Electronic Supplementary Information

I₂-induced cascade cyclization and dearomatization of indoles for the highly efficient synthesis of iodinated and vinylic spiroindolenines

Xiaohui Wei, ^{‡, a, b} Xuewu Liang, ^{‡, b} Yazhou Li, ^b Qi Liu, ^b Xuyi Liu, ^b Yu Zhou, ^{*, b} Hong Liu. ^{*, a, b}

^a China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.

^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.

^{*} Xiaohui Wei and Xuewu Liang contributed equally.

* Corresponding authors, E-mail: <u>zhouyu@simm.ac.cn</u>, <u>hliu@simm.ac.cn</u>.

CONTENTS

1.	General Information	S3
2.	General procedure for the synthesis of 1a–1x and 4a-4k	S3
3.	General procedure for the synthesis of halogenated spiroindolenines 2a-2x and 3a-3e	S4
4.	General procedure for the synthesis of vinylic spiroindolenines 5a-5k	S4
5.	Optimization of the reaction conditions for 2a	S4
6.	The substrate scope for the brominated spiroindolenines	S6
7.	Optimization of the reaction conditions for 5a	S6
8.	Transformations of the products	S7
9.	Mechanism experiments	S10
10.	Characterization data of 1a-1x and 4a-4k	S12
11.	Characterization data of 2a-2y, 3a-3g and 5a-5k and 6-16	S23
12.	References	S40
13.	Characterization spectra of 2a-2y, 3a-3g, 5a-5k and 6-16.	S41
14.	X-Ray structures and data	S100

1. General Information

The glass instruments needed in the experiment were all standard dried. Unless specified otherwise, all solvents in the optimization of conditions were anhydrous solvents purchased by the reagent company without further purification. Column chromatography was performed on silica gel (300-400 mesh) using n-hexane/ethyl acetate. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light. ¹H and ¹³C NMR spectra were recorded on an Agilent instrument (400 MHz and 100 MHz, 500 and 125 MHz, or 600 and 150MHz respectively). The spectra were recorded in Chloroform-*d* or DMSO-*d*₆ as solvents at room temperature. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet), etc. High resolution mass spectra (**HRMS**) were measured on a Micromass Ultra Q-TOF spectrometer. Melting Points were measured in open capillary tubes by SGW (X-4B) melting point apparatus.

2. General procedure for the synthesis of 1a-1x and 4a-4k

Substrates 1a-1x and 4a-4k were synthesized according to the literature procedures¹ (Taking 1a as an Example).

In a round bottom flask, 2.0 mL of formaldehyde (40% in aqueous solution), then a catalytic amount of acetic acid and 1.2 mL of dimethylamine aqueous solution (32% in aqueous solution) were added and the mixture were stirred at 0 \odot for 10 minutes. Then, a 1,4-dioxane solution of 1g indole homologue was added into the reaction system, and the mixture was stirred at room temperature. After the completion of the reaction, 2 N sodium hydroxide solution was added to adjust the pH to neutral and the resulting crude product was extracted with 50 mL of ethyl acetate three times, then the solvent was removed under reduced pressure concentrated to obtain S1 (N,N-dimethyl-1-(2-phenyl-1H-indol-3-yl)methanamine) 0.9 g without further treatment. After dissolving 3.2 mmol of S1 in 20 mL ether, 4 mmol of ethyl propiolate and 4mmol of diethyl malonate were added and the reaction mixture was stirred vigorously at room temperature. After monitoring the completion of the reaction by TLC, the solvent was then removed under reduced pressure and the resulting crude product was purified by column chromatography to afford the desired product dimethyl S2 (2-((2-phenyl-1H-indol-3-yl)methyl)malonate) in 52% yield. Dissolve 1.2 mmol of S2 with tetrahydrofuran in a three-necked flask, add 1.5 mmol of methanol sodium under argon protection, and stir for half hour at 0 °C. Then add 1.5 mmol of allyl bromide and stir for 2 h. After the reaction was complete, add water to the system for quenching and extract with DCM (40 mL \times 3). The organic layer was then dried with Na₂SO₄ and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography to give 1a (dimethyl 2-allyl-2-((2-phenyl-1H-indol-3-yl)methyl)malonate) (0.32g, 0.85mmol, 71%).

3. General procedure for the synthesis of halogenated spiroindolenines 2a-2x and 3a-3e

The indole derivatives (0.1 mmol) and I₂ or Br₂ (3 equiv.) were dissolved in EtOH (1.5 mL) and the mixture was stirred for 30 min or 2 h at room temperature in a flask. Then the reaction was quenched by saturated sodium thiosulfate aqueous solution and extracted with EtOAc (20 mL×3). The organic layer was then dried with Na₂SO₄ and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography or PTLC to afford the major diastereomer of halogenated spiroindolenines.

4. General procedure for the synthesis of vinylic spiroindolenines 5a-5k

The indole derivatives (0.1 mmol) and I₂ (3 equiv.) were dissolved in DCM (1.5 mL) or water (2.0 mL) and the mixture was stirred for 30 min at room temperature in a flask. Then the reaction was quenched by saturated sodium thiosulfate aqueous solution and extracted with EtOAc (20 mL×3). The organic layer was then dried with Na₂SO₄ and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography or PTLC to afford the major diastereomer of vinylic spiroindolenines.

5. Optimization of the reaction conditions for 2a

Table S1. Optimization of reaction condition for halogenated spiroindolenines^a

Entry	Halogen	Additive	Dasa	Solvent	Time (h)	Temp.	Yield ^b
Lifu y	Source	Additive	Dase	Solvent		(°C)	(%)
1	CuI	AIBN	_	DMF	12	90	41

2	CuI	AIBN	—	DCE	12	90	\mathbf{NR}^{c}
3	CuI	AIBN	_	DMF/H ₂ O (3/1)	12	90	50
4	CuI	AIBN		EA	12	90	ND^d
5	CuI	AIBN		1,4-dioxane	12	90	56
6	CuI	AIBN	K ₃ PO ₄	1,4-dioxane	12	90	64
7	CuI	AIBN	K ₃ CO ₄	1,4-dioxane	12	90	trace
8	CuI	AIBN	Cs ₂ CO ₄	1,4-dioxane	12	90	14
9	CuI	AIBN	K ₃ PO ₄	1,4-dioxane	12	90	78
10	CuI	AIBN		DCM	12	60	69
11	KI	AIBN	K ₃ PO ₄	1,4-dioxane	12	90	trace
12	NIS	AIBN		1,4-dioxane	12	90	81
13	NIS	DTBP		1,4-dioxane	12	90	trace
14	NIS			1,4-dioxane	12	90	70
15	NIS			DCM	12	rt	69
16	I_2			DCM	2	rt	97
17	I_2			H ₂ O	2	rt	88
18	I_2			EtOH	0.5	rt	98
19 ^e	I_2			EtOH	4	rt	94
20 ^f	I_2	—		EtOH	4	rt	63
21 ^{<i>f</i>}	I_2			EtOH	10	rt	ND^d
22	Br ₂			EtOH	0.5	90	34
23	NBS	AIBN		1,4-dioxane	12	90	31

24	NBS		 EtOH	12	rt	28
25	DBDMH		 EtOH	12	rt	trace
26	NCS	AIBN	 1,4-dioxane	12	90	_

^{*a*} Reaction conditions: **1a** (0.1 mmol), halogen source (3 equiv.), additive (2 equiv.), base (2 equiv.), solvent (1.5 mL), under air condition. ^{*b*} Isolated yield. ^{*c*} No reaction. ^{*d*} Not detected. ^{*e*} I₂: 2 equiv.. ^{*f*} I₂: 1 equiv..

6. The substrate scope for brominated spiroindolenines

Scheme S1 Reaction conditions: Indole derivative (0.1 mmol), Br₂ (3 equiv.), ethanol (1.5 mL), rt, under air condition for 2 h. Isolated yields. The *dr* value is determined by ¹H NMR analysis of the crude product. ^{*a*} Reaction condition: Table **S1**, Entry 23, NBS, AIBN.

Brominated spiroindolenines was tried under the same condition for iodinated compounds, whose efficiency were relative higher than that of brominated. The green brominated reagent, such as NBS and DBDMH, was also tried in different condition.

7. Optimization of the reaction conditions for 5a

Table	S2.	Optin	nizatior	of re	action	condition	for	vinylic	spiroin	dolenines	ı
								•			

Entry	Iodine	Additive	Solvent	Time (h)	Temp (°C)	Yield $(\%)^b$
Lintry	source	Additive	Sorvent	Time (ii)	Temp. (C)	1 icid (70)

1	I_2		EtOH	2	rt	84
2	I_2		DCM	2	rt	96
3	I_2		H ₂ O	2	rt	88
4	NIS	AIBN	1,4-dioxane	12	90	61
5	NIS	_	DCM	2	rt	63
6 ^{<i>c</i>}	I_2		DCM	4	rt	60
7^d	I_2		DCM	4	rt	84
8 ^c	I_2		H ₂ O	4	rt	38
9^d	I_2		H ₂ O	4	rt	79

^a Reaction conditions: 4a (0.1 mmol), iodine source (3 equiv.), additive (2 equiv.), solvent (1.5 mL), under air condition. ^b Isolated yield.

^c I₂ (1 equiv.). ^d I₂ (2 equiv.).

8. Transformations of the products

Scheme S2 (0.1 mmol) and 3 M aqueous HCl (1.5 mL) were added into a flask. After the reaction mixture was heated to 100° C for 10 h, solid was precipitated out of the reaction solution and filtered out to afford product **6** (27mg).

Scheme S3 2a (0.1 mmol) and NaHCO₃ (0.3 mmol) were added into a flask. The reaction mixture in ethanol was heated to 50 °C for 24 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with brine. The organic extract were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product **7** (34 mg).

Scheme S4 2a (0.1 mmol) and AgNO₃ (0.2 mmol) were added into a flask. The reaction mixture in ethanol was heated to 70 °C for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product 8 (35 mg).

Scheme S5 2a (0.15 mmol) and silver p-toluenesulfonate (0.17 mmol) were added into a flask. The reaction mixture in acetonitrile was heated to 110° C for 4 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product **9** (49 mg).

Scheme S6 2a (0.1 mmol) and CH₃COONa (0.15 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to 110° C for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product 10 (36 mg).

Scheme S7 2a (0.15 mmol) and sodium phenoxyacetate (0.17 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to 110° C for 2 h. After the reaction is complete, the solution was diluted with ethyl

acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product **11** (60 mg).

Scheme S8 2a (0.15 mmol) and chenodeoxycholic acid sodium (0.17 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to 110 °C for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product **12** (64 mg).

Scheme S9 2a (0.15 mmol) and Naproxen sodium (0.17 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to $110 \,^{\circ}$ for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product 13 (60 mg).

Scheme S10 2a (0.15 mmol) and Loxoprofen sodium (0.17 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to 110° C for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product 14 (34 mg).

Scheme S11 2a (0.15 mmol) and Diclofenac sodium (0.17 mmol) were added into a flask. The reaction mixture in dimethyl sulfoxide was heated to 110° C for 2 h. After the reaction is complete, the solution was diluted with ethyl acetate and repeatedly washed with sodium carbonate saturated solution and brine. The organic extracts were dried with Na₂SO₄, concentrated by rotary evaporation and purified by silica gel column chromatography to afford product 15 (59 mg).

Scheme S12 8a (0.1 mmol), K_2Os_4 2H₂O (0.3 mmol) and NaIO₄ (0.4 mmol) were added into a flask. Then add 1.5 mL solvent (THF:H₂O:*t*-BuOH = 3:1:0.5) to dissolve substrate and the mixture was stirred for 1 h. The solution was extracted with DCM and repeatedly washed with brine. The organic extracts were dried with Na₂SO₄, filtered and concentrated. Crude product was purified by silica gel flash column chromatography to afford product 16 (32 mg).

