organic phases were dried over MgSO₄, filtered and then concentrated in vacuo. The title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 88.0 mg, 75%) was obtained as a yellow solid.

4. Suzuki-Miyaura Cross-Coupling of Aryl Chlorides at ppm Level in Water

4.1 General Procedure for the Preparation of the Catalyst Stock solutions

In a glovebox, a 10.0 mL vial was charged with 6.0 mg of $Pd(OAc)_2$ (0.25 mmol) and 25.0 mg of $P(t-Bu)Cy_2$ (0.10 mmol, Pd:L = 1:4) and diluted in 5.0 mL of the respective solvent, obtaining a 0.005 M solution of the catalytic system. The mixture was left stirring in the glovebox and the desired amount (5 µL, 0.002 µmol) was taken with a micropipette and directly injected in the reaction vessel.

4.2 General Procedure for Suzuki-Miyaura Cross-Coupling of Aryl Chloride with Aryl Boronic Acids (GP1)

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of the corresponding aryl boronic acid (**5a–5j**) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 0.50 mmol of 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 1.0 equiv). The tube was sealed and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was finally placed in a preheated 100 °C oil bath for 3 h. After this time, the mixture was diluted with 5.0 mL of brine and extracted with EtOAc (3 x 2.0 mL). The combined organic phases were dried over MgSO₄ and filtered. After concentration under reduce pressure, the crude product was purified by flash column chromatography on silica gel using indicated solvents to get spectroscopically pure product.

4.3 General Procedure for Suzuki-Miyaura Cross-Coupling of Aryl Halides (GP2)

In a glovebox, a 5.0 mL pressure tube was equipped with a magnetic stir bar, 0.55 mmol of 4chlorophenylboronic acid (**5a**, 86.0 mg, 1.1 equiv) was added with 0.50 mmol of Na₂CO₃ (53.0 mg, 1.0 equiv), 5 μ L of Pd(OAc)₂ and P(*t*-Bu)Cy₂ solution (0.005 M in cyclohexane) (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 0.50 mmol of the corresponding aryl chloride (**4k**-**r**) or aryl bromide (**4s**-**4v**). The tube was sealed and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was finally placed in a preheated 100 °C oil bath for 5 h. After this time, the mixture was diluted with 5.0 mL of brine and extracted with EtOAc (3 x 2.0 mL). The combined organic phases were dried over MgSO₄ and filtered. After concentration under reduce pressure, the crude product was purified by flash column chromatography on silica gel using indicated solvents to get spectroscopically pure product.

4.4 Substrate Scope for Nucleophiles

4.4.1 4'-Chloro-2-nitro-1,1'-biphenyl (6a)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP1**. The title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 112.0 mg, 97%) was obtained as a yellow solid. The spectroscopic data are in accordance with those previously reported.^{S3}

 \mathbf{R}_{f} = 0.36 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 21.01 min.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.80 (dd, *J* = 8.7, 1.0 Hz, 1 H), 7.55 (td, *J* = 7.6, 1.0 Hz, 1 H), 7.42 (dt, *J* = 8.0, 1.3 Hz, 1 H), 7.32 (dd, *J* = 8.6, 1.9 Hz, 3 H), 7.17 (dd, *J* = 7.6, 1.3 Hz, 2 H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ = 149.2, 136.0, 135.4, 134.6, 132.6, 131.9, 129.4, 129.0, 128.7, 124.4 ppm. **HRMS** (EI) for C₁₂H₈CINO₂⁺ [M⁺]: calculated 233.0238, found 233.0234.

4.4.2 4'-Methoxy-2-nitro-1,1'-biphenyl (6b)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-methoxy-phenylboronic acid (**5b**, 88.0 mg, 0.55 mmol) according to **GP1**. The title compound 4'-methoxy-2-nitro-1,1'-biphenyl (**6b**, 106.5 mg, 93%) was obtained as a bright yellow oil. The spectroscopic data are in accordance with those previously reported.^{S5}

 $\mathbf{R}_{f} = 0.37$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 21.56 min.

¹H NMR (300 MHz, CDCl₃): δ = 7.74 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.51 (td, *J* = 8.1, 1.3 Hz, 1H), 7.39–7.33 (m, 2H), 7.20–7.15 (m, 2H), 6.91–6.85 (m, 2H), 3.77 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.8, 135.9, 132.2, 132.0, 129.6, 129.2, 127.8, 124.1, 114.3, 55.4 ppm. HRMS (EI) for C₁₃H₁₁NO₃⁺ [M⁺]: calculated 229.0733, found 229.0739.

4.4.3 4'-Methyl-2-nitro-1,1'-biphenyl (6c)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and *p*-tolylboronic acid (**5c**, 75.0 mg, 0.55 mmol) according to **GP1**. The title compound 4'-methyl-2-nitro-1,1'-biphenyl (**6c**, 94.0 mg, 88%) was obtained as a light yellow oil. The spectroscopic data are in accordance with those previously reported.^{S4}

 \mathbf{R}_{f} = 0.55 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 20.28 min.

¹H NMR (300 MHz, CDCl₃): δ = 7.74 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.51 (td, *J* = 7.5, 1.3 Hz, 1H) 7.40–7.33 (m, 2H), 7.18–7.11 (m, 4H), 2.32 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 149.5, 138.3, 136.4, 134.5, 132.3, 132.0, 129.6, 128.0, 127.9, 124.1, 21.4 ppm. HRMS (EI) for C₁₃H₁₁NO₂⁺ [M+H⁺]: calculated 213.0784, found 213.0796.

4.4.4 2-Nitro-1,1'-biphenyl (6d)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and phenylboronic acid (**5d**, 67.0 mg, 0.55 mmol) according to **GP1**. The title compound 2-nitro-1,1'-biphenyl (**6d**, 83.2 mg, 83%) was obtained as a pale yellow oil. *When the reaction was run with 0.01 mol% catalyst, the title compound 2-nitro-1,1'-biphenyl 6d was obtained in 97% yield (97.0 mg). The spectroscopic data are in accordance with those previously reported.^{S4}*

 $\mathbf{R}_{f} = 0.58$ (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 19.29 min.

¹**H NMR** (300 MHz, CDCl₃): δ = 7.86 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.62 (td, *J* = 7.6, 1.3 Hz, 1H), 7.53–7.40 (m, 5H), 7.36–7.29 (m, 2H) ppm. ¹³**C NMR** (75 MHz, CDCl₃): δ = 137.5, 136.5, 132.4, 132.1, 128.8, 128.4, 128.3, 128.0, 124.2 ppm. **HRMS** (EI) for C₁₂H₉NO₂⁺ [M⁺]: calculated 199.0628, found 199.0645.

4.4.5 4'-Fluoro-2-nitro-1,1'-biphenyl (6e)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-fluoro-phenylboronic acid (**5e**, 77.0 mg, 0.55 mmol) according to **GP1**. The title compound 4'-Fluoro-2-nitro-1,1'- biphenyl (**6e**, 104.7 mg, 96%) was obtained as a yellow oil. The spectroscopic data are in accordance with those previously reported.^{S4}

 $\mathbf{R}_{f} = 0.47$ (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 19.21 min.

¹H NMR (400 MHz, CDCl₃): δ = 7.78 (dd, J = 8.1, 1.2 Hz, 1H), 7.54 (td, J = 7.8, 1.2 Hz, 1H), 7.41 (td, J = 7.8, 1.5 Hz, 1H), 7.34 (dd, J = 7.6, 1.5 Hz, 1H), 7.25–7.16 (m, 2H), 7.04 (tt, J = 8.8, 2.2 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 162.9 (d, $J_{C,F}$ = 246.9 Hz), 135.4, 136.5 (d, $J_{C,F}$ = 3.4 Hz), 132.5, 132.1, 129.8 (d, $J_{C,F}$ = 8.3 Hz), 128.5, 124.3, 115.8 (d, $J_{C,F}$ = 22.4 Hz) ppm. ¹⁹F NMR (282 MHz, CDCl₃): δ = –113.6 ppm. HRMS (EI) for C₁₂H₈FNO₂⁺ [M⁺]: calculated 217.0522, found 217.0518.

4.4.6 3',4',5'-Trifluoro-2-nitro-1,1'-biphenyl (6f)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 3,4,5-trifluoro-phenylboronic acid (**5f**, 97.0 mg, 0.55 mmol) according to **GP1**. The title compound 3',4',5'-trifluoro-2-nitro-1,1'-biphenyl (**6f**, 115.8 mg, 91%) was obtained as a yellow solid. The spectroscopic data are in accordance with those previously reported.^{S6}

 $\mathbf{R}_{f} = 0.28$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 18.92 min.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.86 (dd, J = 8.1, 1.0 Hz, 1H), 7.58 (td, J = 7.6, 1.1 Hz, 1H), 7.49 (dt, J = 8.0, 1.1 Hz, 1H), 7.31 (dd, J = 7.6, 1.0 Hz, 1H), 6.89-6.83 (m, 2H) ppm. ¹³**C NMR**

(125 MHz, CDCl₃): δ = 151.2 (dq, $J_{C,F}$ = 251.9, 4.6 Hz), 148.8, 139.9 (dt, $J_{C,F}$ = 253.8, 15.1 Hz), 133.7, 133.6, 132.9, 131.8, 129.5, 124.7, 112.7 (dd, $J_{C,F}$ = 17.0, 5.5 Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ = -160.6 (t, $J_{F,F}$ = 20.8 Hz), -133.4 (d, $J_{F,F}$ = 20.8 Hz) ppm. **HRMS** (EI) for C₁₂H₆F₃NO₂⁺ [M⁺]: calculated 253.0345, found 253.0354.

4.4.7 2-Nitro-4'-(trifluoromethyl)-1,1'-biphenyl (6g)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-trifluoromethylphenylboronic acid (**5g**, 104.0 mg, 0.55 mmol) according to **GP1**. The title compound 2nitro-4'-(trifluoromethyl)-1,1'-biphenyl (**6g**, 122.6 mg, 92%) was obtained as a yellow oil. The spectroscopic data are in accordance with those previously reported.^{S4}

 $R_{f} = 0.30$ (petrol ether:EtOAc = 95:5). t_{R} (GLC) = 19.21 min.

¹H NMR (300 MHz, CDCl₃): δ = 7.95 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.72–7.64 (m, 3H), 7.55 (td, *J* = 7.8, 1.5 Hz, 1H), 7.47–7.40 (m, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 149.1, 141.4, 135.3, 132.8, 131.9, 130.7, 129.1, 128.5, 125.7 (q, *J*_{C,F} = 3.9 Hz), 124.6 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = -62.6 ppm. HRMS (EI) for $C_{13}H_8F_3NO_2^+$ [M⁺]: calculated 267.0502, found 267.0509.

4.4.8 3'-Methyl-2-nitro-1,1'-biphenyl (6h)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 3-methyl-phenylboronic acid (**5h**, 70.0 mg, 0.55 mmol) according to **GP1**. The title compound 3'-methyl-2-nitro-1,1'- biphenyl (**6h**, 97.0 mg, 91%) was obtained as a yellow oil. The spectroscopic data are in accordance with those previously reported.^{S7}

 \mathbf{R}_{f} = 0.55 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 20.05 min.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.84 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.60 (td, *J* = 7.6, 1.3 Hz, 1H), 7.95–7.42 (m, 2H), 7.34–7.30 (m, 1H), 7.24–7.20 (m, 1H), 7.15–7.10 (m, 2H), 2.39 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ = 149.5, 138.5, 137.4, 136.6, 132.3, 132.0, 129.1, 128.7, 128.6, 128.1, 125.1, 124.1, 21.5 ppm. **HRMS** (EI) for C₁₃H₁₁NO₂⁺ [M⁺]: calculated 213.0784, found 213.0799.

4.4.9 2'-Nitro-[1,1'-biphenyl]-4-carbonitrile (6i)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-cyanophenylboronic acid (**5i**, 81.0 mg, 0.55 mmol) according to **GP1**. The title compound 2'-nitro-[1,1'-biphenyl]-4-carbonitrile (**6i**, 93.4 mg, 83%) was obtained as a yellowish solid. The spectroscopic data are in accordance with those previously reported.^{S5}

 $\mathbf{R}_{f} = 0.10$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 22.16 min.

