Electronic Supplementary Information

Development of bio-chemical route to C5 plasticizer synthesis using glutaric acid produced by metabolically engineered *Corynebacterium* glutamicum

Yu Jung Sohn^{a,1}, Minsoo Kang^{b,c,1}, Mi Hee Ryu^b, Siseon Lee^d, Kyoung Hee Kang^b, Yunjae Hong^e, Bong Keun Song^b, Kyungmoon Park^c, Si Jae Park^{a,*} Jeong Chan Joo^{b,d,*}, Hee Taek Kim^{f,*}

^aDepartment of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
^bResearch Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34602, Republic of Korea
^cDepartment of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
^dDepartment of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
^eDongnam Chemical Co., Ltd, Gongju-si, Chungcheongnam-do 32611, Republic of Korea
^fDepartment of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

*Corresponding authors.

E-mail addresses: parksj93@ewha.ac.kr (S. J. Park), jcjoo@catholic.ac.kr (J. C. Joo), heetaek@cnu.ac.kr (H. T. Kim)

¹These authors contributed equally to this work.

Table of Contents

Primer	Sequence (5'-3')	Purpose	
DavB _{His} -F	<u>GGATCC</u> ATG CAC CAT CAT CAC CAT CAC ATGAACAAGAAGAATCGACACC	DavB _{His}	
DavB _{His} -R	GCGGCCGC TTAATCTGCCAGGGCGATCGGG	avB _{His} A)	
DavA-F	GCGGCCGCAGGAGATATACATATGCGCATCGCACTGTACCAAGAGGAGATATACAT	DavA	
DavA-R	GCGGCCGC TTAGCCTTTACGCAGGTGCAGC	avB _{His} A)	
DavT-F	GGATCCAGGAGATATACATATGAGCAAAACCAACGAATCCTTGAGGAGATATACAT	DavT	
DavT-R	CCTGCAGG TTAGGCGATTTCAGCGAAGCAC	vT D)	
DavD-F	CCTGCAGG AGGAGATATACAT ATGCAGCTCAAAGACGCTCAG	DavD	
DavD-R	AAGCTT TTAGACGCTGATGCACAGGTATTT	(pBL/12H30Da vT D)	
DapB _{mut} -F	AAGCTT AGGAGATATACATATGCATGATGCAAACATCCGC	CAAACATCCGC DapB _{mut} (pBL712H30Da vTD DapBmut)	
DapB _{mut} -R	AAGCTT TTACAAATTATTGAGATCAAGTACATC		

 Table S1. Primers used in this study. The restriction enzyme sites are underlined.

Table 52. qr CK primers used in this study.				
Primer	Sequence (5'-3')	Purpose		
DavB _{His} -F	CGACCTGCCACAACTGTTTC	DevP		
DavB _{His} -R	TTCCAAAGTTCCTTCAGGCG	DavB _{His}		
DavA-F	ATTGAGTATTGCGGGCAGAG	DeviA		
DavA-R	AATCGGTCAGGTAGGGAAAC	DavA		
DavT-F	CGAATCCTTGATGCAACGTC	DevT		
DavT-R	GATCACGGTCGAGTTCTTCG	— Davi		
DavD-F	CCAAGGTCCAGGAACACATC	DevD		
DavD-R	GTACGTCAACCAGGATGGTC			

Table S2. qPCR primers used in this study.

Activated carbon	Hazen unit (HU)	
CLD	97.7	
SLD	77.5	
CDLS	65.9	
PDCL	79.9	
SPW200-A	58.4	
Control	148.1	

Table S3. Changes in APHA color of extracted fermentation broth after treatment with various activated carbons

Figure S1. L-Lysine, 5-AVA, and glutaric acid production by recombinant *C. glutamicum* KCTC 1857, GTA-1, GTA-2, and GTA-3 strains. All flask cultures were done in triplicates. The measurements were presented as mean \pm standard deviation.

Figure S2. Analysis of transcriptional levels of davT, davD, davB, and davA genes in recombinant *C. glutamicum* GTA-1 and GTA-2 strains. All experiments were done in triplicates. The measurements were presented as mean \pm standard deviation.