9. Mechanism experiments

Scheme S13 1a (0.1 mmol), I₂ (0.3 mmol) and TEMPO (0.4 mmol) were added into a flask. Then add 1.5 mL EtOH and the mixture was stirred for 0.5 h. The solution was extracted with ethyl acetate and repeatedly washed with brine (20 mL×3). The organic extracts were dried with Na₂SO₄, filtered and concentrated. Crude product was purified by silica gel flash column chromatography to produce 2a in 78% yield, and this showed that the reaction did not proceed in the radical way.

Scheme S14 1a (0.1 mmol) and ICl (0.4 mmol) were added into a flask. Then add 1.5 mL EtOH to dissolve substrate and the mixture was stirred for 2 h. The solution was extracted with ethyl acetate and repeatedly washed with brine (20 mL×3). The organic extracts were dried with Na₂SO₄, filtered and concentrated. Crude product was purified by silica gel flash column chromatography to produce 2a with 25%, and this showed that the process of dearomatization combined with an ionic mechanism and I⁻ can accelerate the reaction.

Scheme S15 4a (0.1 mmol), and I₂ (0.05 mmol) were added into a flask. Then add 1.5 mL EtOH and the mixture was stirred for 15 min. Then the reaction was quenched by saturated sodium thiosulfate aqueous solution and extracted with ethyl acetate (20 mL×3). The 4aa was detected by HR-MS (Figure S1). HRMS (ESI) (m/z) calculated for $C_{25}H_{27}INO_4 [M+H]^+$: 532.0979, found: 532.0984.

--- End Of Report --

Figure S1 HR-MS spectrum of 4aa

10. Characterization data of 1a-1x and 4a-4k

dimethyl 2-allyl-2-((2-phenyl-1H-indol-3-yl)methyl)malonate (1a). White solid, Mp: 129.3-131.1°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.61 – 7.52 (m, 3H), 7.45 (t, *J* = 7.60 Hz, 2H), 7.40 – 7.29 (m, 2H), 7.21 – 7.12 (m, 1H), 7.11 (td, *J* = 7.53, 7.04, 1.15 Hz, 1H), 5.40 – 5.28 (m, 1H), 4.85 – 4.73 (m, 2H), 3.71 (s, 2H), 3.41 (s, 6H), 2.35 (d, *J* = 7.28 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.7, 137.2, 135.8, 133.8, 133.1, 129.8, 129.2, 129.1, 128.2, 122.4, 119.8, 119.7, 118.3, 110.9, 106.7, 59.7, 52.1, 37.2, 27.4. HRMS (ESI) (m/z) calculated for C₂₃H₂₇N₂O₄ [M+NH₄]⁺: 395.1965, found: 395.1960. The experimental data are in accordance with those reported in the previous literature.²

MeO₂C_{CO2}Me

dimethyl 2-allyl-2-((2-(4-chlorophenyl)-1*H*-indol-3-yl)methyl)malonate (1b). White solid, Mp: 148.0-149.0°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.57 (d, *J* = 7.92 Hz, 1H), 7.49 – 7.38 (m, 4H), 7.31 (d, *J* = 8.26 Hz, 1H), 7.18 (td, *J* = 8.04, 7.44, 3.49 Hz, 1H), 7.12 (td, *J* = 7.55, 7.05, 1.18 Hz, 1H), 5.46 – 5.31 (m, 1H), 4.90 – 4.77 (m, 2H), 3.68 (s, 2H), 3.43 (s, 6H), 2.35 (dd, *J* = 7.04, 1.41 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.7, 135.8, 134.2, 132.9, 132.2, 130.4, 129.7, 129.4, 129.3, 122.7, 120.0, 119.8, 118.5, 111.0, 107.3, 59.6, 52.2, 37.3, 27.5. HRMS (ESI) (m/z) calculated for C₂₃H₂₆ClN₂O₄ [M+NH₄]⁺: 429.1576, found: 429.1574. The experimental data are in accordance with those reported in the previous literature.²

dimethyl 2-allyl-2-((2-(4-fluorophenyl)-1*H*-indol-3-yl)methyl)malonate (1c). White solid, Mp: 116.2-117.3°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.59 (d, *J* = 7.92 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.34 (d, *J* = 7.88 Hz, 1H), 7.24 – 7.09 (m, 4H), 5.44 – 5.29 (m, 1H), 4.92 – 4.77 (m, 2H), 3.69 (s, 2H), 3.47 (s, 6H), 2.37 (d, *J* = 7.14 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.5, 162.6 (d, *J* = 248.72 Hz), 136.0, 135.6, 132.7, 130.8 (d, *J* = 8.19 Hz), 129.7 (d, *J* = 3.39 Hz), 129.5, 122.4, 119.8, 119.6, 118.3, 116.1 (d, *J* = 21.61 Hz), 110.8, 106.8, 59.4, 52.1, 37.1, 27.3. HRMS (ESI) (m/z) calculated for C₂₃H₂₆FN₂O₄ [M+NH₄]⁺: 413.1871, found: 413.1868. The experimental data are in accordance with those reported in the previous literature.²

dimethyl 2-allyl-2-((2-(p-tolyl)-1*H*-indol-3-yl)methyl)malonate (1d). White solid, Mp:128.9-129.3°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.58 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.46 – 7.44 (m, 2H), 7.32 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.17 (ddd, *J* = 8.0, 7.0, 1.2 Hz, 1H), 7.12 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 5.43 – 5.34 (m, 1H), 4.87 – 4.76 (m, 2H), 3.72 (s, 2H), 3.44 (s, 6H), 2.41 (s, 3H), 2.37 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.6, 138.0, 137.2, 135.5, 133.1, 130.7, 129.7, 129.66, 128.8, 122.1, 119.6, 119.4, 118.1, 110.7, 106.3, 59.5, 52.0, 37.1, 27.3, 21.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₄ [M+Na]⁺: 414.1676, found: 414.1675.

dimethyl 2-allyl-2-((2-(m-tolyl)-1*H*-indol-3-yl)methyl)malonate (1e). White solid. Mp: 123.5-125.4°C. ¹H NMR (500 MHz, DMSO- d_6) δ 11.25 (s, 1H), 7.45 – 7.35 (m, 4H), 7.32 (d, J = 8.0 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.11 – 7.04 (m, 1H), 7.03 – 6.96 (m, 1H), 5.34 – 5.20 (m, 1H), 4.85 – 4.69 (m, 2H), 3.59 (s, 2H), 3.36 (s, 6H), 2.39 (s, 3H), 2.19 (d, J = 7.2 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 171.9, 139.0, 138.4, 136.7, 134.4, 133.8, 130.5, 130.0, 129.7, 129.4, 127.1, 122.3, 119.8, 119.7, 119.3, 112.2, 105.6, 59.9, 52.9, 37.5, 27.7, 22.1. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₄ [M+Na]⁺: 414.1676, found: 414.1671.

dimethyl 2-allyl-2-((2-(4-(tert-butyl)phenyl)-1*H*-indol-3-yl)methyl)malonate (1f). White solid. Mp: 160.6-161.6°C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.22 (s, 1H), 7.56 – 7.47 (m, 4H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.32 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.99 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 5.22 – 5.10 (m, 1H), 4.76 – 4.68 (m, 2H), 3.57 (s, 2H), 3.34 (s, 6H), 2.18 (d, *J* = 7.2 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.8, 150.4, 137.4, 135.6, 132.7, 130.5, 129.0, 128.7, 125.5, 121.2, 118.7, 118.6, 118.1, 111.1, 104.4, 58.8, 51.9, 36.3, 34.4, 31.0, 26.6. HRMS (ESI) (m/z) calculated for C₂₇H₃₁NNaO₄ [M+Na]⁺: 456.2145, found: 456.2158.

dimethyl 2-allyl-2-((2-(3-methoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (1g). White solid. Mp: 120.7-121.3°C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.28 (s, 1H), 7.46 – 7.39 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 2.1 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.04 – 6.96 (m, 2H), 5.30 (ddt, *J* = 17.3, 10.2, 7.1 Hz, 1H), 4.83 – 4.75 (m, 2H), 3.83 (s, 3H), 3.61 (s, 2H), 3.38 (s, 6H), 2.21 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (125 MHz, DMSO*d*₆) δ 171.3, 160.0, 137.5, 136.1, 135.2, 133.2, 130.4, 129.4, 121.9, 121.7, 119.3, 119.2, 118.8, 114.9, 113.9, 111.6, 105.3, 59.4, 55.7, 52.4, 37.0, 27.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₅ [M+Na]⁺: 430.1625, found: 430.1634.

dimethyl 2-allyl-2-((2-(4-methoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (1h). White solid. Mp: 154.1-155.3°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.57 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.31 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.16 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 7.11 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 7.01 – 6.96 (m, 2H), 5.45 – 5.33 (m, 1H), 4.89 – 4.77 (m, 2H), 3.86 (s, 3H), 3.70 (s, 2H), 3.46 (s, 6H), 2.38 (dt, *J* = 7.1, 1.3 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.7, 159.5, 137.0, 135.5, 133.0, 130.2, 129.7, 126.0, 122.0, 119.6, 119.4, 118.1, 114.5, 110.7, 106.0, 59.5, 55.4, 52.0, 37.1, 27.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₅ [M+Na]⁺: 430.1625, found: 430.1626.

dimethyl 2-allyl-2-((2-(4-isopropoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (1i). White solid. Mp: 137.4-139.2°C. ¹H NMR (500 MHz, DMSO- d_6) δ 11.17 (s, 1H), 7.50 – 7.45 (m, 2H), 7.38 (d, J = 7.96 Hz, 1H), 7.30 (d, J = 8.00 Hz, 1H), 7.09 – 7.03 (m, 3H), 7.01 – 6.95 (m, 1H), 5.29 – 5.18 (m, 1H), 4.81 – 4.73 (m, 2H), 4.73 – 4.65 (m, 1H), 3.55 (s, 2H), 3.38 (s, 6H), 2.19 (d, J = 7.23 Hz, 2H), 1.29 (d, J = 5.98 Hz, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 171.3, 157.6, 137.9, 136.0, 133.3, 130.8, 129.4, 126.0, 121.5, 119.1, 119.0, 118.7, 116.6, 111.5, 104.5, 69.8, 59.4, 52.4, 36.9, 27.2, 22.2. HRMS (ESI) (m/z) calculated for C₂₆H₃₀NO₅ [M+H]⁺: 436.2118, found: 436.2123.

dimethyl 2-allyl-2-((2-(4-(trifluoromethoxy)phenyl)-1*H*-indol-3-yl)methyl)malonate (1j). White solid. Mp: 136.3-137.1°C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.38 (s, 1H), 7.77 – 7.70 (m, 2H), 7.55 – 7.48 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.35 (dt, J = 8.1, 0.9 Hz, 1H), 7.11 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.02 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 5.34 – 5.07 (m, 1H), 4.84 – 4.69 (m, 2H), 3.58 (s, 2H), 3.36 (s, 6H), 2.19 (d, J = 7.1 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.8, 147.8, 135.8, 132.9, 132.5, 131.0, 128.8, 121.6 (d, J = 5.96 Hz), 121.2, 119.1, 118.9, 118.3, 111.3, 105.3, 58.8, 51.9, 36.4, 26.6. HRMS (ESI) (m/z) calculated for C₂₄H₂₂F₃NNaO₅ [M+Na]⁺: 484.1342, found: 484.135.

dimethyl 2-allyl-2-((2-(4-phenoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (1k). White solid. Mp: 142.3-143.4°C. ¹H NMR (600 MHz, DMSO- d_6) δ 11.31 (s, 1H), 7.65 – 7.60 (m, 2H), 7.48 – 7.40 (m, 3H), 7.34 (dt, J = 8.0, 0.9 Hz, 1H), 7.22 – 7.15 (m, 3H), 7.12 – 7.05 (m, 3H), 7.01 (td, J = 7.50, 6.95, 1.07 Hz, 1H), 5.32 – 5.22 (m, 1H), 4.90 – 4.79 (m, 2H), 3.58 (s, 2H), 3.42 (s, 6H), 2.22 (d, J = 7.2 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.3, 157.1, 156.8, 137.2, 136.1, 133.2, 131.3, 130.6, 129.3, 129.2, 124.1, 121.7, 119.6, 119.2, 119.1, 119.0, 118.9, 111.6, 105.0, 59.4, 52.5, 36.8, 27.0. HRMS (ESI) (m/z) calculated for C₂₉H₂₈NO₅ [M+H]⁺: 470.1962, found: 470.1964.