¹**H NMR** (300 MHz, CDCl₃): δ = 7.98 (dd, J = 8.1, 1.2 Hz, 1H), 7.75–7.65 (m, 3H), 7.58 (td, J = 7.9, 1.4 Hz, 1H), 7.45–7.39 (m, 3H) ppm. ¹³**C NMR** (75 MHz, CDCl₃): δ = 148.7, 142.6, 134.8, 133.0, 132.4, 131.8, 129.5, 128.9, 124.7, 118.5, 112.2 ppm. **HRMS** (EI) for C₁₃H₈N₂O₂⁺ [M⁺]: calculated 224.0580, found 224.0570.

4.4.10 Methyl 2'-nitro-[1,1'-biphenyl]-4-carboxylate (6j)

Prepared from 1-chloro-2-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol) and 4-methoxycarbonylphenylboronic acid (**5j**, 99.0 mg, 0.55 mmol) according to **GP1**. The title compound methyl 2'-nitro-[1,1'-biphenyl]-4-carboxylate (**6j**, 98.4 mg, 77%) was obtained as a pale yellow solid. The spectroscopic data are in accordance with those previously reported.^{S4}

 $R_{f} = 0.17$ (petrol ether: EtOAc = 95:5). t_{R} (GLC) = 22.86 min.

¹H NMR (300 MHz, CDCl₃): δ = 8.09 (dt, *J* = 8.5, 1.8 Hz, 2H), 7.92 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.65 (td, *J* = 7.4, 1.4 Hz, 1H), 7.53 (td, *J* = 8.1, 1.8 Hz, 1H), 7.45–7.36 (m, 3H), 3.93 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.8, 149.1, 142.3, 132.7, 131.9, 130.1, 128.9, 128.2, 124.5, 52.4 ppm. HRMS (EI) for C₁₄H₁₁NO₄⁺ [M⁺]: calculated 257.0683, found 257.0653.

4.5 Substrate Scope for Electrophiles

4.5.1 4'-Chloro-4-nitro-1,1'-biphenyl (6k)

Prepared from 4-chloro-nitrobenzene (**4k**, 79.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2** for 1 h. The title compound 4'-chloro-4-nitro-1,1'-biphenyl (**6k**, 106.2 mg, 91%) was obtained as a pale yellow solid. The spectroscopic data are in accordance with those previously reported.^{S10}

 \mathbf{R}_{f} = 0.39 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 22.34 min.

¹H NMR (300 MHz, CDCl₃): δ = 8.29(d, *J* = 8.7 Hz, 2 H), 7.70 (d, *J* = 8.7 Hz, 2 H), 7.56 (d, *J* = 8.7 Hz, 2 H), 7.46 (d, *J* = 8.7 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 147.4, 146.4, 137.3, 135.4, 129.5, 128.7, 127.8, 124.3 ppm. HRMS (EI) for $C_{12}H_8CINO_2^+$ [M⁺]: calculated 233.0238, found 233.0232.

4.5.2 4'-Chloro-[1,1'-biphenyl]-2-carbonitrile (6l)

Prepared from 2-chloro-benzonitrile (**4I**, 69.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4'-chloro-[1,1'-biphenyl]-2-carbonitrile (**6I**, 68.1 mg, 64%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S9}

 \mathbf{R}_{f} = 0.30 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 20.62 min.

¹H NMR (500 MHz, CDCl₃) δ = 7.80–7.43 (m, 1H), 7.67–7.62 (m, 1H), 7.53–7.43 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 144.4, 136.7, 135.2, 133.9, 133.1, 130.2, 130.0, 129.1, 128.0, 118.6, 111.4 ppm. HRMS (EI) for C₁₃H₈CIN⁺ [M⁺]: calculated 213.0340, found 213.0348.

4.5.3 4'-Chloro-[1,1'-biphenyl]-4-carbonitrile (6m)

Prepared from 4-chloro-benzonitrile (**4m**, 69.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4'-chloro-[1,1'-biphenyl]-4-carbonitrile (**6m**, 67.2 mg, 63%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S10}

 \mathbf{R}_{f} = 0.30 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 21.35 min.

¹H NMR (500 MHz, CDCl₃) δ = 7.76–7.70 (m, 2H), 7.68–7.62 (m, 2H), 7.55–7.49 (m, 2H), 7.48–7.43 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 144.5, 137.7, 135.1, 132.8, 129.5, 128.6, 127.7, 118.9, 111.4 ppm. HRMS (EI) for C₁₃H₈CIN⁺ [M⁺]: calculated 213.0340, found 213.0350.

4.5.4 2-(4-Chlorophenyl)pyridine (6n)

Prepared from 2-chloro-pyridine (**4n**, 57.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 2-(4-chlorophenyl)pyridine (**6n**, 52.0 mg, 55%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S8}

 $\mathbf{R}_{f} = 0.19$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 18.87 min.

¹H NMR (500 MHz, CDCl₃) δ = 8.63–8.59 (m, 1H), 7.89–7.83 (m, 2H), 7.71–7.60 (m, 2H), 7.40–7.33 (m, 2H), 7.18–7.13 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 156.4, 149.9, 136.9, 135.2, 129.1, 128.3, 122.5, 120.5 ppm. HRMS (EI) for C₁₁H₈ClN⁺ [M⁺]: calculated 189.0340, found 189.0350.

4.5.5 Methyl 4'-chloro-[1,1'-biphenyl]-4-carboxylate (60)

Prepared from methyl 4-chlorobenzoate (**4o**, 82.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound methyl 4'-chloro-[1,1'-biphenyl]-4-carboxylate (**6o**, 68.4 mg, 55%) was obtained as a colorless solid. *When the reaction was run with 0.01 mol% catalyst, the title compound 4'-chloro-[1,1'-biphenyl]-4-carboxylate* **6o** *was obtained in 82% yield (101.1 mg)*. The spectroscopic data are in accordance with those previously reported.^{S11}

 $\mathbf{R}_{f} = 0.33$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 22.12 min.

¹**H NMR** (500 MHz, CDCl₃) δ = 8.14 –8.08 (m, 2H), 7.65–7.59 (m, 2H), 7.58–7.51 (m, 2H), 7.47–7.40 (m, 2H), 3.94 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ = 169.9, 144.5, 138.6, 134.5, 130.3, 129.4, 129.2, 128.7, 127.0, 52.3 ppm. **HRMS** (EI) for C₁₄H₁₁ClO₂⁺ [M⁺]: calculated 246.0442, found 246.0441.

4.5.6 1-(4'-Chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (6p)

Prepared from 4-chloro-acetophenone (**4p**, 75.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 1-(4'-chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (**6p**, 75.0 mg, 65%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S12}

 \mathbf{R}_{f} = 0.33 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 22.02 min.

¹H NMR (500 MHz, CDCl₃) δ = 8.08 –7.98 (m, 2H), 7.69–7.62 (m, 2H), 7.59–7.52 (m, 2H), 7.48–7.40 (m, 2H), 2.64 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 197.7, 144.6, 138.4,

136.3, 134.6, 129.3, 129.1, 128.6, 127.2, 26.8 ppm. **HRMS** (EI) for C₁₄H₁₁ClO⁺ [M⁺]: calculated 230.0493, found 230.0480.

4.5.7 (4'-Chloro-[1,1'-biphenyl]-4-yl)(phenyl)methanone (6q)

Prepared from 4-chlorobenzophenone (**4q**, 108.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound (4'-chloro-[1,1'-biphenyl]-4-yl)(phenyl)methanone (**6q**, 103.6 mg, 71%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S12}

 $\mathbf{R}_{f} = 0.32$ (petrol ether:EtOAc = 95:5).

¹H NMR (500 MHz, CDCl₃) δ = 7.93 –7.88 (m, 2H), 7.86–7.81 (m, 2H), 7.70–7.65 (m, 2H), 7.61–7.57 (m, 2H), 7.55–7.43 (m, 5H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 196.4, 144.0, 138.6, 137.8, 136.7, 134.6, 132.6, 131.6, 130.9, 130.1, 130.1, 129.3, 129.8, 128.7, 128.5, 126.9 ppm. HRMS (EI) for C₁₉H₁₃ClO⁺ [M⁺]: calculated 292.0650, found 292.0653.

4.5.8 4'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (6r)

Prepared from 4-chlorobenzaldehyde (**4r**, 70.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4'-chloro-[1,1'-biphenyl]-4-carbaldehyde (**6r**, 81.7 mg, 75%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S11}

 \mathbf{R}_{f} = 0.28 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 21.23 min.

¹H NMR (500 MHz, CDCl₃) δ = 10.06 (s, 1H), 7.98–7.92 (m, 2H), 7.75–7.68 (m, 2H), 7.61–7.53 (m, 2H), 7.49–7.41 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 191.9, 145.9, 138.3, 135.5,

134.9, 130.5, 129.3, 128.7, 127.6 ppm. **HRMS** (EI) for $C_{13}H_8CIO^+$ [M⁺]: calculated 216.0336, found 216.0345.

4.5.9 4-Chloro-4'-(trifluoromethyl)-1,1'-biphenyl (6s)

Prepared from 4-chlorotbenzotrifluoride (**4s**, 90.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4-chloro-4'- (trifluoromethyl)-1,1'-biphenyl (**6s**, 80.0 mg, 62%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S13}

 $\mathbf{R}_{f} = 0.76$ (petrol ether: EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 18.15 min.

¹H NMR (500 MHz, CDCl₃) δ = 7.66 –7.53 (m, 4H), 7.48–7.40 (m, 2H), 7.39–7.32 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 43.6, 138.3, 134.6, 129.8 (d, $J_{C,F}$ = 32.6 Hz), 129.3, 128.6, 127.4, 126.0 (q, $J_{C,F}$ = 3.9 Hz), 122.5 (q, $J_{C,F}$ = 273.4 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = –62.5 ppm. HRMS (EI) for C₁₃H₈ClF₃⁺ [M⁺]: calculated 256.0261, found 256.0270.

4.5.10 4'-Chloro-[1,1'-biphenyl]-2-amine (6t)

Prepared from 2-bromoaniline (**4t**, 90.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4'-chloro-[1,1'-biphenyl]-2-amine (**6t**, 93.2 mg, 91%) was obtained as a pink solid. The spectroscopic data are in accordance with those previously reported.^{S3}

 \mathbf{R}_{f} = 0.24 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 20.19 min.

¹H NMR (500 MHz, CDCl₃) δ = 7.44 –7.38 (m, 4H), 7.17 (td, J = 7.8, 1.5 Hz, 1H), 7.09 (dd, J = 7.6, 1.5 Hz, 1H), 6.83 (td, J = 7.6, 0.9 Hz, 1H), 6.77 (dd, J = 7.8, 0.9 Hz, 1H), 3.71 (br s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 143.5, 138.1, 133.2, 130.6, 130.4, 129.1, 128.9, 126.4, 118.9, 115.8 ppm. HRMS (EI) for C₁₂H₁₀ClN⁺ [M⁺]: calculated 203.0496, found 203.0503.

4.5.11 4-Chloro-4'-methyl-1,1'-biphenyl (6u)

Prepared from 4-bromotoluene (**4u**, 85.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4-chloro-4'-methyl-1,1'- biphenyl (**6u**, 72.0 mg, 71%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported^{S10}

 $\mathbf{R}_{f} = 0.78$ (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 19.25 min.

¹H NMR (300 MHz, CDCl₃) δ = 7.44 –7.35 (m, 4H), 7.34 –7.28 (m, 2H), 7.20 –7.15 (m, 2H), 2.32 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 139.7, 137.5, 137.2, 133.1, 129.7, 128.9, 128.3, 126.9, 21.2 ppm. HRMS (EI) for C₁₃H₁₁Cl⁺ [M⁺]: calculated 202.0544, found 202.0537.

4.5.12 4-Chloro-4'-methoxy-1,1'-biphenyl (6v)

Prepared from 4-bromoanisole (4v, 93.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (5a, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 4-chloro-4'-methoxy-1,1'-biphenyl (6v, 80.5 mg, 74%) was obtained as a colorless solid. The spectroscopic data are in accordance with those previously reported.^{S10}

 $\mathbf{R}_{f} = 0.46$ (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 20.69 min.