MeO₂C₂CO₂Me

dimethyl 2-allyl-2-((2-(4-methoxy-3-methylphenyl)-1*H*-indol-3-yl)methyl)malonate (11). White solid. Mp: 113.9-114.8°C. ¹H NMR (600 MHz, DMSO- d_6) δ 11.16 (s, 1H), 7.41 – 7.35 (m, 3H), 7.31 (d, J = 8.1 Hz, 1H), 7.05 (t, J = 8.5 Hz, 2H), 6.98 (t, J = 7.5 Hz, 1H), 5.34 – 5.23 (m, 1H), 4.84 – 4.72 (m, 2H), 3.84 (s, 3H), 3.57 (s, 2H), 3.38 (s, 6H), 2.22 (s, 3H), 2.20 (d, J = 7.2 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.4, 157.5, 137.9, 136.0, 133.3, 131.4, 129.5, 128.2, 126.4, 125.8, 121.4, 119.0, 119.0, 118.8, 111.5, 111.0, 104.4, 59.4, 55.9, 52.4, 36.9, 27.2, 16.6. HRMS (ESI) (m/z) calculated for C₂₅H₂₇NNaO₅ [M+Na]⁺: 444.1781, found: 444.1775.

dimethyl 2-allyl-2-((**2-(3-fluoro-4-methoxyphenyl)-1***H***-indol-3-yl)methyl)malonate** (**1m**). White solid. Mp: 152.4-153.6°C. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 8.7, 1.9 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.20 (dt, J = 8.2, 4.3 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.97 (q, J = 8.4, 7.9 Hz, 1H), 5.45 – 5.32 (m, 1H), 4.90 – 4.78 (m, 2H), 3.91 (d, J = 2.1 Hz, 3H), 3.67 (s, 2H), 3.46 (d, J = 1.1 Hz, 6H), 2.36 (d, J = 7.80 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.6, 152.4 (d, J = 247.20 Hz), 147.6 (d, J = 10.47 Hz), 135.6 (d, J = 23.13 Hz), 132.8, 129.5, 126.5 (d, J = 6.85 Hz), 125.0 (d, J = 3.45 Hz), 122.3, 119.8, 119.5, 118.3, 116.6 (d, J = 18.97 Hz), 113.8, 110.8, 106.6, 59.5, 56.4, 52.1, 37.1, 27.3. **HRMS** (ESI) (m/z) calculated for C₂₄H₂₃FNO₅ [M-H]⁻:424.1566, found: 424.1564.

dimethyl 2-allyl-2-((2-(4-chloro-3-methoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (1n). White solid. Mp: 147.3-148.1°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.56 (dd, J = 8.1, 1.1 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.18 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.08 (d, J = 1.9 Hz, 1H), 7.29 (d, J = 7.94 Hz, 1H), 5.38 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 4.94 – 4.75 (m, 2H), 3.91 (s, 3H), 3.68 (s, 2H), 3.45 (s, 6H), 2.36 (dt, J = 7.1, 1.4 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.6, 155.3, 136.0, 135.6, 133.4, 132.65, 130.7, 129.5, 122.6, 122.4, 121.8, 119.8, 119.6, 118.4, 112.7, 110.9, 107.0, 59.4, 56.4, 52.1, 37.1, 27.4. HRMS (ESI) (m/z) calculated for C₂₄H₂₃ClNO₅ [M-H]⁻:440.1270, found: 440.1274.

dimethyl 2-allyl-2-((2-(3,4-dimethoxyphenyl)-1*H*-indol-3-yl)methyl)malonate (10). White solid. Mp: 157.3-158.7°C. ¹H NMR (600 MHz, DMSO- d_6) δ 11.19 (s, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.07 (dd, J = 16.0, 8.1 Hz, 2H), 6.98 (t, J = 7.5 Hz, 1H), 5.42 – 5.18 (m, 1H), 4.83 – 4.70 (m, 2H), 3.81 (d, J = 8.9 Hz, 6H), 3.59 (s, 2H), 3.39 (s, 6H), 2.21 (d, J = 7.2 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.4, 137.9, 135.9, 133.3, 129.5, 126.4, 121.9, 121.6, 119.1, 119.0, 118.8, 113.1, 112.6, 111.5, 104.6, 59.4, 56.2, 56.1, 52.4, 37.0, 27.4. HRMS (ESI) (m/z) calculated for C₂₅H₂₈NO₆ [M+H]⁺: 438.1911, found: 439.1918.

dimethyl 2-allyl-2-((2-(3-fluoro-4-methylphenyl)-1*H*-indol-3-yl)methyl)malonate (1p). Colorless oil. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.31 (s, 1H), 7.42 (dd, *J* = 10.23, 7.99 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.12 – 7.07 (m, 1H), 7.03 – 6.98 (m, 1H), 5.39 – 5.29 (m, 1H), 4.87 – 4.75 (m, 2H), 3.59 (s, 2H), 3.37 (s, 6H), 2.30 (d, *J* = 1.7 Hz, 3H), 2.21 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.3, 161.1 (d, *J* = 243.20 Hz), 136.3, 136.1, 133.4 (d, *J* = 8.24 Hz), 133.1, 132.4 (d, *J* = 5.34 Hz), 129.4, 125.2, 124.2 (d, *J* = 17.05 Hz), 122.0, 119.3 (d, *J* = 6.62 Hz), 118.9, 115.6 (d, *J* = 22.89 Hz), 111.7, 105.6, 59.3, 52.4, 37.0, 27.3, 14.4 (d, *J* = 3.00 Hz). HRMS (ESI) (m/z) calculated for C₂₄H₂₄FNNaO₄ [M+Na]⁺: 432.1582, found: 432.1589.

dimethyl 2-allyl-2-((7-methyl-2-phenyl-1*H*-indol-3-yl)methyl)malonate (1q). White solid. Mp: 121.3-122.5°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.62 – 7.57 (m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.38 (m, 2H), 7.05 (dd, *J* = 8.0, 7.1 Hz, 1H), 6.99 (dt, *J* = 7.0, 1.0 Hz, 1H), 5.39 – 5.29 (m, 1H), 4.87 – 4.73 (m, 2H), 3.72 (s, 2H), 3.44 (s, 6H), 2.49 (s, 3H), 2.37 (dt, *J* = 7.2, 1.3 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.6, 136.9, 135.2, 133.9, 133.0, 129.2, 129.1, 129.0, 128.1, 122.8, 119.9, 119.9, 118.1, 117.3, 107.1, 59.5, 52.0, 37.0, 27.4, 16.5. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₄ [M+Na]⁺: 414.1676, found: 414.1672.

dimethyl 2-allyl-2-((5-methyl-2-phenyl-1*H*-indol-3-yl)methyl)malonate (1r). White solid. Mp: 142.7-143.3°C. ¹H NMR (500 MHz, DMSO- d_6) δ 11.14 (s, 1H), 7.59 – 7.54 (m, 2H), 7.49 (t, J = 7.7 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.23 – 7.16 (m, 2H), 6.91 (dd, J = 8.3, 1.6 Hz, 1H), 5.22 – 5.10 (m, 1H), 4.78 – 4.67 (m, 2H), 3.55 (s, 2H), 3.38 (s, 6H), 2.37 (s, 3H), 2.15 (d, J = 7.2 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.8, 137.4, 134.0, 133.6, 132.6, 129.1, 129.0, 128.8, 127.7, 127.0, 122.9, 118.4, 118.3, 110.9, 104.1, 58.8, 51.9, 36.3, 26.7, 21.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₄ [M+Na]⁺: 414.1676, found: 414.1677.

dimethyl 2-allyl-2-((5-(benzyloxy)-2-phenyl-1*H***-indol-3-yl)methyl)malonate (1s). White solid. Mp: 98.2-100°C. ¹H NMR (500 MHz, DMSO-***d***₆) δ 11.13 (s, 1H), 7.57 (d,** *J* **= 8.2 Hz, 2H), 7.53 – 7.45 (m, 4H), 7.42 – 7.37 (m, 3H),** 7.35 – 7.30 (m, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H), 6.83 (dd, J = 8.6, 2.3 Hz, 1H), 5.32 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.09 (s, 2H), 4.86 – 4.72 (m, 2H), 3.56 (s, 2H), 3.33 (d, J = 1.3 Hz, 6H), 2.21 (d, J = 7.1 Hz, 2H). ¹³**C NMR** (125 MHz, DMSO- d_6) δ 171.3, 152.7, 138.5, 138.2, 134.0, 133.3, 131.6, 129.91, 129.3, 129.2, 128.8, 128.2, 128.1, 128.0, 118.8, 112.5, 112.3, 105.0, 103.2, 70.4, 59.3, 52.3, 36.9, 26.8. **HRMS** (ESI) (m/z) calculated for C₃₀H₃₀NO₅ [M+H]⁺: 484.2118, found: 484.2122.

dimethyl 2-allyl-2-((5-methoxy-2-phenyl-1*H*-indol-3-yl)methyl)malonate (1t). White solid. Mp: 150.3-151.4°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.57 – 7.53 (m, 2H), 7.48 – 7.43 (m, 2H), 7.40 – 7.35 (m, 1H), 7.22 (d, *J* = 8.67 Hz, 1H), 7.07 (d, *J* = 2.5 Hz, 1H), 6.84 (dd, *J* = 8.7, 2.4 Hz, 1H), 5.40 (ddt, *J* = 17.3, 10.2, 7.1 Hz, 1H), 4.88 – 4.76 (m, 2H), 3.88 (s, 3H), 3.70 (s, 2H), 3.42 (s, 6H), 2.38 (dt, *J* = 7.1, 1.3 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.7, 154.1, 137.9, 133.7, 132.9, 130.8, 130.2, 129.0, 128.9, 128.0, 118.2, 112.4, 111.5, 106.4, 101.6, 59.5, 55.9, 52.0, 36.9, 27.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅NNaO₅ [M+Na]⁺: 430.1625, found: 430.1621.

diethyl 2-allyl-2-((2-phenyl-1*H*-indol-3-yl)methyl)malonate (1u). White solid. Mp: 119.3-120.5°C. ¹H NMR (500 MHz, DMSO- d_6) δ 11.26 (d, J = 6.1 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.45 – 7.37 (m, 2H), 7.32 (dq, J = 8.1, 1.2 Hz, 1H), 7.10 – 7.05 (m, 1H), 7.01 – 6.95 (m, 1H), 5.29 – 5.19 (m, 1H), 4.82 – 4.67 (m, 2H), 3.94 – 3.83 (m, 2H), 3.78 – 3.64 (m, 2H), 3.56 (s, 2H), 2.18 (d, J = 7.1 Hz, 2H), 1.00 (t, J = 7.1 Hz, 6H). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.3, 137.3, 135.7, 133.5, 132.6, 129.0, 128.8, 127.7, 121.3, 118.8, 118.6, 118.3, 111.1, 104.9, 60.5, 58.5, 36.3, 26.4, 13.6. HRMS (ESI) (m/z) calculated for C₂₅H₂₇NNaO₄ [M+Na]⁺: 428.1832, found: 428.1829.

dimethyl 2-allyl-2-((2-methyl-1H-indol-3-yl)methyl)malonate (1v). White solid. Mp: 106.4-107.2°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.46 – 7.41 (m, 1H), 7.22 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.11 – 7.05 (m, 1H), 7.06 – 7.03 (m, 1H), 5.95 – 5.87 (m, 1H), 5.17 – 5.09 (m, 2H), 3.64 (s, 6H), 3.42 (s, 2H), 2.66 (dt, *J* = 7.1, 1.3 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.4, 134.7, 132.9, 132.9, 128.8, 120.6, 118.8, 118.2,

118.1, 109.7, 105.5, 59.2, 51.8, 37.5, 28.2, 11.9. **HRMS** (ESI) (m/z) calculated for C₁₈H₂₁NNaO₄ [M+Na]⁺: 338.1363, found: 338.135.

dimethyl 2-allyl-2-((7-methyl-1H-indol-3-yl)methyl)malonate (1w). White solid. Mp: 89.8-91.5°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.02 (dd, *J* = 8.0, 7.1 Hz, 1H), 6.98 – 6.94 (m, 2H), 5.87 – 5.77 (m, 1H), 5.17 – 5.09 (m, 2H), 3.67 (s, 6H), 3.42 (s, 2H), 2.68 (dt, *J* = 7.3, 1.3 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 170.8, 134.5, 132.1, 126.7, 122.1, 121.6, 119.4, 118.7, 118.2, 115.7, 109.4, 58.2, 51.5, 36.5, 27.4, 15.6. HRMS (ESI) (m/z) calculated for C₁₈H₂₂NO₄ [M+H]⁺: 316.1543, found: 316.1550.

dimethyl 2-allyl-2-((5-methyl-1*H*-indol-3-yl)methyl)malonate (1x). White solid. Mp: 98.2-99.4°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.36 – 7.34 (m, 1H), 7.23 (d, J = 8.2 Hz, 1H), 7.01 (dd, J = 8.3, 1.6 Hz, 1H), 6.96 (d, J = 1.5 Hz, 1H), 5.90 – 5.79 (m, 1H), 5.20 – 5.13 (m, 2H), 3.70 (s, 6H), 3.43 (d, J = 0.8 Hz, 2H), 2.71 (dt, J = 7.3, 1.3 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.7, 134.1, 133.0, 128.5, 128.3, 123.6, 123.3, 119.0, 118.5, 110.7, 109.4, 59.1, 52.3, 37.3, 28.2, 21.5. HRMS (ESI) (m/z) calculated for C₁₈H₂₂NO₄ [M+H]⁺: 316.1543, found: 316.1540.

MeO₂C, CO₂Me

dimethyl 2-(3-methylbut-2-en-1-yl)-2-((2-phenyl-1*H*-indol-3-yl)methyl)malonate (4a). White solid. Mp: 132.0-133.1°C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.29 (s, 1H), 7.62 – 7.57 (m, 2H), 7.54 – 7.49 (m, 2H), 7.43 – 7.38 (m, 2H), 7.34 (dt, *J* = 8.0, 0.9 Hz, 1H), 7.12 – 7.06 (m, 1H), 7.03 – 6.97 (m, 1H), 4.60 – 4.51 (m, 1H), 3.61 (s, 2H), 3.38 (s, 6H), 2.13 (d, *J* = 7.1 Hz, 2H), 1.46 (d, *J* = 1.7 Hz, 3H), 1.30 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.7, 137.8, 136.1, 134.4, 133.9, 129.4, 129.4, 129.2, 128.1, 121.7, 119.1, 118.4, 111.6, 105.2, 58.8, 52.4, 30.7, 27.2, 26.1, 17.8. HRMS (ESI) (m/z) calculated for C₂₅H₂₇NNaO₄ [M+Na]⁺: 428.1832, found: 428.1841.

di-tert-butyl 2-(3-methylbut-2-en-1-yl)-2-((2-phenyl-1H-indol-3-yl)methyl)malonate (4b). White solid. Mp: 125.0-126.1°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.35 (dd, *J* = 21.7, 7.7 Hz, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 4.81 (t, *J* = 6.9 Hz, 1H), 3.60 (s, 2H), 2.39 (d, *J* = 6.9 Hz, 2H), 1.53 (s, 3H), 1.42 (s, 3H), 1.27 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 136.7, 135.6, 133.7, 133.5, 130.0, 128.9, 128.8, 127.8, 122.0, 121.3, 119.4, 118.9, 110.3, 108.7, 59.6, 33.2, 27.7, 27.2, 25.8, 17.9. HRMS (ESI) (m/z) calculated for C₃₁H₃₉NNaO₄ [M+Na]⁺: 512.2771, found: 512.2771.

diisopropyl 2-(3-methylbut-2-en-1-yl)-2-((2-phenyl-1*H*-indol-3-yl)methyl)malonate (4c). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (s, 1H), 7.64 (d, *J* = 8.04 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.44 (t, *J* = 7.47 Hz, 2H), 7.41 – 7.32 (m, 1H), 7.30 (t, *J* = 6.96 Hz, 1H), 7.17 (t, *J* = 6.94 Hz, 1H), 7.09 (t, *J* = 7.38 Hz, 1H), 4.80 (p, *J* = 6.23 Hz, 2H), 4.71 – 4.62 (m, 1H), 3.71 (s, 2H), 2.31 (d, *J* = 6.77 Hz, 2H), 1.47 (d, *J* = 1.64 Hz, 3H), 1.35 (s, 3H), 1.14 (d, *J* = 6.25 Hz, 6H), 1.05 (d, *J* = 6.24 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.5, 137.2, 135.6, 133.7, 133.6, 129.7, 129.0, 128.8, 127.9, 122.0, 119.9, 119.3, 118.5, 110.6, 107.4, 68.7, 58.6, 31.3, 27.3, 25.8, 21.5, 21.4, 21.3, 17.9. HRMS (ESI) (m/z) calculated for C₂₉H₃₆NO₄ [M+H]⁺: 462.2639, found: 462.2633.

dimethyl 2-((2-(4-ethylphenyl)-1*H*-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonat (4d). White solid. Mp: 122.3-123.1°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.13 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.15 – 7.08 (m, 1H), 7.06 (td, *J* = 7.5, 1.1 Hz, 1H), 4.68 (tt, *J* = 6.9, 1.6 Hz, 1H), 3.70 (s, 2H), 3.39 (s, 6H), 2.66 (q, *J* = 7.6 Hz, 2H), 2.30 (d, *J* = 6.9 Hz, 2H), 1.51 (d, *J* = 1.5 Hz, 3H), 1.34 (d, *J* = 1.4 Hz, 3H), 1.24 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.6, 143.6, 136.7, 135.1, 134.1, 130.5, 129.3, 128.4, 127.9, 121.4, 119.0, 118.9, 117.8, 110.2, 105.8, 58.5, 51.5, 30.3, 28.2, 26.6, 25.4, 17.2, 15.1. HRMS (ESI) (m/z) calculated for C₂₇H₃₂NO₄ [M+H]⁺: 434.2326, found: 434.2327.

dimethyl 2-((2-(benzo[d][1,3]dioxol-5-yl)-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4e). White solid. Mp: 114.3-115.6°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.03 Hz, 1H), 7.14 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 7.07 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 7.00 (dd, *J* = 6.0, 1.9 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 1H), 5.99 (s, 2H), 4.68 (tt, *J* = 6.7, 1.5 Hz, 1H), 3.66 (s, 2H), 3.48 (s, 6H), 2.31 (d, *J* = 6.8 Hz, 2H), 1.54 (d, *J* = 1.6 Hz, 3H), 1.38 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 172.1, 148.0, 147.5, 136.8, 135.4, 134.5, 129.6, 127.5, 122.8, 122.1, 119.6, 119.4, 118.1, 110.6, 109.5, 108.8, 106.5, 101.3, 58.9, 52.1, 30.7, 27.0, 25.8, 17.7. HRMS (ESI) (m/z) calculated for C₂₆H₂₈NO₆ [M+H]⁺: 450.1911, found: 450.1927.

dimethyl 2-((2-(9,9-dimethyl-9H-fluoren-3-yl)-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4f). White solid. Mp: 199.2-200.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (s, 1H), 7.84 – 7.74 (m, 2H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.63 – 7.53 (m, 2H), 7.49 (dd, *J* = 6.8, 1.8 Hz, 1H), 7.44 – 7.33 (m, 3H), 7.19 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 7.12 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 4.74 – 4.66 (m, 1H), 3.79 (s, 2H), 3.41 (s, 6H), 2.35 (d, *J* = 6.9 Hz, 2H), 1.55 (s, 6H), 1.42 (d, *J* = 1.6 Hz, 3H), 1.32 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 154.3, 153.9, 139.1, 138.6, 137.5, 135.6, 134.6, 132.5, 129.9, 128.0, 127.6, 127.1, 123.1, 122.7, 122.1, 120.4, 120.2, 119.6, 119.5, 118.1, 110.7, 106.8, 59.0, 52.0, 47.0, 30.9, 27.2, 27.1, 25.8, 17.7. **HRMS** (ESI) (m/z) calculated for C₃₄H₃₆NO₄ [M+H]⁺: 522.2639, found: 522.2639.

dimethyl 2-((2-(3-chlorophenyl)-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4g). White solid. Mp: 149.6-150.5°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.58 – 7.52 (m, 2H), 7.43 (dt, *J* = 7.5, 1.5 Hz, 1H), 7.39 – 7.28 (m, 3H), 7.20 – 7.14 (m, 1H), 7.09 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 4.75 – 4.66 (m, 1H), 3.69 (s, 2H), 3.44 (s, 6H), 2.30 (d, *J* = 6.7 Hz, 2H), 1.54 (s, 3H), 1.35 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.9, 135.7, 135.5, 135.3, 135.0, 134.8, 130.2, 129.6, 128.8, 128.0, 127.1, 122.6, 119.8, 119.7, 117.8, 110.8, 107.5, 58.9, 52.1, 30.8, 26.9, 25.8, 17.7. HRMS (ESI) (m/z) calculated for C₂₅H₂₇Cl NO₄ [M+H]⁺: 440.1623, found: 440.1629.

dimethyl 2-(3-methylbut-2-en-1-yl)-2-((2-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)methyl)malonate (4h). White solid. Mp: 152.3-154.7°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.63 (q, *J* = 6.46, 4H), 7.57 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.31 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.19 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 7.11 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 4.64 (dt, J = 8.2, 4.2 Hz, 1H), 3.71 (s, 2H), 3.42 (s, 6H), 2.28 (d, J = 7.29 Hz, 2H), 1.50 (d, J = 1.7 Hz, 3H), 1.32 (d, J = 1.3 Hz, 3H). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 171.4, 136.8, 135.4, 134.7 (d, J = 7.65 Hz), 129.8 – 128.9 (m), 128.7, 125.3 (d, J = 3.81 Hz), 124.6, 122.4 (d, J = 10.42 Hz), 119.4, 119.2, 117.1, 110.4, 107.5, 58.4, 51.6, 30.3, 26.4, 25.2, 17.2. **HRMS** (ESI) (m/z) calculated for C₂₆H₂₇F₃NO₄ [M+H]⁺: 474.1887, found: 474.1896.

dimethyl 2-((7-(benzyloxy)-2-phenyl-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4i). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 7.63 – 7.57 (m, 2H), 7.54 – 7.48 (m, 3H), 7.48 – 7.44 (m, 3H), 7.42 – 7.36 (m, 2H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.05 (t, *J* = 7.9 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 5.23 (s, 2H), 4.75 – 4.71 (m, 1H), 3.76 (s, 2H), 3.47 (s, 6H), 2.37 (d, *J* = 6.9 Hz, 2H), 1.57 (d, *J* = 1.8 Hz, 3H), 1.42 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.1, 145.1, 137.1, 136.9, 134.7, 133.7, 131.2, 129.0, 128.9, 128.7, 128.2, 128.0, 126.3, 120.0, 118.2, 112.6, 107.1, 103.2, 70.3, 59.0, 52.1, 30.8, 27.3, 25.9, 17.8. HRMS (ESI) (m/z) calculated for C₃₂H₃₄NO₅ [M+H]⁺: 512.2431, found: 512.2436.