¹H NMR (300 MHz, CDCl₃) δ = 7.52–7.44 (m, 4H), 7.41 –7.35 (m, 2H), 7.02 –6.94 (m, 2H), 3.86 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 159.5, 139.4, 132.8, 132.6, 128.9, 128.2, 128.1, 114.4, 55.5 ppm. HRMS (EI) for C₁₃H₁₁ClO⁺ [M⁺]: calculated 218.0493, found 218.0506.

4.5.13 2,4'-Dichloro-1,1'-biphenyl (6w)

Prepared from 1-bromo-2-chlorobenzene (**4w**, 96.0 mg, 0.50 mmol) and 4-chlorophenylboronic acid (**5a**, 86.0 mg, 0.55 mmol, 1.1 equiv) according to **GP2**. The title compound 2,4'-dichloro-1,1'-biphenyl (**6w**, 110.9 mg, 99%) was obtained as a colorless oil. The spectroscopic data are in accordance with those previously reported.^{S14}

 \mathbf{R}_{f} = 0.76 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 19.32 min.

¹H NMR (300 MHz, CDCl₃) δ = 7.50–7.45 (m, 1H), 7.44 –7.37 (m, 4H), 7.35 –7.29 (m, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 139.4, 137.9, 133.8, 132.6, 131.3, 130.9, 130.2, 129.0, 128.4, 127.1 ppm. HRMS (EI) for C₁₂H₈Cl₂⁺ [M⁺]: calculated 221.9998, found 222.0045.

5. Scale-up Experiments

5.1 5.0 mmol experiments

5.1.1 4'-Chloro-2-nitro-1,1'-biphenyl (6a)

In a glovebox, a 25.0 mL pressure tube equipped with a stirrer bar was charged with 4chlorophenylboronic acid (**5a**, 0.86 g, 1.10 equiv, 5.50 mmol), Na₂CO₃ (0.53 g, 1.0 equiv, 5.0 mmol), 50 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (0.25 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 0.79 g, 5.0 mmol). The tube was capped and transferred outside the glovebox, where 5.0 mL of H₂O were added under a flow of Ar. The mixture was heated at 100 °C for 6 h. After this time, the tube was cooled down to rt and the mixture was diluted with 2.0 mL brine and extracted with EtOAc (3 x 5.0 mL), the combined organic extracts were dried over MgSO₄, filtered and concentrate in vacuo. The remaining mixture was purified by column chromatography (petrol ether:EtOAc = 95:5). The title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 1.07 g, 92%) was obtained as a yellow solid. The spectroscopic data are in accordance with those previously reported.^{S3}

Figure S6. Reaction pictures for 5.0 mmol scale: a) after the reaction; b) upon addition of EtOAc (phase separation).

5.1.2 3',4'-Dichloro-5-fluoro-2-nitro-1,1'-biphenyl (9)

In a glovebox, a 25.0 mL pressure tube equipped with a stirrer bar was charged with 3,4dichlorophenylboronic acid (**9**, 1.05 g, 1.10 equiv, 5.50 mmol), Na₂CO₃ (0.53 g, 1.0 equiv, 5.0 mmol), 50 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (0.25 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-4-fluoro-nitrobenzene (**10**, 0.88 g, 5.0 mmol). The tube was capped and transferred outside the glovebox, where 5.0 mL of H₂O were added under a flow of Ar. The mixture was heated at 100 °C for 6 h. After this time, the tube was cooled down to rt and the mixture was diluted with 2.0 mL brine and extracted with EtOAc (3 x 5.0 mL), the combined organic extracts were dried over MgSO₄, filtered and concentrate in vacuo. The remaining solid was recrystallised by EtOH, obtaining the title compound 3',4'-dichloro-5-fluoro-2-nitro-1,1'-biphenyl (**11**, 1.06 g, 74%) as a bright yellow solid.

 \mathbf{R}_{f} = 045 (petrol ether:EtOAc = 95:5). \mathbf{t}_{R} (GLC) = 22.03 min.

¹H NMR (500 MHz, CDCl₃): δ = 8.02 (dd, J = 8.7, 5.0 Hz, 1 H), 7.50 (d, J = 8.2 Hz, 1 H), 7.42– 7.40 (m, 1 H), 7.22 (td, J = 8.2, 2.0 Hz, 1 H), 7.11 (ddd, J = 8.7, 5.0, 2.0 Hz, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 164.1 (d, $J_{C,F}$ = 258.1 Hz), 144.8, 137.4 (d, $J_{C,F}$ = 10.0 Hz), 136.6 (d, $J_{C,F}$ = 1.1 Hz), 133.2 (d, $J_{C,F}$ = 23.8 Hz), 130.8, 129.8, 127.5 (d, $J_{C,F}$ = 10.0 Hz), 127.2, 119.0 (d, $J_{C,F}$ = 23.8 Hz), 116.1 (d, $J_{C,F}$ = 23.2 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = -103.6 ppm. HRMS (EI) for C₁₂H₆Cl₂FNO₂⁺ [M⁺]: calculated 250.0066, found 250.0076. Elemental analysis: calculated C (50.38), H (2.11), N (4.90); found C (50.31), H (2.40), N (4.76).

Figure S7. Reaction pictures for 5.0 mmol scale: a) after the reaction; b) upon addition of EtOAc (phase separation).

5.2 5-g Experiment

5.2.1 4'-Chloro-2-nitro-1,1'-biphenyl (6a)

In a glovebox, a glass autoclave equipped with a spherical stirrer bar was charged with 4chlorophenylboronic acid (**5a**, 5.0 g, 32.0 mmol, 1.1 equiv), Na₂CO₃ (3.4 g, 29.0 mmol, 1.0 equiv), 290 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (1.45 mmol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4**, 4.56 g, 29.0 mmol). The autoclave was screwed inside the glovebox and transferred outside, where 29.0mL of H₂O were added under a flow of Ar. The glass autoclave was finally sealed and heated in an oil bath at 100 °C for 6 h. After this time the mixture was diluted with 10.0 mL of brine and subsequently extracted with EtOAc (2 x 5.0 mL) and the combined organic phases were dried over MgSO₄, filtered and then concentrated in vacuo. The remaining solid was recrystallised by EtOH (10.0 mL), obtaining the title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 5.48 g, 84%) as yellow crystals. The spectroscopic data are in accordance with those previously reported.^{S3} **Elemental analysis**: calculated C (61.69), H (3.45), N (5.99); found C (61.80), H (3.70), N (5.82).

Figure S8. Reaction pictures for 5-gram scale: a) reaction stirring; b) after the reaction; c) upon addition of EtOAc (phase separation).

5.3 50-g Experiment

5.3.1 4'-Chloro-2-nitro-1,1'-biphenyl (6a)

A 1-L Schlenk flask equipped with a spherical stirrer bar was charged with was charged with 4-chlorophenylboronic acid (**5a**, 50.0 g, 320 mmol, 1.10 equiv), Na₂CO₃ (30.7 g, 290 mmol, 1.00 equiv). The flask was transferred into a glovebox, where Pd(OAc)₂ (4.0 mg, $1.78 \cdot 10^{-5}$, 0.005 mol%) and the ligand P(*t*-Bu)Cy₂ (16.0 mg, $6.29 \cdot 10^{-5}$, 0.02 mol%, Pd:L = 1:4) were added into the solid aryl chloride **4a**. The flask was then transferred outside, where 290 mL of H₂O were added under a flow of Ar. The flask was finally heated in an oil bath at 100 °C for 8 h. After this time the mixture was diluted with 100 mL of brine and subsequently extracted with EtOAc (2 x 100 mL) and the combined organic phases were dried over MgSO₄, filtered and then concentrated in vacuo. The concentrated EtOAc solution was filtered over a pad of activated charcoal for the removal of Pd-catalyst traces. The mixture was finally concentrated in vacuo and the remaining solid was recrystallised by EtOH (50.0 mL), obtaining the title compound 4'-chloro-2-nitro-1,1'-biphenyl (**6a**, 50.60 g, 75%) as yellow crystals. The spectroscopic data are in accordance with those previously reported.^{S3}

Elemental analysis: calculated C (61.69), H (3.45), N (5.99); found C (61.52), H (3.63), N (6.00).

Figure S9. Reaction pictures for 50-gram scale: a) reaction stirring; b) after the reaction.

The organic extracts in ethyl acetate were placed in a Schlenk flask and connected to a glass trap for the solvent evaporation. Under vacuum there were condensed out circa 30.0 mL of ethyl acetate, which were then analyzed by GC. The GC chromatogram showed a purity of 99.99% for the distilled ethyl acetate and is therefore pure enough to be reused in a subsequent extraction. The GC chromatogram of the distilled ethyl acetate is reported in Figure S12a; for comparison the GC chromatogram of the ethyl acetate is also reported (Figure S12b).

b)

Figure S10. GC chromatogram for the distilled ethyl acetate used for the extraction of the product **6a** (a), and the GC chromatogram of the standard ethyl acetate for comparison (b).

5.3.2 E-Factor calculation for the 50-g experiment

E-Factor = waste (g)/product (g)

Waste^{*} (g) = 11.5 (**1a** left at 75% yield) + 12.5 (**2a** excess at 75% yield) + 30.7 (Na₂CO₃) + 8.22 (by-product salt containing Cl) + 10.23 (by-product salt containing B) + 290.0 (H₂O_{reaction}) + 100 (H₂O_{work-up}) + 180.4 (EtOAc_{extr}) + 49.3 (EtOH_{recrys}) = 692.85

*Pd-catalyst and the ligand were not considered as only very small amount.

Product (g) = 50.60 (75% yield)

E-Factor (without work-up) = 363.15 g/50.6 g = 7.18

E-Factor (with work-up) = 692.85 g/50.6 g = 13.69

E-Factor (without work-up and without considering H_2O) = 73.15 g/50.6 g = 1.44

E-Factor (with work-up and without considering H_2O) = 302.85 g/50.6 g = 5.98

E-Factor (with work-up and recycle of EtOAc)* = 530.85 g/50.6 g = 10.49

*The recycle of EtOAc was approximated to 90% in weight, considering a 10% of loss.

6. Three-Step Synthesis of Fungicides

6.1 Boscalid (1) Synthesis

In a glovebox, a 5.0 mL pressure tube equipped with a spherical stirrer bar was charged with 4-chlorophenylboronic acid (5a, 86.0 mg, 0.55 mmol, 1.10 equiv), Na₂CO₃ (53.0 mg, 0.50 mmol, 1.0 equiv), 5 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (4a, 79.0 mg, 0.50 mmol). The tube was capped and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was heated in an oil bath at 100 °C for 1 h. After this time, the reaction mixture was cooled down to rt and was filtered through a pad of activated charcoal to remove traces of Pd catalyst. The mixture in the pressure tube was transferred into a 10.0 mL crimp vial equipped with a stirrer bar and a bended needle on the septum. The pressure tube was rinsed with 0.50 mL of water and 0.50 mL of EtOAc for washing it. Finally, the crimp vial was charged with 10.0 mg of Pt/C (10.0 wt%, 1.0 mol%) and the crimp cap was closed. The vial was placed in a PREMEX autoclave and charged with 10 bar of H_2 . The autoclave was then placed at 45 °C for 30 min. After this time, the autoclave was cooled to rt and depressurised. The crimp vial was opened and the containing mixture was filtered over a pad of celite to remove the Pt/C catalyst into a 5.0 mL vial. The crimp vial was rinsed with 0.50 mL of EtOAc for washing it. Subsequently, the 5.0 mL vial was charged with Et₃N (0.14 mL, 1.0 mmol, 2.0 equiv) and the mixture was left stirring gently at rt for 10 min. After this time, the vial was quickly opened and 2-chloronicotinoyl chloride (**10**, 133.0 mg, 0.75 mmol, 1.5 equiv) was added inside and the mixture was left stirring at 60 °C for 18 h. The reaction was monitored by TLC to follow the full consumption of the starting material. The mixture was then cooled down and extracted with EtOAc (3 x 2.0 mL) and brine (5.0 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated in vacuo. Finally, the product was purified by column chromatography (form petrol ether: EtOAc = 95:5 to petrol ether: EtOAc = 60:40). The title compound **Boscalid** (**1**, 130.2 mg, 75%) was obtained as a colourless solid. The spectroscopic data are in accordance with those previously reported.^{S3}

 $\mathbf{R}_{f} = 0.69$ (petrol ether: EtOAc = 60:40).

¹**H NMR** (500 MHz, CDCl₃): δ = 8.41 –8.31 (m, 2H), 8.07 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.38–7.34 (m, 2H), 7.31 –7.25 (m, 3H), 7.21–7.18 (m, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ = 162.6, 151.4, 146.8, 140.3, 136.4, 134.6, 134.4, 132.3, 131.1, 130.9, 130.3, 129.4, 129.0, 125.4, 123.0, 122.2 ppm. **HRMS** (EI) for C₁₈H₁₂Cl₂N₂O⁺ [M⁺]: calculated 342.0313, found 342.0316.

The **Boscalid** (1) was further characterised by X-Ray analysis.

6.2 Fluxapyroxad (2) Synthesis

In a glovebox, a 5.0 mL pressure tube equipped with a spherical stirrer bar was charged with 3,4,5-trifluorophenylboronic acid (**5b**, 97.0 mg, 0.55 mmol, 1.1 equiv), Na₂CO₃ (53.0 mg, 0.50 mmol, 1.0 equiv), 5 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (0.002 μ mol, 0.005 mol%, Pd:L = 1:4) and 2-chloro-nitrobenzene (**4a**, 79.0 mg, 0.50 mmol). The tube was capped and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was heated in an oil bath at 100 °C for 3 h. After this time, the reaction mixture was cooled down to rt and was transferred into a 10.0 mL crimp vial equipped with a stirrer bar and a bended needle on the septum. The pressure tube was charged with 0.50 mL of Pt/C (10.0 wt%, 1.0 mol%) and the crimp cap was closed. The vial was placed in a HEL CAT 7 autoclave and charged with 10 bar of H₂. The autoclave was then placed at 45 °C for 30 min. After this time, the autoclave was cooled to rt and depressurised. The crimp vial was opened and the containing mixture was filtered over a pad of celite to remove the Pt/C catalyst into a 5.0 mL vial. The crimp vial was rinsed with 0.50 mL of EtOAc for washing it. Subsequently, the
5.0 mL vial was charged with Et₃N (0.14 mL, 1.0 mmol, 2.0 equiv) and the mixture was left stirring gently at rt for 10 min. After this time, the vial was quickly opened and 5- (difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride (**11**, 243.0 mg, 1.25 mmol, 2.5 equiv) was added inside and the mixture was left stirring at 60 °C for 18 h. The reaction was monitored by TLC to follow the full consumption of the starting material. The mixture was then cooled down and extracted with EtOAc ($3 \times 2.0 \text{ mL}$) and brine (5.0 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated in vacuo. Finally, the product was purified by column chromatography (form petrol ether: EtOAc = 95:5 to petrol ether: EtOAc = 60:40). The title compound **Fluxapyroxad** (**2**, 126.0 mg, 66%) was obtained as a colourless solid. The spectroscopic data are in accordance with those previously reported.^{S6}

 $\mathbf{R}_{f} = 0.25$ (petrol ether: EtOAc = 60:40).

¹H NMR (500 MHz, CDCl₃): δ = 8.15 (d, *J* = 8.2 Hz, 1H), 7.94 (s, 1H), 7.84 (br s, 1H), 7.43– 7.39 (m, 1H), 7.24–7.20 (m, 2H), 7.02–6.95 (m, 2H), 6.67 (t, *J* = 54.2 Hz, 1H), 3.89 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 159.5, 151.4 (ddd, $J_{C,F}$ = 251.7, 9.9, 4.2 Hz), 142.4 (t, $J_{C,F}$ = 29.0 Hz), 139.6 (dt, $J_{C,F}$ = 252.9, 15.3 Hz), 136.4, 134.6, 1324.2 (td, $J_{C,F}$ = 7.9, 4.9 Hz), 131.3, 130.1, 129.3, 125.3, 123.6, 116.6, 113.8 (dd, $J_{C,F}$ = 16.2, 5.3 Hz), 111.7 (t, $J_{C,F}$ = 234.1 Hz), 39.6 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = –108.9, –133.7 (d, $J_{F,F}$ = 20.2 Hz), –161.5 (t, $J_{F,F}$ = 20.2 Hz) ppm. HRMS (EI) for C₁₈H₁₂F₅N₃O⁺ [M⁺]: calculated 381.0895, found 381.0895.

The Fluxapyroxad (2) was further characterised by X-Ray analysis.

6.3 Bixafen (3) Synthesis

In a glovebox, a 5.0 mL pressure tube equipped with a spherical stirrer bar was charged with 3,4-dichlorophenylboronic acid (**8**, 105.0 mg, 0.55 mmol, 1.1 equiv), Na₂CO₃ (53.0 mg, 0.50 mmol, 1.0 equiv), 10 μ L of a 0.005 M solution of Pd(OAc)₂ + P(*t*-Bu)Cy₂ in cyclohexane (0.004 μ mol, 0.01 mol%, Pd:L = 1:4) and 2-chloro-4-fluoro-nitrobenzene (**7**, 88.0 mg, 0.50 mmol). The tube was capped and transferred outside the glovebox, where 0.50 mL of H₂O were added under a flow of Ar. The tube was heated in an oil bath at 100 °C for 3 h. After this time, the reaction mixture was cooled down to rt and was filtered through a pad of activated charcoal to remove traces of Pd catalyst. The mixture in the pressure tube was transferred into a 10.0 mL crimp vial equipped with a stirrer bar and a bended needle on the septum. The pressure tube

was rinsed with 0.50 mL of water and 0.50 mL of EtOAc for washing it. Finally, the crimp vial was charged with 10.0 mg of Pt/C (10.0 wt%, 1.0 mol%) and the crimp cap was closed. The vial was placed in a HEL CAT 7 autoclave and charged with 10 bar of H₂. The autoclave was then placed at 45 °C for 30 min. After this time, the autoclave was cooled to rt and depressurised. The crimp vial was opened and the containing mixture was filtered over a pad of celite to remove the Pt/C catalyst into a 5.0 mL vial. The crimp vial was rinsed with 0.50 mL of EtOAc for washing it. Subsequently, the 5.0 mL vial was charged with Et₃N (0.14 mL, 1.0 mmol, 2.0 equiv) and the mixture was left stirring gently at rt for 10 min. After this time, the vial was quickly opened and 5-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride (11, 243.0 mg, 1.25 mmol, 2.5 equiv) was added inside and the mixture was left stirring at 60 °C for 18 h. The reaction was monitored by TLC to follow the full consumption of the starting material. The mixture was then cooled down and extracted with EtOAc (3 x 2.0 mL) and brine (5.0 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated in vacuo. Finally, the product was purified by column chromatography (form petrol ether: EtOAc = 95:5 to petrol ether: EtOAc = 60:40). The title compound **Bixafen** (3, 157.8 mg, 76%) was obtained as a colourless solid. The spectroscopic data are in accordance with those previously reported.^{S15}

 $\mathbf{R}_{\mathbf{f}} = 0.19$ (petrol ether:EtOAc = 60:40).

¹**H NMR** (500 MHz, CDCl₃): δ = 8.08 (dd, *J* = 9.1, 5.3 Hz, 1H), 7.91 (s, 1H), 7.73 (br.s, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* =2.0 Hz, 1H), 7.19 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.12 (td, *J* = 8.6 Hz, 3.0 Hz, 1H), 6.97 (dd, *J* = 8.7, 3.0 Hz, 1H), 6.68 (t, *J* = 54.2 Hz, 1H), 3.92 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ = 159.8 (d, *J*_{C,F} = 247 Hz), 159.7, 142.7 (t, *J*_{C,F} = 28.8 Hz), 137.2 (d, *J*_{C,F} = 1.5 Hz), 135.9, 134.0 (d, *J*_{C,F} = 7.8 Hz), 133.2, 132.8, 131.1, 131.0, 130.6, (d, *J*_{C,F} = 3.0 Hz), 125.8 (d, *J*_{C,F} = 8.2 Hz), 116.9 (d, *J*_{C,F} = 23.2 Hz), 116.5, 115.8 (d, *J*_{C,F} = 21.8 Hz), 111.6 (t, *J*_{C,F} = 233.9 Hz), 39.7 ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ = -108.9, -116.6 ppm. **HRMS** (EI) for C₁₈H₁₂Cl₂F₃N₃O⁺ [M⁺]: calculated 413.0304, found 413.0308.

The **Bixafen** (3) was further characterised by X-ray analysis.

7. NMR Spectra

4'-Chloro-2-nitro-1,1'-biphenyl (6a): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) [50 g-scale reaction, purification via recrystallisation]

4'-Chloro-2-nitro-1,1'-biphenyl (6a): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

4'-Methoxy-2-nitro-1,1'-biphenyl (6b): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4'-Methoxy-2-nitro-1,1'-biphenyl (6b): ¹³C{¹H} NMR (75 MHz, CDCl₃, 298 K)

4'-Methyl-2-nitro-1,1'-biphenyl (6c): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4'-Methyl-2-nitro-1,1'-biphenyl (6c): ¹³C{¹H} NMR (75 MHz, CDCl₃, 298 K)

2-Nitro-1,1'-biphenyl (6d): ¹H NMR spectrum (300 MHz, CDCI₃, 298 K)

2-Nitro-1,1'-biphenyl (6d): ¹³C NMR spectrum (75 MHz, CDCl₃, 298 K)

4'-Fluoro-2-nitro-1,1'-biphenyl (6e): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4'-Fluoro-2-nitro-1,1'-biphenyl (6e): ¹³C{¹H} NMR (75 MHz, CDCl₃, 298 K)

4'-Fluoro-2-nitro-1,1'-biphenyl (6e): ¹⁹F{¹H} NMR (282 MHz, CDCl₃, 298 K)

												·		
40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	ppm

3',4',5'-Trifluoro-2-nitro-1,1'-biphenyl (6f): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

3',4',5'-Trifluoro-2-nitro-1,1'-biphenyl (6f): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

3',4',5'-Trifluoro-2-nitro-1,1'-biphenyl (6f): ¹⁹F{¹H} NMR (471 MHz, CDCl₃, 298 K)

2-Nitro-4'-(trifluoromethyl)-1,1'-biphenyl (6g): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

2-Nitro-4'-(trifluoromethyl)-1,1'-biphenyl (6g):¹³C{¹H} NMR (75 MHz, CDCl₃, 298 K)

2-Nitro-4'-(trifluoromethyl)-1,1'-biphenyl (6g): ¹⁹F{¹H} NMR (471 MHz, CDCl₃, 298 K)

3'-Methyl-2-nitro-1,1'-biphenyl (6h):¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

3'-Methyl-2-nitro-1,1'-biphenyl (6h): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

2'-Nitro-[1,1'-biphenyl]-4-carbonitrile (6i): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

2'-Nitro-[1,1'-biphenyl]-4-carbonitrile (6i): ¹³C{¹H} NMR (75 MHz, CDCl₃, 298 K)

4'-Chloro-4-nitro-1,1'-biphenyl (6k): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4'-Chloro-4-nitro-1,1'-biphenyl (6k): ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 298 K)

4'-Chloro-[1,1'-biphenyl]-2-carbonitrile (6I): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

4'-Chloro-[1,1'-biphenyl]-2-carbonitrile (6I): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

4'-Chloro-[1,1'-biphenyl]-4-carbonitrile (6m): ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K)

4'-Chloro-[1,1'-biphenyl]-4-carbonitrile (6m): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

2-(4-Chlorophenyl)pyridine (6n): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

2-(4-Chlorophenyl)pyridine (6n): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

Methyl 4'-chloro-[1,1'-biphenyl]-4-carboxylate (6o): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

1-(4'-Chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (6p): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

1-(4'-Chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (6p): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