dimethyl 2-((2-(3-methoxyphenyl)-5-methyl-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4j). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (s, 1H), 7.36 (s, 1H), 7.32 (t, J = 7.90 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 7.14 – 7.07 (m, 2H), 7.00 (dd, J = 8.3, 1.6 Hz, 1H), 6.90 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 4.79 – 4.70 (m, 1H), 3.83 (s, 3H), 3.74 (s, 2H), 3.47 (s, 6H), 2.47 (s, 3H), 2.35 (d, J = 6.7 Hz, 2H), 1.57 (d, J = 1.7 Hz, 3H), 1.38 (d, J = 1.5 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.1, 159.8, 137.0, 135.1, 134.6, 134.0, 129.9, 129.9, 128.4, 123.7, 121.4, 119.1, 118.2, 114.2, 113.5, 110.5, 106.0, 58.9, 55.3, 52.0, 30.7, 27.0, 25.8, 21.7, 17.7. HRMS (ESI) (m/z) calculated for C₂₇H₃₂NO₅ [M+H]⁺: 450.2275, found: 450.2263.

dimethyl 2-((5-methoxy-2-(m-tolyl)-1H-indol-3-yl)methyl)-2-(3-methylbut-2-en-1-yl)malonate (4k). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.40 – 7.31 (m, 3H), 7.23 – 7.15 (m, 2H), 7.07 (d, J = 2.4 Hz, 1H), 6.83 (dd, J = 8.7, 2.4 Hz, 1H), 4.79 (tt, J = 7.0, 5.6, 2.1 Hz, 1H), 3.87 (d, J = 1.1 Hz, 3H), 3.71 (s, 2H), 3.41 (d, J = 1.1 Hz, 6H), 2.42 (s, 3H), 2.34 (d, J = 6.8 Hz, 2H), 1.55 (d, J = 1.7 Hz, 3H), 1.39 (d, J = 1.6 Hz, 3H). ¹³C NMR

(100 MHz, Chloroform-*d*) δ 172.2, 154.0, 138.4, 138.0, 134.6, 133.7, 130.8, 130.2, 129.4, 128.8, 128.5, 126.0, 118.2, 112.2, 111.5, 106.1, 101.4, 59.0, 55.8, 52.0, 30.7, 27.1, 25.9, 21.4, 17.7. **HRMS** (ESI) (m/z) calculated for C₂₇H₃₂NO₅ [M+H]⁺: 450.2275, found: 450.2266.

11. Characterization data of 2a-2y, 3a-3h, 5a-5k and 6-16

dimethyl 2-(iodomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2a). White solid. Mp: 146.5-147.3°C. Major: ¹H NMR (600 MHz, Chloroform-*d*) δ 8.24 – 8.18 (m, 2H), 7.70 (d, *J* = 7.22 Hz, 1H), 7.54 – 7.50 (m, 3H), 7.43 – 7.38 (m, 2H), 7.28 – 7.23 (m, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.66 (d, *J* = 15.58 Hz, 1H), 3.44 – 3.35 (m, 1H), 3.08 (dd, *J* = 14.09, 6.40 Hz, 1H), 2.82 – 2.73 (m, 2H), 2.42 (dd, *J* = 10.09, 4.14 Hz, 1H), 2.35 (t, *J* = 10.34 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.5, 173.1, 172.0, 153.7, 142.0, 132.2, 131.0, 128.9, 128.8, 128.4, 126.4, 122.8, 121.6, 67.1, 58.1, 53.6, 53.4, 50.8, 42.5, 41.5, 2.2. Minor: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 2H), 7.64 (d, *J* = 7.56 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.44 – 7.34 (m, 2H), 7.31 (td, *J* = 7.43, 1.18 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.54 (d, *J* = 15.94 Hz, 1H), 3.24 – 3.10 (m, 2H), 2.97 (dd, *J* = 13.65, 6.00 Hz, 1H), 2.75 (t, *J* = 9.76 Hz, 1H), 2.56 – 2.41 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.9, 172.8, 171.5, 153.4, 145.3, 135.8, 130.9, 129.0, 128.6, 128.4, 127.1, 121.7, 121.0, 66.5, 59.1, 53.5, 53.4, 53.0, 42.6, 41.5, 2.0. HRMS (ESI) (m/z) calculated for C₂₃H₂₃INO₄ [M+H]⁺: 504.0666, found: 504.0662.

dimethyl 2'-(4-chlorophenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2b). Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 – 8.19 (m, 2H), 7.68 (d, *J* = 7.64 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.43 – 7.36 (m, 2H), 7.26 – 7.21 (m, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.62 (d, *J* = 15.60 Hz, 1H), 3.37 – 3.27 (m, 1H), 3.02 (dd, *J* = 14.16, 6.42 Hz, 1H), 2.80 (t, *J* = 13.69 Hz, 1H), 2.72 (d, *J* = 15.59 Hz, 1H), 2.41 – 2.30 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.8, 172.7, 171.4, 153.0, 141.5, 136.8, 130.0, 129.3, 128.7, 128.3, 126.1, 122.3, 121.1, 66.4, 57.5, 53.2, 52.9, 50.4, 42.0, 41.0, 1.2. HRMS (ESI) (m/z) calculated for C₂₃H₂₂ClINO₄ [M+H]⁺: 538.0277, found: 538.0293.

dimethyl 2'-(4-fluorophenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2c). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 – 8.25 (m, 2H), 7.69 (d, *J* = 7.47 Hz, 1H), 7.40 (t, *J* = 7.51 Hz, 2H), 7.30 – 7.15 (m, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 3.65 (d, *J* = 15.53 Hz, 1H), 3.40 – 3.27 (m, 1H), 3.03 (dd, *J* = 14.15, 6.45 Hz, 1H), 2.83 (t, *J* = 13.69 Hz, 1H), 2.73 (d, *J* = 15.56 Hz, 1H), 2.44 – 2.30 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.4, 173.3, 172.0, 164.6 (d, *J* = 253.12 Hz), 153.6, 141.9, 130.8 (d, *J* = 8.50 Hz), 128.9, 128.4 (d, *J* = 3.16 Hz), 126.5, 122.8, 121.6, 116.1 (d, *J* = 21.52 Hz), 67.0, 58.1, 53.7, 53.5, 51.0, 42.7, 41.5, 1.9. HRMS (ESI) (m/z) calculated for C₂₃H₂₂FINO₄ [M+H]⁺: 522.0572, found: 522.0572.

dimethyl 2-(iodomethyl)-2'-(p-tolyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2d). Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.18 – 8.11(m, 2H), 7.69 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.41 (dtd, *J* = 7.9, 3.9, 1.2 Hz, 2H), 7.36 – 7.31 (m, 2H), 7.25 (td, *J* = 7.5, 1.1 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.66 (d, *J* = 15.6 Hz, 1H), 3.41 (dddd, *J* = 13.1, 10.6, 6.4, 4.1 Hz, 1H), 3.10 (dd, *J* = 14.1, 6.4 Hz, 1H), 2.85 – 2.74 (m, 2H), 2.49 – 2.32 (m, 5H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 179.8, 174.5, 173.4, 155.2, 143.4, 142.9, 131.0, 130.7, 130.1, 129.7, 127.5, 124.1, 122.7, 68.3, 59.5, 54.9, 54.7, 52.4, 44.1, 42.9, 24.9, 22. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₄ [M+H]⁺: 518.0823, found: 518.0819.

dimethyl 2-(iodomethyl)-2'-(m-tolyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2e). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (d, J = 1.9 Hz, 1H), 7.99 (dt, J = 7.7, 1.3 Hz, 1H), 7.69 (dd, J = 8.0, 1.1 Hz, 1H), 7.42 – 7.37 (m, 3H), 7.33 (ddt, J = 7.5, 1.8, 0.9 Hz, 1H), 7.26 – 7.22 (m, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.66 (d, J = 15.6 Hz, 1H), 3.45 – 3.36 (m, 1H), 3.09 (dd, J = 14.1, 6.4 Hz, 1H), 2.80 (d, J = 15.6 Hz, 1H), 2.75 (dd, J = 14.0, 13.2 Hz, 1H), 2.47 (s, 3H), 2.41 (dd, J = 10.1, 4.1 Hz, 1H), 2.34 (t, J = 10.4 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 178.6, 173.0, 172.0, 153.7, 142.0, 138.7, 132.0, 131.9, 129.0, 128.7, 128.7, 126.2, 125.3, 122.8, 121.4, 67.0, 58.0, 53.5, 53.3, 50.8, 42.6, 41.5, 21.5, 2.2. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₄ [M+H]⁺: 518.0823, found: 518.0825.

dimethyl 2'-(4-(tert-butyl)phenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2f). Colorless oil. ¹H NMR (500 MHz, DMSO- d_6) δ 8.09 – 8.03 (m, 2H), 7.64 (dd, J = 7.7, 1.1 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.44 – 7.36 (m, 2H), 7.27 (td, J = 7.5, 1.1 Hz, 1H), 3.84 (s, 3H), 3.76 (s, 3H), 3.38 (d, J = 15.6 Hz, 1H), 3.32 – 3.25 (m, 1H), 2.99 (dd, J = 13.9, 6.5 Hz, 1H), 2.73 (d, J = 15.6 Hz, 1H), 2.66 (t, J = 13.5 Hz, 1H), 2.46 (t, J = 9.9 Hz, 1H), 2.31 (dd, J = 9.9, 5.2 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6) δ 177.4, 172.6, 171.1, 153.8, 153.5, 141.8, 129.1, 128.5, 127.7, 125.9, 125.6, 122.8, 120.9, 66.1, 57.5, 53.6, 53.3, 50.3, 42.2, 40.8, 34.7, 30.8, 24.1, 2.5. HRMS (ESI) (m/z) calculated for C₂₇H₃₁INO₄ [M+H]⁺: 560.1292, found: 560.1298.

dimethyl 2-(iodomethyl)-2'-(3-methoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2g). Colorless oil. ¹H NMR (500 MHz, DMSO- d_6) δ 7.71 – 7.66 (m, 1H), 7.64 – 7.60 (m, 2H), 7.50 – 7.39 (m, 3H), 7.31 (td, J = 7.4, 1.1 Hz, 1H), 7.17 – 7.14 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.77 (s, 3H), 3.37 (d, J = 15.5 Hz, 1H), 3.33 – 3.25 (m, 1H), 2.99 (dd, J = 13.9, 6.5 Hz, 1H), 2.76 (d, J = 15.5 Hz, 1H), 2.65 (t, J = 13.5 Hz, 1H), 2.55 – 2.51 (m, 1H), 2.35 (dd, J = 10.1, 5.4 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 178.2, 172.9, 171.6, 159.9, 153.8, 142.3, 133.8, 130.3, 129.0, 126.7, 123.4, 121.6, 120.6, 117.1, 113.7, 66.8, 58.0, 55.8, 54.0, 53.8, 50.7, 42.5, 41.2, 2.8. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₅ [M+H]⁺: 534.0772, found: 534.0757.

dimethyl 2-(iodomethyl)-2'-(4-methoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2h). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.93 Hz, 2H), 7.67 (d, *J* = 7.28 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.28 – 7.17 (m, 1H), 7.08 – 7.00 (m, 2H), 3.92 (d, *J* = 2.96 Hz, 6H), 3.84 (s, 3H), 3.69 (d, *J* = 15.44 Hz, 1H), 3.46 – 3.32 (m, 1H), 3.07 (dd, *J* = 14.15, 6.45 Hz, 1H), 2.90 – 2.74 (m, 2H), 2.43 (dd, *J* = 10.01, 4.08 Hz, 1H), 2.35 (t, *J* = 10.28 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.7, 173.3, 172.0, 141.8, 130.2, 128.6, 125.8, 122.7, 121.0, 114.2, 66.7, 58.0, 55.5, 53.6, 53.3, 51.3, 43.0, 41.5, 2.3. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₅ [M+H]⁺: 534.0772, found: 534.0773.