(4'-Chloro-[1,1'-biphenyl]-4-yl)(phenyl)methanone (6q): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

(4'-Chloro-[1,1'-biphenyl]-4-yl)(phenyl)methanone (6q): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

4'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (6r): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

4'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (6r): ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K)

4-Chloro-4'-(trifluoromethyl)-1,1'-biphenyl (6s): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

4-Chloro-4'-(trifluoromethyl)-1,1'-biphenyl (6s): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

4-Chloro-4'-(trifluoromethyl)-1,1'-biphenyl (6s): ¹⁹F{¹H} NMR (471 MHz, CDCl₃, 298 K)

4'-Chloro-[1,1'-biphenyl]-2-amine (6t): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

4'-Chloro-[1,1'-biphenyl]-2-amine (6t): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

143.6 138.1 138.1 138.1 133.2 133.2 133.2 133.5

4-Chloro-4'-methyl-1,1'-biphenyl (6u): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4-Chloro-4'-methyl-1,1'-biphenyl (6u): ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 298 K)

4-Chloro-4'-methoxy-1,1'-biphenyl (6v): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

4-Chloro-4'-methoxy-1,1'-biphenyl (6v): ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 298 K)

2,4'-Dichloro-1,1'-biphenyl (6w): ¹H NMR spectrum (300 MHz, CDCl₃, 298 K)

2,4'-Dichloro-1,1'-biphenyl (6w): ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 298 K)

3',4'-Dichloro-5-fluoro-2-nitro-1,1'-biphenyl (9): ¹H NMR spectrum (500 MHz, CDCI₃, 298 K)

3',4'-Dichloro-5-fluoro-2-nitro-1,1'-biphenyl (9): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

3',4'-Dichloro-5-fluoro-2-nitro-1,1'-biphenyl (9): ¹⁹F{¹H} NMR (471 MHz, CDCl₃, 298 K)

40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	ppm

--103.6

Boscalid (1): ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

Fluxapyroxad (2): ¹H NMR spectrum (500 MHz, CDCI₃, 298 K)

Fluxapyroxad (2): ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K)

Bixafen (3): ¹⁹F{¹H} NMR (471 MHz, CDCl₃, 298 K)

40 20	0 -20	-40 -60	-80 -100	-120	-140 -160	-180 -2	200 -220	-240 ppm

8. Crystallographic Data

8.1 Boscalid (1)

Figure S11. Crystallographic structure of product Boscalid (1) (CCDC: 2086181).

Table S9. Crystal data and structure refinement for Boscalid (1).

Identification code (CCDC)	2086181
Empirical formula	$C_{18}H_{12}CI_2N_2O$
Formula weight	343.20
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Z	8
Unit cell dimensions	a = 14.8126(13) Å α = 90 deg.
	b = 11.5893(9) Å β =91.746(2) deg.
	c = 18.7010(15) Å γ = 90 deg.
Volume	3208.9(5) Å ³
Density (calculated)	1.42 g/cm ³
Absorption coefficient	0.41 mm ⁻¹
Crystal shape	plate
Crystal size	0.180 x 0.078 x 0.032 mm ³
Crystal colour	colourless
Theta range for data collection	2.1 to 24.4 deg.
Index ranges	-17 $\leq h \leq$ 17, -13 $\leq k \leq$ 13, -21 $\leq l \leq$ 21
Reflections collected	28243
Independent reflections	5283 (R(int) = 0.0851)
Observed reflections	3100 (I > 2σ(I))

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.91
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	5283 / 0 / 423
Goodness-of-fit on F ²	1.03
Final R indices (I>2sigma(I))	R1 = 0.054, wR2 = 0.120
Largest diff. peak and hole	0.28 and -0.38 eÅ ⁻³

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **Boscalid** (1). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	х	У	Z	U(eq)
CI11	0.6305(1)	0.0958(1)	0.6966(1)	0.0535(4)
Cl21	0.8816(1)	-0.1284(1)	0.7804(1)	0.0612(4)
C101	0.6377(2)	0.3309(3)	0.7726(2)	0.0254(9)
O101	0.6721(2)	0.3641(2)	0.7174(1)	0.0320(6)
N111	0.6739(2)	0.3561(3)	0.8375(2)	0.0272(8)
H111	0.650(2)	0.326(3)	0.8661(19)	0.019(12)
C111	0.5512(2)	0.2643(3)	0.7728(2)	0.0279(9)
C121	0.5385(3)	0.1596(3)	0.7374(2)	0.0328(10)
N131	0.4632(2)	0.1003(3)	0.7342(2)	0.0427(9)
C141	0.3933(3)	0.1442(4)	0.7682(2)	0.0465(12)
H141	0.3379	0.1029	0.7666	0.056
C151	0.3973(3)	0.2461(4)	0.8053(2)	0.0462(12)
H151	0.3458	0.2745	0.8287	0.055
C161	0.4778(3)	0.3068(3)	0.8083(2)	0.0392(10)
H161	0.4824	0.3770	0.8343	0.047
C211	0.7534(3)	0.4259(3)	0.8449(2)	0.0286(9)
C221	0.8364(2)	0.3808(3)	0.8263(2)	0.0275(9)
C231	0.9101(3)	0.4553(4)	0.8270(2)	0.0394(11)
H231	0.9673	0.4276	0.8129	0.047
C241	0.9013(3)	0.5688(4)	0.8480(2)	0.0463(12)
H241	0.9518	0.6192	0.8470	0.056
C251	0.8192(3)	0.6094(4)	0.8703(2)	0.0436(11)
H251	0.8140	0.6864	0.8872	0.052
C261	0.7450(3)	0.5383(3)	0.8679(2)	0.0348(10)
H261	0.6881	0.5665	0.8822	0.042
C311	0.8468(2)	0.2557(3)	0.8112(2)	0.0286(9)
C321	0.8717(3)	0.2126(3)	0.7451(2)	0.0348(10)
H321	0.8827	0.2642	0.7069	0.042
C331	0.8807(3)	0.0950(4)	0.7352(2)	0.0408(11)
H331	0.8961	0.0660	0.6896	0.049
C341	0.8675(3)	0.0199(3)	0.7903(2)	0.0380(10)
C351	0.8438(3)	0.0605(4)	0.8554(2)	0.0398(11)

H351	0.8351	0.0085	0.8939	0.048
C361	0.8324(3)	0.1770(3)	0.8651(2)	0.0383(10)
H361	0.8141	0.2042	0.9103	0.046
CI12	0.4680(1)	0.1254(1)	0.5276(1)	0.0831(5)
Cl22	0.8190(1)	0.8667(1)	0.5950(1)	0.0687(4)
O102	0.6292(2)	0.2681(3)	0.4651(1)	0.0526(8)
C102	0.6255(3)	0.2984(3)	0.5278(2)	0.0346(10)
N112	0.6974(2)	0.3070(3)	0.5729(2)	0.0310(8)
H112	0.687(3)	0.330(3)	0.619(2)	0.049(13)
C112	0.5380(3)	0.3343(3)	0.5597(2)	0.0328(10)
C122	0.4639(3)	0.2634(4)	0.5627(2)	0.0449(11)
N132	0.3865(3)	0.2898(4)	0.5918(2)	0.0605(11)
C142	0.3801(4)	0.3962(5)	0.6185(3)	0.0616(14)
H142	0.3256	0.4171	0.6407	0.074
C152	0.4465(4)	0.4763(4)	0.6157(2)	0.0563(13)
H152	0.4373	0.5524	0.6328	0.068
C162	0.5282(3)	0.4446(4)	0.5873(2)	0.0468(12)
H162	0.5770	0.4979	0.5867	0.056
C212	0.7864(3)	0.2736(3)	0.5540(2)	0.0319(10)
C222	0.8560(3)	0.3557(3)	0.5569(2)	0.0340(10)
C232	0.9426(3)	0.3174(4)	0.5403(2)	0.0425(11)
H232	0.9917	0.3701	0.5430	0.051
C242	0.9580(3)	0.2058(4)	0.5203(2)	0.0496(12)
H242	1.0172	0.1824	0.5086	0.059
C252	0.8882(3)	0.1268(4)	0.5170(2)	0.0474(12)
H252	0.8990	0.0495	0.5025	0.057
C262	0.8029(3)	0.1608(4)	0.5349(2)	0.0384(10)
H262	0.7550	0.1063	0.5341	0.046
C312	0.8417(3)	0.4804(3)	0.5720(2)	0.0341(10)
C322	0.7757(3)	0.5425(4)	0.5345(2)	0.0378(10)
H322	0.7349	0.5031	0.5028	0.045
C332	0.7680(3)	0.6615(4)	0.5423(2)	0.0416(11)
H332	0.7229	0.7033	0.5161	0.050
C342	0.8263(3)	0.7167(4)	0.5884(2)	0.0432(11)
C352	0.8912(3)	0.6580(4)	0.6277(2)	0.0507(12)
H352	0.9304	0.6980	0.6603	0.061
C362	0.8987(3)	0.5406(4)	0.6192(2)	0.0469(12)
H362	0.9437	0.4998	0.6462	0.056

Table S11. Bond lengths [Å] and angles $[\circ]$ for Boscalid (1).

CI11-C121	1.747(4)
Cl21-C341	1.742(4)
C101-O101	1.227(4)
C101-N111	1.343(5)
C101-C111	1.497(5)
N111-C211	1.432(5)
N111-H111	0.73(3)
C111-C161	1.381(5)
C111-C121	1.392(5)
C121-N131	1.311(5)
N131-C141	1.332(5)
C141-C151	1.370(6)
C141-H141	0.9500
C151-C161	1.383(5)
C151-H151	0.9500
C161-H161	0.9500
C211-C261	1.379(5)
C211-C221	1.390(5)
C221-C231	1.392(5)
C221-C311	1.486(5)
C231-C241	1.381(6)
C231-H231	0.9500
C241-C251	1.380(6)
C241-H241	0.9500
C251-C261	1.373(5)
C251-H251	0.9500
C261-H261	0.9500
C311-C361	1.381(5)
C311-C321	1.393(5)
C321-C331	1.383(5)
C321-H321	0.9500
C331-C341	1.367(5)
C331-H331	0.9500
C341-C351	1.361(5)
C351-C361	1.373(5)
C351-H351	0.9500
C361-H361	0.9500
CI12-C122	1.731(4)
Cl22-C342	1.746(4)
O102-C102	1.227(4)
C102-N112	1.342(5)
C102-C112	1.501(5)
N112-C212	1.429(5)
N112-H112	0.92(4)
C112-C122	1.374(6)
C112-C162	1.388(5)
C122-N132	1.320(5)

N132-C142	1.335(6)
C142-C152	1.354(7)
C142-H142	0.9500
C152-C162	1.386(6)
C152-H152	0.9500
C162-H162	0.9500
C212-C262	1.378(5)
C212-C222	1.402(5)
C222-C232	1.401(5)
C222-C312	1,490(5)
C232-C242	1.367(6)
C232-H232	0.9500
C242-C252	1.381(6)
C242-H242	0.9500
C252-C262	1 375(6)
C252-H252	0.9500
C262-H262	0.3500
$C_{202} - 11202$	0.9300
C312-C322	1.300(3)
C312-C302	1.391(3)
0322-0332	1.391(5)
C322-H322	0.9500
0332-0342	1.361(6)
C332-H332	0.9500
0342-0352	1.373(6)
C352-C362	1.375(6)
C352-H352	0.9500
C362-H362	0.9500
0101 C101 N111	101 0/2)
	121.0(3)
	122.8(3)
N111-C101-C111	115.3(3)
C101-N111-C211	120.9(3)
C101-N111-H111	112(3)
C211-N111-H111	127(3)
C161-C111-C121	116.2(4)
C161-C111-C101	120.3(3)
C121-C111-C101	123.4(3)
N131-C121-C111	125.6(4)
N131-C121-Cl11	115.6(3)
C111-C121-Cl11	118.8(3)
C121-N131-C141	116.7(4)
N131-C141-C151	123.3(4)
N131-C141-H141	118.3
C151-C141-H141	118.3
C141-C151-C161	118.9(4)
C141-C151-H151	120.6
C161-C151-H151	120.6
C111-C161-C151	119.3(4)
C111-C161-H161	120.4