dimethyl 2-(iodomethyl)-2'-(4-isopropoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2i). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (d, J = 9.0 Hz, 2H), 7.67–7.62 (m, 1H), 7.38 (dd, J = 7.9, 6.8 Hz, 2H), 7.21 (td, J = 7.5, 1.1 Hz, 1H), 7.02–6.96 (m, 2H), 4.67 (h, J = 11.65, 5.89 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 3.65 (d, J = 15.6 Hz, 1H), 3.44–3.34 (m, 1H), 3.07 (dd, J = 14.2, 6.4 Hz, 1H), 2.83–2.75 (m, 2H), 2.42 (dd, J = 10.0, 4.0 Hz, 1H), 2.33 (t, J = 10.4 Hz, 1H), 1.39 (d, J = 6.1 Hz, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.3, 172.8, 171.5, 160.0, 153.4, 141.4, 129.8, 128.2, 125.3, 123.7, 122.2, 120.5, 115.2, 69.6, 66.2, 57.6, 53.1, 52.9, 50.8, 42.5, 41.1, 21.6, 21.6. HRMS (ESI) (m/z) calculated for C₂₆H₂₉INO₅ [M+H]⁺: 562.1085, found: 562.1091.

dimethyl 2-(iodomethyl)-2'-(4-(trifluoromethoxy)phenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2j). White solid. Mp: 185.7-186.3°C. ¹H NMR (600 MHz, DMSO- d_6) δ 8.24 – 8.19 (m, 2H), 7.68 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.31 (t, J = 7.5 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.36 (d, J = 15.7 Hz, 1H), 3.32 – 3.24 (m, 1H), 2.94 (dd, J = 14.0, 6.5 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.56 (t, J = 9.3 Hz, 1H), 2.38 (dd, J = 10.1, 5.8 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 177.2, 173.0, 171.5, 153.8, 150.3, 142.2, 131.7, 130.5, 129.1, 126.9, 121.8, 121.5, 120.5 (q, J = 257.33 Hz), 66.7, 58.0, 54.1, 53.8, 50.2, 42.3, 41.3, 2.7. HRMS (ESI) (m/z) calculated for C₂₄H₂₂F₃INO₅ [M+H]⁺: 588.0489, found: 588.0506.

dimethyl 2-(iodomethyl)-2'-(4-phenoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2k). Colorless oil. ¹H NMR (500 MHz, DMSO- d_6) δ 8.17 – 8.11 (m, 2H), 7.63 (dd, J = 7.7, 1.0 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.44 – 7.37 (m, 2H), 7.31 – 7.22 (m, 2H), 7.18 – 7.14 (m, 2H), 7.13 – 7.08 (m, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.37 (d, J = 15.6 Hz, 1H), 3.32 – 3.24 (m, 1H), 2.96 (dd, J = 14.0, 6.5 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.55 – 2.50 (m, 1H), 2.34 (dd, J = 10.0, 5.5 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 176.4, 172.1, 170.6, 158.9, 154.7, 153.0, 141.2, 129.8, 129.5, 128.0, 126.0, 125.3, 124.0, 122.3, 120.3, 119.4, 117.1, 65.5, 57.0, 53.1, 52.8, 49.7, 41.7, 40.3, 1.8. HRMS (ESI) (m/z) calculated for C₂₉H₂₇INO₅ [M+H]⁺: 596.0928, found: 596.0919.

dimethyl 2-(iodomethyl)-2'-(4-methoxy-3-methylphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2l). White solid. Mp: 135.9-137.1°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.19 – 8.07 (m, 2H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 3.91 (d, *J* = 7.5 Hz, 6H), 3.82 (s, 3H), 3.68 (d, *J* = 15.6 Hz, 1H), 3.45 – 3.35 (m, 1H), 3.07 (dd, *J* = 14.2, 6.4 Hz, 1H), 2.79 (dd, *J* = 14.8, 11.3 Hz, 2H), 2.42 (dd, *J* = 10.1, 4.0 Hz, 1H), 2.34 (d, *J* = 10.5 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 177.9, 173.3, 172.0, 160.3, 153.9, 141.9, 130.9, 128.6, 127.7, 127.3, 125.7, 124.0, 122.7, 120.9, 109.7, 66.8, 58.0, 55.5, 53.6, 53.3, 51.4, 43.1, 41.5, 16.30, 2.5. HRMS (ESI) (m/z) calculated for C₂₅H₂₇INO₆ [M+H]⁺: 548.0928, found: 548.0939.

dimethyl 2'-(3-fluoro-4-methoxyphenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2m). White solid. Mp: 118.4-119.5°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.15 – 8.04 (m, 2H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.24 (td, *J* = 7.5, 1.1 Hz, 1H), 7.08 (t, *J* = 8.6 Hz, 1H), 3.98 (s, 3H), 3.92 (s, 3H), 3.82 (s, 3H), 3.64 (d, *J* = 15.6 Hz, 1H), 3.39 – 3.30 (m, 1H), 3.04 (dd, *J* = 14.2, 6.4 Hz, 1H), 2.87 – 2.72 (m, 2H), 2.43 – 2.28 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.8, 173.4, 172.0, 153.4 (d, *J* = 40.41 Hz), 151.3, 150.3 (d, *J* = 10.79 Hz), 142.0, 128.8, 126.3, 125.2 (d, *J* = 3.58 Hz), 122.8, 121.4, 116.3 (d, *J* = 20.32 Hz), 113.0, 66.8, 58.1, 56.4, 53.7, 53.4, 51.3, 42.9, 41.6, 2.0. HRMS (ESI) (m/z) calculated for C₂₄H₂₄FINO₅ [M+H]⁺: 552.0678, found: 552.0683.

dimethyl 2'-(4-chloro-3-methoxyphenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2n). White solid. Mp: 168.9-170.3°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 1.9 Hz, 1H), 7.74 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.27 (d, *J* = 5.7 Hz, 1H), 4.06 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.65 (d, *J* = 15.6 Hz, 1H), 3.41 – 3.30 (m, 1H), 3.03 (dd, *J* = 14.2, 6.4 Hz, 1H), 2.82 (t, *J* = 13.7 Hz, 1H), 2.73 (d, *J* = 15.6 Hz, 1H), 2.44 – 2.32 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.9, 172.7, 171.4, 155.0, 153.0, 141.5, 131.5, 129.8, 128.3, 126.1, 125.5, 122.3, 121.2, 120.7, 111.5, 66.6, 57.4, 56.1, 53.1, 52.9, 50.5, 42.1, 40.9, 1.2. HRMS (ESI) (m/z) calculated for C₂₄H₂₄ClINO₅ [M+H]⁺: 568.0382, found: 568.0378.

dimethyl 2'-(3,4-dimethoxyphenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (20). White solid. Mp: 133.5-134.7°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.96 (d, J = 2.0 Hz, 1H), 7.82 (dt, J = 8.5, 1.4 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.22 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.97 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 3.70 (d, J = 15.5 Hz, 1H), 3.45 – 3.36 (m, 1H), 3.04 (dd, J = 14.3, 6.5 Hz, 1H), 2.83 (t, J = 13.7 Hz, 1H), 2.76 (d, J = 15.6 Hz, 1H), 2.42 (dd, J = 10.1, 4.0 Hz, 1H), 2.34 (t, J = 10.3 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.2, 172., 171.5, 153.2, 151.3, 148.9, 141.4, 128.2, 125.4, 124.5, 122.2, 121.4, 120.6, 110.9, 110.0, 66.4, 57.5, 55.8, 55.6, 53.1, 52.9, 51.1, 42.7, 41.0, 1.8. HRMS (ESI) (m/z) calculated for C₂₅H₂₇INO₆ [M+H]⁺: 564.0878, found: 564.0870.

dimethyl 2'-(3-fluoro-4-methylphenyl)-2-(iodomethyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2p). White solid. Mp: 118.3-119.4°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.86 – 7.79 (m, 2H), 7.66 (d, J = 7.7 Hz, 1H), 7.51 – 7.37 (m, 3H), 7.30 (td, J = 7.5, 1.2 Hz, 1H), 3.84 (s, 3H), 3.76 (s, 3H), 3.35 (d, J = 12.3 Hz, 1H), 3.31 – 3.21 (m, 1H), 2.96 (dd, J = 14.0, 6.4 Hz, 1H), 2.76 – 2.63 (m, 2H), 2.58 – 2.51 (m, 1H), 2.38 – 2.28 (m, 4H). ¹³C NMR (150 MHz, DMSO- d_6) δ 177.1 (d, J = 2.46 Hz), 173.1, 171.5, 161.1 (d, J = 243.16 Hz), 153.7, 142.4, 132.5 (d, J = 5.12 Hz), 132.1 (d, J = 7.51 Hz), 129.1, 128.1 (d, J = 17.17 Hz), 126.8, 124.1 (d, J = 2.99 Hz), 123.3, 121.7, 114.5 (d, J = 24.17 Hz), 66.6, 58.0, 54.1, 53.8, 50.7, 42.5, 41.2, 14.7 (d, J = 2.85 Hz), 2.6. HRMS (ESI) (m/z) calculated for C₂₄H₂₄FINO₄ [M+H]⁺: 536.0717, found: 536.0724.

dimethyl 2-(iodomethyl)-7'-methyl-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2q). White solid. Mp: 101.9-102.4°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 – 8.15 (m, 2H), 7.50 (dd, J = 5.2, 2.0 Hz, 3H), 7.20 (d, J = 7.4 Hz, 2H), 7.14 (dd, J = 8.3, 6.6 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.62 (d, J = 15.5 Hz, 1H), 3.43 – 3.32 (m, 1H), 3.06 (dd, J = 14.1, 6.4 Hz, 1H), 2.78 – 2.70 (m, 2H), 2.65 (s, 3H), 2.42 (dd, J = 10.0, 4.0 Hz, 1H), 2.35 (t, J = 10.3 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.2, 173.1, 172.0, 152.2, 141.8, 132.5, 131.4, 130.7, 129.9, 128.9, 128.8, 128.4, 128.3, 126.2, 120.1, 67.2, 58.1, 53.5, 53.3, 50.6, 42.5, 41.4, 16.9, 2.5. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₄ [M+H]⁺: 518.0823, found: 518.0822.

dimethyl 2-(iodomethyl)-5'-methyl-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2r). Colorless oil. ¹H NMR (500 MHz, DMSO- d_6) δ 8.08 – 8.00 (m, 2H), 7.55 – 7.49 (m, 4H), 7.24 – 7.18 (m, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.35 (d, J = 15.5 Hz, 1H), 3.30 – 3.21 (m, 1H), 2.96 (dd, J = 13.9, 6.5 Hz, 1H), 2.75 – 2.62 (m, 2H), 2.54 (t, J = 9.6 Hz, 1H), 2.37 (s, 3H), 2.33 (dd, J = 10.0, 5.3 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 176.9, 172.5, 171.1, 151.3, 142.0, 135.6, 132.1, 130.7, 129.0, 128.8, 127.7, 123.6, 120.6, 66.1, 57.6, 53.5, 53.3, 50.0, 42.1, 40.7, 21.4, 2.7. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₄ [M+H]⁺: 518.0823, found: 518.0822.

dimethyl 5'-(benzyloxy)-2-(iodomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2s). Colorless oil. ¹H NMR (500 MHz, DMSO- d_6) δ 8.03 (dd, J = 6.7, 3.1 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.53 – 7.49 (m, 3H), 7.48 – 7.44 (m, 2H), 7.39 (dd, J = 8.3, 6.7 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.07 – 6.99 (m, 2H), 5.22 – 5.08 (m, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 3.38 (d, J = 15.6 Hz, 1H), 3.26 – 3.14 (m, 1H), 2.92 (dd, J = 14.0, 6.5 Hz, 1H), 2.69 (d, J = 15.6 Hz, 1H), 2.60 (t, J = 13.5 Hz, 1H), 2.42 (t, J = 9.6 Hz, 1H), 2.28 (dd, J = 9.9, 5.1 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 175.7, 172.5, 171.3, 157.0, 147.2, 143.4, 136.8, 132.1, 130.5, 128.8, 128.5, 128.0, 127.9, 127.6, 121.6, 114.7, 110.3, 90.9, 69.8, 66.5, 61.6, 57.6, 53.6, 53.4, 50.1, 42.1, 40.5, 2.5. HRMS (ESI) (m/z) calculated for C₃₀H₂₉INO₅ [M+H]⁺: 610.1085, found: 610.1085.

dimethyl 2-(iodomethyl)-5'-methoxy-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2t). Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.18 – 8.12 (m, 2H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.48 (dd, *J* = 5.2, 2.1 Hz, 3H), 7.01 (d, *J* = 2.5 Hz, 1H), 6.91 (dd, *J* = 8.5, 2.5 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.67 (d, *J* = 15.6 Hz, 1H), 3.41 – 3.32 (m, 1H), 3.04 (dd, *J* = 14.1, 6.5 Hz, 1H), 2.80 – 2.70 (m, 2H), 2.44 (dd, *J* = 10.0, 4.3 Hz, 1H), 2.39 (t, *J* = 10.3 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.2, 173.0, 172.1, 158.7, 147.4, 143.6, 132.2, 130.6, 129.0, 128.8, 128.1, 128.0, 121.9, 113.4, 109.6, 67.2, 58.0, 55.8, 53.5, 53.3, 50.6, 42.7, 41.2, 2.2. HRMS (ESI) (m/z) calculated for C₂₄H₂₅INO₅ [M+H]⁺: 534.0772, found: 534.0772.

diethyl 2-(iodomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (**2u**). Colorless oil. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.11 – 8.06 (m, 2H), 7.67 (dd, *J* = 7.61, 1.15 Hz, 1H), 7.58 – 7.52 (m, 3H), 7.46 – 7.39 (m, 2H),

7.30 (td, J = 7.48, 1.16 Hz, 1H), 4.33 – 4.26 (m, 2H), 4.23 (q, J = 7.06 Hz, 2H), 3.37 (s, 1H), 3.32 – 3.24 (m, 1H), 2.96 (dd, J = 13.90, 6.46 Hz, 1H), 2.73 (d, J = 15.56 Hz, 1H), 2.64 (t, J = 13.46 Hz, 1H), 2.54 – 2.50 (m, 1H), 2.35 (dd, J = 9.98, 5.35 Hz, 1H), 1.22 (dt, J = 14.00, 7.07 Hz, 6H). ¹³**C NMR** (125 MHz, DMSO- d_6) δ 177.9, 172.0, 170.6, 153.4, 141.8, 132.0, 130.9, 128.8, 128.5, 127.8, 126.1, 122.9, 121.1, 66.3, 62.2, 61.9, 57.7, 50.2, 41.8, 40.6, 13.8, 2.4. **HRMS** (ESI) (m/z) calculated for C₂₅H₂₇INO₄ [M+H]⁺: 532.0979, found: 532.0992.

dimethyl 2-(iodomethyl)-2'-methylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2v). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.19 (td, *J* = 7.4, 1.1 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.17 (d, *J* = 15.0 Hz, 1H), 2.95 (dd, *J* = 13.0, 5.8 Hz, 1H), 2.90 – 2.81 (m, 1H), 2.70 (t, *J* = 12.9 Hz, 1H), 2.49 – 2.39 (m, 2H), 2.39 – 2.34 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 183.5, 172.6, 171.7, 154.4, 140.3, 128.5, 125.6, 122.8, 120.5, 66.8, 57.8, 53.5, 53.2, 49.0, 41.5, 41.4, 15.5, 1.6. HRMS (ESI) (m/z) calculated for C₁₈H₂₁INO₄ [M+H]⁺: 442.0510, found: 442.0497.

dimethyl 2-(iodomethyl)-7'-methylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2w). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.21 – 7.11 (m, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 3.20 (d, *J* = 16.98 Hz, 1H), 3.03 – 2.94 (m, 2H), 2.57 (s, 3H), 2.54 – 2.38 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.1, 172.4, 171.6, 153.7, 138.8, 131.4, 130.1, 126.5, 120.5, 66.0, 58.1, 53.4, 53.2, 46.5, 41.7, 39.8, 16.8, 2.7. HRMS (ESI) (m/z) calculated for C₁₈H₂₁INO₄ [M+H]⁺: 442.0510, found: 442.0512.

dimethyl 2-(iodomethyl)-5'-methylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (2x). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.50 (d, J = 7.85 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.11 (s, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.18 (d, J = 14.87 Hz, 1H), 3.02 – 2.94 (m, 2H), 2.63 – 2.57 (m, 1H), 2.54 (t, J = 10.08 Hz, 1H), 2.47 (d, J = 14.87 Hz, 1H), 2.43 – 2.39 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.4, 172.4, 171.6, 153.1, 139.2, 136.6, 129.3, 123.9, 121.2, 65.6, 58.1, 53.4, 53.2, 46.4, 41.8, 39.9, 21.7, 2.7. HRMS (ESI) (m/z) calculated for C₁₈ H₂₁INO₄ [M+H]⁺: 442.0510, found: 442.0497.

dimethyl 1-(iodomethyl)-6-methyl-1,2,4,9-tetrahydro-3H-carbazole-3,3-dicarboxylate (2y). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.32 (s, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.03 (dd, *J* = 8.2, 1.7 Hz, 1H), 3.83 (s, 3H), 3.66 (s, 3H), 3.58 (dt, *J* = 15.6, 1.5 Hz, 1H), 3.51 – 3.36 (m, 3H), 3.12 (dd, *J* = 15.7, 2.0 Hz, 1H), 2.86 – 2.76 (m, 1H), 2.47 (s, 3H), 2.07 – 1.96 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 171.0, 134.6, 133.2, 128.9, 127.0, 123.8, 118.2, 110.6, 108.5, 54.6, 53.1, 52.9, 36.6, 33.8, 27.4, 21.5, 10.1. HRMS (ESI) (m/z) calculated for C₁₈H₂₁INO₄ [M+H]⁺: 442.0510, found: 442.0514.

dimethyl 2-(bromomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3a). White solid. Mp: 150.9-152.2°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.23 (dd, J = 6.4, 3.1 Hz, 2H), 7.70 (d, J = 7.7 Hz, 1H), 7.53 – 7.49 (m, 3H), 7.40 (t, J = 8.1 Hz, 2H), 7.28 – 7.23 (m, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.64 (d, J = 15.6 Hz, 1H), 3.49 – 3.40 (m, 1H), 3.04 (dd, J = 14.2, 6.5 Hz, 1H), 2.81 (t, J = 13.6 Hz, 1H), 2.73 (d, J = 15.5 Hz, 1H), 2.64 (d, J = 7.3 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 178.5, 173.0, 171.9, 153.6, 142.1, 132.2, 131.0, 128.8, 128.7, 128.4, 126.3, 122.7, 121.6, 66.9, 58.5, 53.5, 53.3, 50.3, 42.3, 40.1, 30.8. HRMS (ESI) (m/z): calculated for C₂₃H₂₃BrNO₄ [M+H]⁺: 456.0805, found: 456.0817.

dimethyl 2-(bromomethyl)-2'-(4-(tert-butyl)phenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3b). White solid. Mp: 128.3-130.8°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.23 (td, *J* = 7.5, 1.1 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 3.68 (d, *J* = 15.6 Hz, 1H), 3.52 – 3.43 (m, 1H), 3.05 (dd, *J* = 14.2, 6.5 Hz, 1H), 2.83 (dd, *J* = 14.2, 13.1 Hz, 1H), 2.72 (d, *J* = 15.6 Hz, 1H), 2.65 – 2.59 (m, 2H), 1.38 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 178.2, 173.2, 172.0, 154.5, 142.0, 128.7, 128.3, 126.1, 125.8, 122.7, 121.3, 66.8, 58.5, 53.5, 53.3, 50.5, 42.5, 40.1, 35.0, 31.1, 31.0. HRMS (ESI) (m/z) calculated for C₂₇H₃₁BrNO₄ [M+H]⁺: 512.1431, found: 512.1422.

dimethyl 2-(bromomethyl)-2'-(4-methoxy-3-methylphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3c). White solid. Mp: 134.3-135.1°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.16 – 8.12 (m, 2H), 7.65 (d, *J* = 7.18 Hz, 1H), 7.38 (t, *J* = 7.14 Hz, 2H), 7.23 – 7.19 (m, 1H), 6.93 (d, *J* = 8.47 Hz, 1H), 3.91 (d, *J* = 9.10 Hz, 6H), 3.82 (s,

3H), 3.67 (d, J = 15.63 Hz, 1H), 3.48 – 3.41 (m, 1H), 3.04 (dd, J = 14.22, 6.53 Hz, 1H), 2.83 (t, J = 13.68 Hz, 1H), 2.72 (d, J = 15.63 Hz, 1H), 2.65 – 2.58 (m, 2H), 2.32 (s, 3H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 178.0, 173.3, 172.0, 160.3, 153.8, 142.0, 131.0, 128.6, 127.8, 127.3, 125.7, 124.0, 122.7, 121.0, 109.7, 66.6, 58.5, 55.5, 53.6, 53.3, 51.0, 42.8, 40.1, 31.1, 16.3. **HRMS** (ESI) (m/z) calculated for C₂₅H₂₇BrNO₅ [M+H]⁺: 500.1067, found: 500.1080.

dimethyl 2-(bromomethyl)-2'-(4-chloro-3-methoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3d). White solid. Mp: 189.9-191.9°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 1.9 Hz, 1H), 7.79 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.43 (ddd, *J* = 8.7, 7.3, 1.2 Hz, 2H), 7.32 – 7.25 (m, 1H), 4.09 (s, 3H), 3.89 (s, 3H), 3.84 (s, 3H), 3.67 (d, *J* = 15.5 Hz, 1H), 3.48 – 3.37 (m, 1H), 3.00 (dd, *J* = 14.2, 6.7 Hz, 1H), 2.88 (dd, *J* = 14.2, 13.1 Hz, 1H), 2.72 – 2.61 (m, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.0, 172.7, 171.4, 155.0, 141.6, 131.4, 129.8, 128.4, 126.1, 125.5, 122.3, 121.2, 120.8, 111.5, 66.4, 57.9, 56.2, 53.1, 52.9, 50.1, 42.0, 39.6, 30.1. HRMS (ESI) (m/z) calculated for C₂₄H₂₄BrClNO₅ [M+H]⁺: 520.0521, found: 520.0530.

dimethyl 2-(bromomethyl)-2'-(3,4-dimethoxyphenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3e). White solid. Mp: 147.8-149.3°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 (d, J = 2.1 Hz, 1H), 7.84 (dd, J = 8.5, 2.1 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.22 (td, J = 7.5, 1.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.97 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 3.69 (d, J = 15.5 Hz, 1H), 3.50 – 3.38 (m, 1H), 3.01 (dd, J = 14.3, 6.6 Hz, 1H), 2.87 (dd, J = 14.3, 13.1 Hz, 1H), 2.69 (d, J = 15.6 Hz, 1H), 2.66 – 2.58 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.2, 172.9, 171.5, 151.4, 148.9, 141.6, 128.2, 125.4, 124.5, 122.2, 121.4, 120.7, 110.9, 109.9, 66.2, 58.0, 55.8, 55.6, 53.1, 52.9, 50.6, 42.5, 39.6, 30.4. HRMS (ESI) (m/z) calculated for C₂₅H₂₇BrNO₆ [M+H]⁺: 516.1016, found: 516.1028.

dimethyl 2-(bromomethyl)-2'-(4-chlorophenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3f). Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 8.67 Hz, 2H), 7.72 (d, J = 7.39 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.45 – 7.40 (m, 3H), 3.90 (s, 3H), 3.83 (s, 3H), 3.63 (d, J = 15.53 Hz, 1H), 3.45 (t, J = 7.94 Hz, 1H), 3.42 – 3.35 (m, 1H), 3.04 – 2.96 (m, 2H), 2.68 – 2.63 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.5, 177.4, 173.1, 172.5,

171.8, 171.4, 145.4, 142.0, 137.4, 133.7, 130.4, 130.2, 129.8, 129.7, 129.2, 129.1, 128.8, 128.6, 127.3, 126.6, 122.7, 121.7, 121.6, 121.0, 66.7, 66.2, 59.6, 58.4, 53.6, 53.4, 53.4, 52.4, 50.4, 42.3, 42.3, 40.3, 40.1, 30.5, 30.2, 23.5. **HRMS** (ESI) (m/z) calculated for C₂₃H₂₂BrClNO₄ [M+H]+: 490.0415, found: 490.0423.