C151-C161-H161	120.4
C261-C211-C221	121.4(4)
C261-C211-N111	118.9(3)
C221-C211-N111	119.7(3)
C211-C221-C231	117.7(4)
C211-C221-C311	120.7(3)
C231-C221-C311	121.4(3)
C241-C231-C221	120.8(4)
C241-C231-H231	119.6
C221-C231-H231	119.6
C251-C241-C231	120.2(4)
C251-C241-H241	119.9
C231-C241-H241	119.9
C261-C251-C241	119.8(4)
C261-C251-H251	120.1
C241-C251-H251	120.1
C251-C261-C211	119.9(4)
C251-C261-H261	120.1
C211-C261-H261	120.1
C361-C311-C321	117.5(4)
C361-C311-C221	119.2(3)
C321-C311-C221	123.4(3)
C331-C321-C311	120.2(4)
C331-C321-H321	119.9
C311-C321-H321	119.9
C341-C331-C321	120.6(4)
C341-C331-H331	119.7
C321-C331-H331	119.7
C351-C341-C331	120.1(4)
C351-C341-Cl21	118.0(3)
C331-C341-Cl21	121.8(3)
C341-C351-C361	119.6(4)
C341-C351-H351	120.2
C361-C351-H351	120.2
C351-C361-C311	122.1(4)
C351-C361-H361	119.0
C311-C361-H361	119.0
O102-C102-N112	124.3(4)
O102-C102-C112	121.5(4)
N112-C102-C112	114.1(3)
C102-N112-C212	123.1(3)
C102-N112-H112	117(2)
C212-N112-H112	119(2)
C122-C112-C162	116.3(4)
C122-C112-C102	123.5(4)
C162-C112-C102	120.3(4)
N132-C122-C112	125.7(4)
N132-C122-Cl12	114.3(4)
C112-C122-Cl12	120.0(3)
	· /

C122-N132-C142	116.1(4)
N132-C142-C152	123.9(4)
N132-C142-H142	118.0
C152-C142-H142	118.0
C142-C152-C162	118.5(5)
C142-C152-H152	120.7
C162-C152-H152	120.7
C152-C162-C112	119.2(4)
C152-C162-H162	120.4
C112-C162-H162	120.4
C262-C212-C222	121.2(4)
C262-C212-N112	119.5(4)
C222-C212-N112	119.3(3)
C232-C222-C212	117.0(4)
C232-C222-C312	119.1(4)
C212-C222-C312	123.8(4)
C242-C232-C222	121.4(4)
C242-C232-H232	119.3
C222-C232-H232	119.3
C232-C242-C252	120.6(4)
C232-C242-H242	119.7
C252-C242-H242	119.7
C262-C252-C242	119.4(4)
C262-C252-H252	120.3
C242-C252-H252	120.3
C252-C262-C212	120.4(4)
C252-C262-H262	119.8
C212-C262-H262	119.8
C322-C312-C362	117.7(4)
C322-C312-C222	120.7(4)
C362-C312-C222	121.3(4)
C312-C322-C332	121.3(4)
C312-C322-H322	119.4
C332-C322-H322	119.4
C342-C332-C322	118.7(4)
C342-C332-H332	120.6
C322-C332-H332	120.6
C332-C342-C352	121.8(4)
C332-C342-Cl22	118.2(4)
C352-C342-Cl22	120.0(4)
C342-C352-C362	119.1(4)
C342-C352-H352	120.5
C362-C352-H352	120.5
C352-C362-C312	121.4(4)
C352-C362-H362	119.3
C312-C362-H362	119.3

Symmetry transformations used to generate equivalent atoms.

	U11	U22	U33	U23	U13	U ¹²
CI11	0.0554(7)	0.0387(7)	0.0679(8)	-0.0163(6)	0.0241(6)	-0.0063(5)
Cl21	0.0854(10)	0.0346(7)	0.0646(8)	-0.0014(6)	0.0193(7)	0.0066(6)
C101	0.027(2)	0.023(2)	0.026(2)	-0.0017(17)	0.0002(18)	0.0039(17)
O101	0.0400(16)	0.0377(16)	0.0185(14)	0.0003(12)	0.0049(12)	-0.0074(13)
N111	0.0262(19)	0.032(2)	0.0239(19)	0.0040(16)	0.0050(16)	-0.0056(15)
C111	0.027(2)	0.032(2)	0.026(2)	0.0039(17)	0.0004(17)	0.0029(17)
C121	0.037(3)	0.031(2)	0.031(2)	0.0006(18)	0.0022(19)	0.0002(19)
N131	0.040(2)	0.042(2)	0.045(2)	-0.0046(17)	0.0025(18)	-0.0134(18)
C141	0.034(3)	0.048(3)	0.057(3)	0.005(2)	-0.005(2)	-0.013(2)
C151	0.029(3)	0.053(3)	0.057(3)	0.003(2)	0.009(2)	-0.002(2)
C161	0.037(3)	0.030(2)	0.050(3)	-0.004(2)	0.005(2)	-0.002(2)
C211	0.035(2)	0.032(2)	0.019(2)	0.0007(17)	-0.0024(17)	-0.0001(18)
C221	0.029(2)	0.033(2)	0.021(2)	-0.0005(17)	-0.0001(17)	0.0003(18)
C231	0.030(2)	0.043(3)	0.045(3)	-0.006(2)	0.004(2)	-0.004(2)
C241	0.046(3)	0.038(3)	0.055(3)	-0.004(2)	-0.001(2)	-0.013(2)
C251	0.054(3)	0.030(3)	0.047(3)	-0.008(2)	0.000(2)	-0.004(2)
C261	0.034(2)	0.036(3)	0.034(2)	-0.0002(19)	0.0010(19)	0.005(2)
C311	0.022(2)	0.034(2)	0.029(2)	-0.0019(18)	0.0003(17)	-0.0023(17)
C321	0.040(2)	0.034(3)	0.031(2)	0.0020(19)	0.0078(19)	0.0052(19)
C331	0.046(3)	0.043(3)	0.034(2)	-0.010(2)	0.009(2)	0.010(2)
C341	0.039(2)	0.029(2)	0.046(3)	0.000(2)	0.006(2)	0.0036(19)
C351	0.044(3)	0.042(3)	0.034(2)	0.005(2)	0.005(2)	0.000(2)
C361	0.048(3)	0.038(3)	0.029(2)	-0.0043(19)	0.007(2)	0.001(2)
CI12	0.0756(10)	0.0573(9)	0.1179(13))-0.0312(8)	0.0274(9)	-0.0194(7)

Table S12. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **Boscalid** (1). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Cl22	0.0883(10)	0.0413(8)	0.0766(9)	-0.0040(6)	0.0035(8)	-0.0095(7)
O102	0.055(2)	0.080(2)	0.0225(17))-0.0159(15)	0.0023(14)	0.0094(17)
C102	0.042(3)	0.031(2)	0.032(2)	-0.0028(18)	0.005(2)	-0.0022(19)
N112	0.035(2)	0.039(2)	0.0195(18)-0.0030(15)	0.0043(16)	-0.0045(16)
C112	0.042(3)	0.038(3)	0.018(2)	-0.0039(18)	0.0007(18)	0.006(2)
C122	0.042(3)	0.047(3)	0.046(3)	-0.006(2)	0.004(2)	0.002(2)
N132	0.037(2)	0.080(3)	0.065(3)	-0.008(2)	0.002(2)	0.002(2)
C142	0.050(3)	0.089(4)	0.046(3)	-0.010(3)	0.001(2)	0.030(3)
C152	0.067(4)	0.058(3)	0.043(3)	-0.018(2)	-0.006(3)	0.024(3)
C162	0.060(3)	0.048(3)	0.032(2)	-0.007(2)	0.001(2)	0.003(2)
C212	0.042(3)	0.037(3)	0.017(2)	0.0029(17)	0.0025(18)	0.005(2)
C222	0.039(3)	0.039(3)	0.024(2)	0.0048(18)	-0.0011(18)	0.003(2)
C232	0.038(3)	0.051(3)	0.039(3)	0.004(2)	-0.001(2)	0.003(2)
C242	0.045(3)	0.053(3)	0.051(3)	0.012(2)	0.008(2)	0.020(3)
C252	0.061(3)	0.040(3)	0.041(3)	0.005(2)	0.010(2)	0.016(2)
C262	0.051(3)	0.037(3)	0.027(2)	0.0055(19)	0.007(2)	0.001(2)
C312	0.033(2)	0.040(3)	0.029(2)	0.0012(19)	0.0038(19)	-0.004(2)
C322	0.043(3)	0.040(3)	0.031(2)	0.0008(19)	-0.001(2)	-0.005(2)
C332	0.049(3)	0.038(3)	0.038(3)	0.004(2)	-0.001(2)	0.003(2)
C342	0.049(3)	0.038(3)	0.043(3)	-0.004(2)	0.006(2)	-0.002(2)
C352	0.051(3)	0.049(3)	0.051(3)	-0.007(2)	-0.013(2)	-0.012(2)
C362	0.044(3)	0.049(3)	0.046(3)	0.000(2)	-0.005(2)	-0.003(2)
8.2 Fluxapyroxad (2)

Figure S12. Crystallographic structure of product Fluxapyroxad (2) (CCDC: 2086182).

 Table S13. Crystal data and structure refinement for Fluxapyroxad (2).

Identification code (CCDC)	2086182	
Empirical formula	$C_{18}H_{12}F_5N_3O$	
Formula weight	381.31	
Temperature	200(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Z	8	
Unit cell dimensions	a = 12.8826(6) Å	α = 90 deg.
	b =9.2515(5) Å	β = 90 deg.
	c = 28.4963(12) Å	$\gamma = 90 \text{ deg.}$
Volume	3396.3(3) Å ³	
Density (calculated)	1.49 g/cm ³	
Absorption coefficient	1.16 mm ⁻¹	
Crystal shape	needle	
Crystal size	0.110 x 0.055 x 0.02	24 mm ³
Crystal colour	colourless	
Theta range for data collection	6.1 to 66.7 deg.	
Index ranges	-15 \leq h \leq 7, -9 \leq k \leq	10, -33 \leq I \leq 32
Reflections collected	10749	
Independent reflections	2929 (R(int) = 0.052	29)
Observed reflections	1728 (I > 2\s(I))	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.98 and 0.44
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	2929 / 0 / 288
Goodness-of-fit on F ²	1.02
Final R indices (I>2σ(I))	R1 = 0.051, wR2 = 0.100
Largest diff. peak and hole	0.26 and -0.18 eÅ ⁻³
Refinement method Data/restraints/parameters Goodness-of-fit on F^2 Final R indices (I>2 σ (I)) Largest diff. peak and hole	Full-matrix least-squares on F ² 2929 / 0 / 288 1.02 R1 = 0.051, wR2 = 0.100 0.26 and -0.18 eÅ ⁻³

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **Fluxapyroxad** (2). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	х	у	Z	U(eq)
C1	0.1933(2)	0.7062(3)	0.6124(1)	0.0368(7)
C2	0.2591(2)	0.6701(3)	0.5752(1)	0.0406(7)
C3	0.2140(3)	0.6283(4)	0.5325(1)	0.0511(8)
H3	0.256(3)	0.606(4)	0.5032(12)	0.077
C4	0.1069(3)	0.6271(4)	0.5271(1)	0.0531(9)
H4	0.079(3)	0.599(4)	0.4956(13)	0.080
C5	0.0436(3)	0.6651(4)	0.5638(1)	0.0499(8)
H5	-0.032(3)	0.673(4)	0.5598(12)	0.075
C6	0.0865(2)	0.7040(3)	0.6067(1)	0.0446(8)
H6	0.042(3)	0.730(4)	0.6330(12)	0.067
N7	0.2331(2)	0.7495(3)	0.6569(1)	0.0393(6)
H7	0.216(2)	0.830(4)	0.6654(11)	0.059
O8	0.3223(2)	0.5443(2)	0.6734(1)	0.0423(5)
C8	0.2919(2)	0.6658(3)	0.6847(1)	0.0349(6)
C9	0.3205(2)	0.7292(3)	0.7305(1)	0.0337(6)
C10	0.4043(2)	0.6902(3)	0.7596(1)	0.0393(7)
N11	0.4068(2)	0.7676(3)	0.7990(1)	0.0456(6)
N12	0.3234(2)	0.8553(3)	0.7956(1)	0.0420(6)
C13	0.2708(2)	0.8355(3)	0.7554(1)	0.0403(7)
H13	0.210(2)	0.891(3)	0.7488(10)	0.060
C14	0.4861(2)	0.5806(4)	0.7504(1)	0.0587(9)
H14	0.4805	0.5414	0.7178	0.070
F15A	0.4742(7)	0.4704(6)	0.7838(3)	0.091(3)
F16A	0.5790(3)	0.6331(7)	0.7583(4)	0.086(3)
F15B	0.5435(17)	0.544(2)	0.7847(5)	0.125(10)
F16B	0.5640(9)	0.6646(12)	0.7197(10)	0.125(7)
C17	0.3009(3)	0.9578(4)	0.8329(1)	0.0609(9)
H17A	0.3569	1.0293	0.8348	0.091
H17B	0.2955	0.9062	0.8629	0.091
H17C	0.2352	1.0070	0.8263	0.091
C21	0.3744(2)	0.6773(3)	0.5789(1)	0.0428(7)
C22	0.4337(3)	0.5613(4)	0.5631(1)	0.0493(8)
H22	0.402(3)	0.468(4)	0.5518(12)	0.074

F23	0.5996(2)	0.4574(2)	0.5513(1)	0.0785(6)	
C23	0.5402(3)	0.5699(4)	0.5656(1)	0.0548(9)	
F24	0.6941(1)	0.6948(2)	0.5849(1)	0.0829(7)	
C24	0.5890(2)	0.6887(4)	0.5831(1)	0.0582(9)	
F25	0.5800(2)	0.9199(2)	0.6152(1)	0.0891(8)	
C25	0.5300(3)	0.8023(4)	0.5985(1)	0.0572(9)	
C26	0.4240(2)	0.7989(4)	0.5968(1)	0.0507(8)	
H26	0.387(3)	0.881(4)	0.6071(12)	0.076	

C1-C6	1.386(4)
C1-C2	1.398(4)
C1-N7	1.426(3)
C2-C3	1.402(4)
C2-C21	1.490(4)
C3-C4	1.388(4)
C3-H3	1.02(3)
C4-C5	1.371(5)
C4-H4	1.00(4)
C5-C6	1.390(4)
C5-H5	0.98(3)
C6-H6	0.98(3)
N7-C8	1.342(4)
N7-H7	0.82(3)
O8-C8	1.233(3)
C8-C9	1.477(4)
C9-C13	1.372(4)
C9-C10	1.408(4)
C10-N11	1.332(4)
C10-C14	1.486(4)
N11-N12	1.350(3)
N12-C13	1.342(3)
N12-C17	1.455(4)
C13-H13	0.96(3)
C14-F15B	1.271(9)
C14-F16A	1.311(5)
C14-F15A	1.403(5)
C14-F16B	1.542(15)
C14-H14	1.0000
C17-H17A	0.9800
C17-H17B	0.9800
C17-H17C	0.9800
C21-C26	1.390(4)
C21-C22	1.394(4)
C22-C23	1.376(5)
C22-H22	1.01(4)
F23-C23	1.355(4)
C23-C24	1.361(5)
F24-C24	1.355(4)
C24-C25	1.369(5)
F25-C25	1.351(4)
C25-C26	1.367(4)
C26-H26	0.94(4)
C6-C1-C2	120.7(3)
C6-C1-N7	117.7(3)
C2-C1-N7	121.6(3)

 Table S15. Bond lengths [Å] and angles [°] for Fluxapyroxad (2).

C1-C2-C3	118.2(3)
C1-C2-C21	122.7(3)
C3-C2-C21	119.2(3)
C4-C3-C2	120.7(3)
C4-C3-H3	116(2)
C2-C3-H3	123(2)
C5-C4-C3	120.3(3)
C5-C4-H4	123(2)
C3-C4-H4	117(2)
C4-C5-C6	120 0(3)
	120.0(3)
	149(2)
	110(2)
	120.1(3)
C1-C6-H6	120(2)
C5-C6-H6	120(2)
C8-N7-C1	124.5(2)
C8-N7-H7	121(2)
C1-N7-H7	115(2)
08-C8-N7	123.4(3)
O8-C8-C9	120.9(2)
N7-C8-C9	115.6(2)
C13-C9-C10	103.7(2)
C13-C9-C8	128.7(3)
C10-C9-C8	127.6(2)
N11-C10-C9	112.2(2)
N11-C10-C14	119.8(3)
C9-C10-C14	128.0(3)
C10-N11-N12	104.0(2)
C13-N12-N11	112.5(2)
C13-N12-C17	127.7(3)
N11-N12-C17	119.8(2)
N12-C13-C9	107.6(2)
N12-C13-H13	120.7(19)
C9-C13-H13	131 7(19)
F16A-C14-F15A	104 7(4)
F15B-C14-C10	117 3(5)
F16A-C14-C10	111 A(3)
F15A-C14-C10	107 A(3)
E15B_C14-E16B	107.4(3) 101.1(0)
	107.6(5)
	102.0(3)
	111.1
	111.1
C10-C14-H14	111.1
N12-017-H17A	109.5
N12-UT/-H1/B	109.5
H1/A-C1/-H1/B	109.5
N12-C1/-H17C	109.5
H17A-C17-H17C	109.5
H17B-C17-H17C	109.5

C26-C21-C22	119.4(3)
C26-C21-C2	121.4(3)
C22-C21-C2	119.3(3)
C23-C22-C21	119.0(3)
C23-C22-H22	118.4(19)
C21-C22-H22	122(2)
F23-C23-C24	118.0(3)
F23-C23-C22	120.2(3)
C24-C23-C22	121.8(3)
F24-C24-C23	120.6(4)
F24-C24-C25	120.7(4)
C23-C24-C25	118.7(3)
F25-C25-C26	120.5(3)
F25-C25-C24	117.8(3)
C26-C25-C24	121.7(3)
C25-C26-C21	119.4(3)
C25-C26-H26	118(2)
C21-C26-H26	122(2)

Symmetry transformations used to generate equivalent atoms.

	U11	U22	U33	U23	U13	U12
C1	0.0479(17)	0.0263(15)	0.0363(15)	-0.0021(12)-0.0034(13)	-0.0014(13
C2	0.0477(17)	0.0371(18)	0.0369(16)	0.0022(14)) 0.0002(14)	-0.0015(14
C3	0.063(2)	0.054(2)	0.0356(17)	0.0007(16)) 0.0012(16)	-0.0039(18
C4	0.066(2)	0.053(2)	0.0406(19)	0.0025(16))-0.0106(17)	-0.0088(18
C5	0.0512(18)	0.047(2)	0.051(2)	0.0042(16))-0.0078(16)	-0.0047(17
C6	0.0489(19)	0.0380(18)	0.0468(18)	0.0008(14))-0.0029(15)	0.0005(15)
N7	0.0499(15)	0.0317(14)	0.0364(13)	-0.0065(12))-0.0048(11)	0.0047(12)
O8	0.0563(12)	0.0268(11)	0.0437(11)	-0.0030(9)	0.0012(10)	0.0029(10)
C8	0.0381(15)	0.0287(16)	0.0381(15)	0.0002(13)) 0.0037(12)	-0.0032(14
C9	0.0352(15)	0.0284(15)	0.0376(15)	-0.0009(12)) 0.0000(12)	-0.0021(13
C10	0.0351(15)	0.0371(17)	0.0458(17)	-0.0039(14)-0.0006(13)	-0.0009(14
N11	0.0392(14)	0.0473(16)	0.0503(15)	-0.0058(12))-0.0062(11)	0.0015(13)
N12	0.0427(14)	0.0447(16)	0.0385(13)	-0.0095(12))-0.0021(11)	0.0009(12)
C13	0.0409(17)	0.0394(18)	0.0404(17)	-0.0066(14)-0.0044(13)	0.0013(14)
C14	0.046(2)	0.060(2)	0.070(2)	-0.010(2)	-0.0087(19)	0.0121(18)
F15A	0.089(4)	0.060(3)	0.123(4)	0.024(3)	0.008(3)	0.027(3)
F16A	0.0301(19)	0.077(4)	0.151(8)	-0.028(4)	-0.012(3)	0.005(2)
F15B	0.132(19)	0.132(16)	0.111(9)	-0.047(8)	-0.068(10)	0.084(16)
F16B	0.056(6)	0.119(8)	0.200(19)	-0.007(9)	0.047(8)	0.004(5)
C17	0.060(2)	0.072(2)	0.0506(19)	-0.0261(18))-0.0038(16)	0.0038(19)

Table S16. Anisotropic displacement parameters (Å 2x 10 $^3)$ for Fluxapyroxad (2). The anisotropic

displacement factor exponent takes the form:	-2p ² [h ² a* ² U ¹¹ + +	- 2 h k a* b* U ¹²]
--	---	---------------------------------

C21	0.0496(18)	0.0430(19)	0.0358(16)	0.0073(14) 0.002	3(13)	-0.0004(16)
C22	0.057(2)	0.053(2)	0.0376(18)	0.0042(15) 0.003	8(15)	0.0083(18)
F23	0.0726(13)	0.0944(17)	0.0686(13)	-0.0043(12) 0.014	2(10)	0.0291(13)
C23	0.060(2)	0.064(3)	0.0398(18)	0.0110(17) 0.009	4(16)	0.018(2)
F24	0.0477(11)	0.1076(19)	0.0934(15)	0.0319(13) 0.002	8(10)	0.0035(12)
C24	0.045(2)	0.069(3)	0.060(2)	0.0259(19) 0.001	9(17)	0.001(2)
F25	0.0607(13)	0.0643(14)	0.142(2)	0.0105(14)-0.022	5(13)	-0.0155(11)
C25	0.051(2)	0.050(2)	0.070(2)	0.0129(18)-0.006	2(17)	-0.0090(19)
C26	0.047(2)	0.048(2)	0.057(2)	0.0093(17)-0.002	1(15)	-0.0019(17)

8.2 Bixafen (3)

Figure S13. Crystallographic structure of product Bixafen (3) (CCDC: 2086183).

Table S17. Crystal data and structure refinement for Bixafen (3).

Identification code (CCDC)	2086183	
Empirical formula	$C_{18}H_{12}CI_2F_3N_3O$	
Formula weight	414.21	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P21/c	
Z	4	
Unit cell dimensions	a = 11.8929(7) Å	α = 90 deg.
	b = 18.0476(11) Å	$\beta = 110.0924(15) \text{ deg.}$
	c = 8.6239(5) Å	$\gamma = 90 \text{ deg.}$
Volume	1738.37(18) Å ³	
Density (calculated)	1.58 g/cm ³	
Absorption coefficient	0.42 mm ⁻¹	
Crystal shape	plank	
Crystal size	0.143 x 0.070 x 0.0	21 mm³
Crystal colour	colourless	
Theta range for data collection	1.8 to 26.4 deg.	
Index ranges	$-14 \le h \le 14, -22 \le 1$	k ≤ 22, -10 ≤ l ≤ 10

Reflections collected	17929
Independent reflections	3545 (R(int) = 0.0695)
Observed reflections	2247 (l > 2σ(l))
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.93
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3545 / 0 / 248
Goodness-of-fit on F ²	1.02
Final R indices (I>2sigma(I))	R1 = 0.052, wR2 = 0.104
Largest diff. peak and hole	0.30 and -0.33 eÅ ⁻³

Table S18. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **Bixafen** (3). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	Х	У	Z	U(eq)
C1	0.5690(3)	0.5680(2)	0.7531(4)	0.0237(7)
O1	0.4683(2)	0.5519(1)	0.7495(3)	0.0339(6)
N1	0.5901(2)	0.6210(1)	0.6543(3)	0.0268(6)
H1	0.655(3)	0.6348(19)	0.676(4)	0.040
C2	0.6734(3)	0.5289(2)	0.8670(4)	0.0223(7)
C3	0.7939(3)	0.5206(2)	0.8781(4)	0.0247(7)
N4	0.8539(2)	0.4757(1)	1.0009(3)	0.0310(6)
N5	0.7734(2)	0.4555(1)	1.0708(3)	0.0297(6)
C6	0.6658(3)	0.4851(2)	0.9949(4)	0.0266(7)
H6	0.5963	0.4776	1.0235	0.032
C7	0.8600(3)	0.5468(2)	0.7704(4)	0.0380(9)
H7	0.9452	0.5299	0.8155	0.046
F8	0.8068(2)	0.5210(1)	0.6135(3)	0.0569(6)
F9	0.8554(2)	0.6219(1)	0.7569(3)	0.0598(7)
C10	0.8091(3)	0.4050(2)	1.2113(5)	0.0492(10)
H10A	0.7443	0.4010	1.2567	0.074
H10B	0.8813	0.4241	1.2964	0.074
H10C	0.8259	0.3560	1.1753	0.074
C11	0.5011(3)	0.6581(2)	0.5234(4)	0.0245(7)
C12	0.5172(3)	0.7323(2)	0.4866(4)	0.0230(7)
C13	0.4287(3)	0.7659(2)	0.3542(4)	0.0267(7)
H13	0.4374	0.8160	0.3264	0.032
C14	0.3291(3)	0.7262(2)	0.2643(4)	0.0285(7)
C15	0.3115(3)	0.6544(2)	0.3004(4)	0.0300(8)
H15	0.2409	0.6286	0.2376	0.036
C16	0.3985(3)	0.6201(2)	0.4303(4)	0.0281(7)
H16	0.3879	0.5700	0.4562	0.034
F18	0.2457(2)	0.7598(1)	0.1340(2)	0.0417(5)
C21	0.6257(3)	0.7765(2)	0.5807(4)	0.0245(7)
C22	0.7370(3)	0.7592(2)	0.5726(4)	0.0328(8)

H22	0.7448	0.7182	0.5080	0.039
C23	0.8370(3)	0.8009(2)	0.6573(4)	0.0354(8)
C24	0.8264(3)	0.8609(2)	0.7524(4)	0.0336(8)
C25	0.7156(3)	0.8801(2)	0.7584(4)	0.0345(8)
H25	0.7079	0.9219	0.8209	0.041
C26	0.6153(3)	0.8381(2)	0.6725(4)	0.0291(7)
H26	0.5391	0.8515	0.6765	0.035
Cl1	0.9734(1)	0.7769(1)	0.6414(2)	0.0614(3)
Cl2	0.9514(1)	0.9121(1)	0.8619(1)	0.0544(3)

 Table S19.
 Bond lengths [Å] and angles [°] for Bixafen (3).

C1-O1	1.222(3)
C1-N1	1.361(4)
C1-C2	1.471(4)
N1-C11	1.421(4)
N1-H1	0.77(3)
C2-C6	1.385(4)
C2-C3	1.411(4)
C3-N4	1.330(4)
C3-C7	1.485(4)
N4-N5	1.346(3)
N5-C6	1.333(4)
N5-C10	1.458(4)
C6-H6	0.9500
C7-F9	1.359(4)
C7-F8	1.364(4)
C7-H7	1.0000
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
C11-C16	1.389(4)
C11-C12	1.406(4)
C12-C13	1.398(4)
C12-C21	1.497(4)
C13-C14	1.373(4)
C13-H13	0.9500
C14-F18	1.359(3)
C14-C15	1.366(4)
C15-C16	1.382(4)
C15-H15	0.9500
C16-H16	0.9500
C21-C22	1.385(4)
C21-C26	1.394(4)
C22-C23	1.385(4)
C22-H22	0.9500

C23-C24	1.390(5)
C23-Cl1	1.729(3)
C24-C25	1.381(5)
C24-Cl2	1.729(3)
C25-C26	1.394(4)
C25-H25	0.9500
C26-H26	0.9500
01-C1-N1	122.7(3)
01-C1-C2	119 9(3)
N1-C1-C2	117 4(3)
C1-N1-C11	125 5(3)
C1-N1-H1	117(3)
	117(3)
	102 1(2)
00-02-03	103.1(3)
	122.3(3)
03-02-01	134.5(3)
N4-C3-C2	112.0(3)
N4-C3-C7	115.9(3)
C2-C3-C7	131.9(3)
C3-N4-N5	104.6(2)
C6-N5-N4	112.5(2)
C6-N5-C10	128.0(3)
N4-N5-C10	119.5(3)
N5-C6-C2	107.8(3)
N5-C6-H6	126.1
C2-C6-H6	126.1
F9-C7-F8	105.3(3)
F9-C7-C3	110.9(3)
F8-C7-C3	110.3(3)
F9-C7-H7	110.1
F8-C7-H7	110.1
C3-C7-H7	110.1
N5-C10-H10A	109.5
N5-C10-H10B	109.5
H10A-C10-H10B	109.5
N5-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	100.0
C16-C11-C12	120.0(3)
C16-C11-N1	120.0(3)
C12 C11 N1	120 4(2)
C12-C11-IN1	120.4(3)
	110.4(3)
	118.6(3)
	1∠3.U(3)
014-013-012	119.8(3)
014-013-H13	120.1
C12-C13-H13	120.1
F18-C14-C15	119.0(3)
F18-C14-C13	118.5(3)

C15-C14-C13	122.4(3)
C14-C15-C16	118.6(3)
C14-C15-H15	120.7
C16-C15-H15	120.7
C15-C16-C11	120.8(3)
C15-C16-H16	119.6
C11-C16-H16	119.6
C22-C21-C26	118.7(3)
C22-C21-C12	120.9(3)
C26-C21-C12	120.3(3)
C23-C22-C21	121.0(3)
C23-C22-H22	119.5
C21-C22-H22	119.5
C22-C23-C24	119.9(3)
C22-C23-Cl1	118.8(3)
C24-C23-Cl1	121.3(3)
C25-C24-C23	120.0(3)
C25-C24-Cl2	119.8(3)
C23-C24-Cl2	120.3(3)
C24-C25-C26	119.8(3)
C24-C25-H25	120.1
C26-C25-H25	120.1
C21-C26-C25	120.6(3)
C21-C26-H26	119.7
C25-C26-H26	119.7

Symmetry transformations used to generate equivalent atoms.

Table S20. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **Bixafen** (3). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U12
C1	0.0237(17)	0.0239(16)	0.0239(17)	-0.0005(13)	0.0087(13)	0.0005(13)
O1	0.0232(12)	0.0426(13)	0.0381(14)	0.0139(11)	0.0134(10)	0.0058(10)
N1	0.0203(14)	0.0283(14)	0.0300(15)	0.0054(12)	0.0063(12)	-0.0015(11)
C2	0.0225(16)	0.0197(15)	0.0236(16)	-0.0014(13)	0.0066(13)	-0.0012(12)
C3	0.0197(16)	0.0266(16)	0.0246(16)	0.0023(14)	0.0036(13)	-0.0032(13)
N4	0.0213(14)	0.0363(15)	0.0317(16)	0.0114(13)	0.0044(12)	-0.0014(12)
N5	0.0239(14)	0.0356(15)	0.0278(15)	0.0115(12)	0.0067(12)	-0.0016(12)

C6	0.0202(16)	0.0308(17)	0.0283(17)	0.0049(14)	0.0077(13)	-0.0004(13)
C7	0.0232(18)	0.044(2)	0.045(2)	0.0122(18)	0.0089(16)	0.0008(15)
F8	0.0486(13)	0.0911(17)	0.0353(12)	0.0110(12)	0.0199(11)	0.0056(12)
F9	0.0381(12)	0.0528(13)	0.0863(18)	0.0293(13)	0.0185(12)	-0.0112(10)
C10	0.0307(19)	0.065(3)	0.047(2)	0.034(2)	0.0077(17)	-0.0007(18)
C11	0.0234(16)	0.0258(16)	0.0235(16)	0.0013(13)	0.0071(13)	0.0043(13)
C12	0.0223(15)	0.0255(16)	0.0240(16)	-0.0004(13)	0.0114(13)	-0.0001(13)
C13	0.0270(17)	0.0245(16)	0.0319(18)	0.0033(14)	0.0143(14)	0.0010(13)
C14	0.0256(17)	0.0322(18)	0.0259(17)	0.0034(14)	0.0065(14)	0.0060(14)
C15	0.0264(17)	0.0313(18)	0.0285(18)	-0.0065(15)	0.0044(14)	-0.0039(14)
C16	0.0312(18)	0.0220(16)	0.0296(18)	0.0000(14)	0.0085(15)	-0.0026(14)
F18	0.0377(11)	0.0391(11)	0.0366(11)	0.0069(9)	-0.0022(9)	0.0056(9)
C21	0.0273(16)	0.0228(15)	0.0217(16)	0.0045(13)	0.0060(13)	-0.0032(13)
C22	0.0292(18)	0.0266(17)	0.044(2)	-0.0002(16)	0.0142(16)	-0.0034(14)
C23	0.0264(18)	0.0370(19)	0.042(2)	0.0099(17)	0.0106(16)	-0.0038(15)
C24	0.0329(19)	0.0359(19)	0.0263(18)	0.0046(15)	0.0028(15)	-0.0122(15)
C25	0.044(2)	0.0327(18)	0.0280(19)	-0.0030(15)	0.0136(16)	-0.0068(16)
C26	0.0322(18)	0.0290(17)	0.0262(17)	-0.0005(14)	0.0100(14)	-0.0013(14)
Cl1	0.0294(5)	0.0605(7)	0.0971(9)	-0.0028(6)	0.0252(5)	-0.0050(5)
Cl2	0.0476(6)	0.0624(6)	0.0450(6)	-0.0040(5)	0.0056(5)	-0.0267(5)

9. References

- S1 Y. Zhang, Z. Chen, J. Nie, F.-G. Zhang and J.-A. Ma, *J. Org. Chem.*, 2019, **84**, 7148–7158.
- S2 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, **73**, 1795–1818.
- S3 B. S. Takale, R. R. Thokore, R. Mallarapu, F. Gallou and B. H. Lipshutz, *Org. Process. Res. Dev.*, 2020, **24**, 101–105.
- S4 H. Gao, Q.-L. Xu, M. Yousufuddin, D. H. Ess and L. Kürti, *Angew. Chem. Int. Ed.*, 2014, 53, 2701–2705.
- S5 J. T. Kuethe and K. G. Childers, *Adv. Synth. Cat.*, 2008, **350**, 1577–1586.
- S6 Z. Li, X. Zhang, J. Qin, Z. Tan, M. Hanand G. Jin, *Org. Process. Res. Dev.*, 2019, **23**, 1881–1886.
- S7 M.-Q. Yan, F. Lan, S.-H. Zeng, M.-Y. Gao, S.-H. Liu, J. Chen and G.-A. Yu, Org. Biomol. Chem., 2017, 15, 3924–3929.
- S8 S. Wübbolt, and M. Oestreich, *Angew. Chem. Int. Ed.*, 2015, **54**, 15876–15879.
- S9 W. Li, Z. Xu, P. Sun, X. Jang and M. Fang, *Org. Lett.*, 2011, **13**, 1286–1289.
- S10 M. Al-Amin, M. Akimoto, T. Tameno, Y. Ohki, N. Takahashi, N. Hoshiya, S. Suto and M. Arisawa, *Green Chem.*, 2013, 15, 1142–1145.
- S11 J. Wang, Y. Zong, X. Wang, G. Yue and Y. Pan, *Green Chem.*, 2016, **18**, 967–973.
- S12 Y. Wen, G. Chen, S. Huang, Y. Tang and Y. Zhang, *Adv. Synth. Cat.*, 2016, **358**, 947–957.
- S13 C. A. Malapit, N. Ichiishi, and M. S. Sanford, Org. Lett., 2017, 19, 4142–4145.
- S14 E. A. Kostenko, E. V. Eliseenkov and A. A. Petrov, *Russ. J. Gen. Chem.*, 2017, 87, 1656–1661.
- S15 J. Britton and T. F. Jamison, Eur. J. Org. Chem., 2017, 6566–6574.