dimethyl 2-(bromomethyl)-2'-(p-tolyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (3g). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 8.10 Hz, 2H), 7.75 – 7.68 (m, 1H), 7.41 (t, *J* = 7.03 Hz, 2H), 7.35 (d, *J* = 8.02 Hz, 2H), 7.29 – 7.23 (m, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 3.66 (d, *J* = 15.55 Hz, 1H), 3.51 – 3.39 (m, 1H), 3.06 (dd, *J* = 14.11, 6.49 Hz, 1H), 2.83 (t, *J* = 13.64 Hz, 1H), 2.75 (d, *J* = 15.54 Hz, 1H), 2.65 (d, *J* = 7.20 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.5, 173.0, 172.0, 142.0, 129.6, 128.7, 128.4, 126.1, 122.7, 121.3, 66.7, 58.5, 53.5, 53.3, 50.6, 42.5, 40.1, 30.8, 21.5. HRMS (ESI) (m/z) calculated for C₂₄H₂₅BrNO₄ [M+H]⁺: 470.0961, found: 470.0955.

dimethyl 2'-phenyl-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5a). White solid. Mp: 123.5-125.4°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 – 8.28 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.56 – 7.49 (m, 3H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.38 (td, *J* = 7.6, 1.2 Hz, 1H), 7.24 (td, *J* = 7.5, 1.1 Hz, 1H), 4.48 (dq, *J* = 18.9, 1.3 Hz, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 3.77 (dd, *J* = 13.6, 6.2 Hz, 1H), 3.60 (d, *J* = 15.5 Hz, 1H), 3.19 (t, *J* = 13.8 Hz, 1H), 2.78 – 2.72 (m, 1H), 2.69 (d, *J* = 15.7 Hz, 1H), 1.11 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.6, 173.4, 172.3, 144.0, 141.3, 130.8, 128.8, 128.5, 128.1, 125.9, 123.2, 121.1, 112.5, 66.9, 58.4, 53.9, 53.4, 53.2, 42.0, 38.5, 21.7. HRMS (ESI) (m/z) calculated for C₂₅H₂₆NO₄ [M+H]⁺: 404.1856, found: 404.1858.

di-tert-butyl 2'-phenyl-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5b). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (dd, J = 7.0, 2.8 Hz, 2H), 7.69 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 3.1 Hz, 3H), 7.45 (d, J = 7.5 Hz, 1H), 7.37 (td, J = 7.62, 1.25 Hz, 1H), 7.23 (td, J = 7.51, 1.20 Hz, 1H), 4.51 – 4.40 (m, 2H), 3.76 (dd, J = 13.7, 6.3 Hz, 1H), 3.48 (d, J = 15.5 Hz, 1H), 3.07 (t, J = 13.7 Hz, 1H), 2.70– 2.56 (m, 2H), 1.58 (d, J = 1.6 Hz, 9H), 1.51 (d, J = 1.6 Hz, 9H), 1.10 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.7, 172.1, 171.0, 144.3, 141.7, 130.7, 128.7, 128.6, 127.9, 126.0, 123.3, 120.9, 112.3, 82.1, 82.0, 67.2, 59.9, 54.2, 41.7, 38.2, 29.7, 27.9, 27.8, 21.8. HRMS (ESI) (m/z) calculated for C₃₁H₃₈NO₄ [M+H]⁺: 488.2795, found: 488.2794.

diisopropyl 2'-phenyl-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5c). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 – 8.31 (m, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.55 – 7.45 (m, 4H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 5.3 – 5.1 (m, 2H), 4.47 (d, *J* = 17.8 Hz, 2H), 3.77 (dd, *J* = 13.7, 6.2 Hz, 1H), 3.58 (d, *J* = 15.4 Hz, 1H), 3.18 (t, *J* = 13.7 Hz, 1H), 2.70 – 2.66 (m, 1H), 2.65 – 2.59 (m, 1H), 1.36 – 1.29 (m, 9H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.11 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.8, 172.6, 171.5, 153.5, 144.2, 141.6, 133.0, 130.8, 128.8, 128.6, 128.1, 125.9, 123.4, 121.1, 112.5, 69.9, 69.7, 67.2, 58.8, 54.1, 42.0, 38.4, 29.8, 21.8, 21.7, 21.7. HRMS (ESI) (m/z) calculated for C₂₉H₃₄NO₄ [M+H]⁺: 460.2482, found: 460.2480.

dimethyl 2'-(4-ethylphenyl)-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5d). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.21 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.32 (d, J = 7.9 Hz, 3H), 7.18 (t, J = 7.4 Hz, 1H), 4.46 (s, 1H), 4.42 (s, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.77 – 3.69 (m, 1H), 3.55 (d, J = 15.6 Hz, 1H), 3.15 (t, J = 13.7 Hz, 1H), 2.73 – 2.64 (m, 4H), 1.28 (t, J = 7.6 Hz, 3H), 1.07 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 179.6, 173.4, 172.3, 153.5, 147.3, 143.9, 141.4, 130.2, 128.5, 128.3, 128.2, 128.0, 125.6, 123.2, 120.9, 112.4, 66.8, 58.4, 54.0, 53.4, 53.2, 42.2, 38.5, 28.8, 21.7, 15.2. HRMS (ESI) (m/z) calculated for C₂₇H₃₀NO₄ [M+H]⁺: 432.2169, found: 432.2162.

dimethyl **2'-(benzo[d][1,3]dioxol-5-yl)-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate** (**5e**). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.86 (m, 2H), 7.66 – 7.59 (m, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H), 7.20 (td, *J* = 7.5, 1.1 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.07 (q, *J* = 1.4 Hz, 2H), 4.52 – 4.43 (m, 2H), 3.91 (s, 3H), 3.83 (s, 3H), 3.70 (dd, *J* = 13.6, 6.1 Hz, 1H), 3.56 (d, *J* = 15.56 Hz, 1H), 3.20 (t, *J* = 13.8 Hz, 1H), 2.75 – 2.62 (m, 2H), 1.10 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.7, 173.5, 172.3, 153.4, 149.8, 148.2, 143.9, 141.3, 128.1, 127.1, 125.5, 123.5, 123.1, 120.8, 112.5, 108.6, 108.2, 101.6, 66.7, 58.4, 54.3, 53.4, 53.2, 42.3, 38.4, 21.7. HRMS (ESI) (m/z) calculated for C₂₆H₂₆NO₆ [M+H]⁺: 448.1755, found: 448.1742.

dimethyl 2'-(9,9-dimethyl-9H-fluoren-4-yl)-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4dicarboxylate (5f). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 (d, J = 1.7 Hz, 1H), 8.38 (dd, J = 8.1, 1.7 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.47 (d, J = 7.5 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.24 (td, J = 7.5, 1.2 Hz, 1H), 4.54 – 4.45 (m, 2H), 3.94 (s, 3H), 3.89 – 3.80 (m, 4H), 3.76 (d, J = 15.5 Hz, 1H), 3.30 (t, J = 13.8 Hz, 1H), 2.80 – 2.64 (m, 2H), 1.64 (d, J = 6.7 Hz, 6H), 1.13 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.6, 173.6, 172.4, 154.7, 154.2, 153.6, 144.0, 141.8, 141.4, 138.4, 131.7, 128.1, 127.8, 127.1, 125.7, 123.2, 122.9, 122.8, 121.0, 120.6, 120.1, 112.6, 67.1, 58.4, 54.3, 53.4, 53.2, 47.3, 42.3, 38.4, 27.0, 27.0, 21.7. HRMS (ESI) (m/z) calculated for C₃₄H₃₄NO₄ [M+H]⁺: 520.2482, found: 520.2483.

dimethyl 2'-(3-chlorophenyl)-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5g). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.32 (t, *J* = 1.9 Hz, 1H), 8.23 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.37 (td, *J* = 7.6, 1.1 Hz, 1H), 7.24 (td, *J* = 7.5, 1.0 Hz, 1H), 4.49 (t, *J* = 1.3 Hz, 1H), 4.43 (s, 1H), 3.91 (s, 3H), 3.81 (s, 3H), 3.70 (dd, *J* = 13.7, 6.1 Hz, 1H), 3.53 (d, *J* = 15.6 Hz, 1H), 3.18 (t, *J* = 13.8 Hz, 1H), 2.71 (dd, *J* = 13.9, 6.2 Hz, 1H), 2.66 (d, *J* = 15.6 Hz, 1H), 1.07 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.1, 173.3, 172.2, 153.0, 143.9, 141.0, 134.9, 134.4, 130.7, 130.0, 128.4, 128.2, 126.6, 126.3, 123.2, 121.3, 112.8, 66.9, 58.4, 53.9, 53.6, 53.3, 41.8, 38.4, 21.7. HRMS (ESI) (m/z) calculated for C₂₅H₂₅ClNO₄ [M+H]⁺: 438.1467, found: 438.1463.

dimethyl 2-(prop-1-en-2-yl)-2'-(4-(trifluoromethyl)phenyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5h). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (d, J = 8.2 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.38 (td, J = 7.6, 1.2 Hz, 1H), 7.29 – 7.21 (m, 1H), 4.49 (q, J = 1.3 Hz, 1H), 4.41 (d, J = 1.5 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.74 – 3.65 (m, 1H), 3.60 (d, J = 15.5 Hz, 1H), 3.26 (t, J = 13.9 Hz, 1H), 2.66 (dd, J = 14.0, 6.2 Hz, 1H), 2.60 (d, J = 15.6 Hz, 1H), 1.07 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 177.9, 173.5, 172.2, 153.2, 144.0, 140.9, 136.0, 132.1 (q, J = 101.52, 0.00 Hz), 128.8, 128.3, 126.5, 125.6 (q, J = 3.82 Hz), 123.9 (q, J = 272.32 Hz), 123.3, 121.6, 112.9, 67.1, 58.3, 53.7, 53.5, 53.2, 41.7, 38.4, 21.6. HRMS (ESI) (m/z) calculated for C₂₆H₂₅F₃NO₄ [M+H]⁺: 472.1730, found: 472.1735.

dimethyl 7'-(benzyloxy)-2'-phenyl-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5i). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 – 8.32 (m, 2H), 7.58 – 7.48 (m, 5H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 5.46 (s, 2H), 4.51 (s, 1H), 4.46 (s, 1H), 3.89 (s, 3H), 3.82 (s, 3H), 3.80 – 3.73 (m, 1H), 3.58 (d, J = 15.5 Hz, 1H), 3.17 (t, J = 13.7 Hz, 1H), 2.77 – 2.65 (m, 2H), 1.13 (s, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 179.1, 174.8, 173.7, 152.4, 147.9, 143.8, 142.8, 139.0, 134.4, 131.8, 130.0, 129.9, 129.2, 128.9, 128.4, 117.6, 115.7, 113.8, 73.1, 68.5, 59.9, 55.3, 54.8, 54.6, 43.5, 39.8, 23.2. **HRMS** (ESI) (m/z) calculated for C₃₂H₃₂NO₅ [M+H]⁺: 510.2275, found: 510.2277.

dimethyl 2'-(3-methoxyphenyl)-5'-methyl-2-(prop-1-en-2-yl)spiro[cyclopentane-1,3'-indole]-4,4dicarboxylate (5j). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.79 (m, 2H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.20 (s, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 7.05 – 7.01 (m, 1H), 4.50 – 4.47 (m, 1H), 4.44 (s, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 3.74 (dd, *J* = 13.5, 6.0 Hz, 1H), 3.54 (d, *J* = 15.5 Hz, 1H), 3.12 (t, *J* = 13.7 Hz, 1H), 2.72 (dd, *J* = 13.8, 6.2 Hz, 1H), 2.68 (d, *J* = 15.6 Hz, 1H), 2.41 (s, 3H), 1.10 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.5, 173.3, 172.3, 159.8, 151.3, 144.2, 141.5, 135.7, 134.3, 129.6, 128.7, 124.0, 120.8, 120.7, 116.6, 113.4, 112.4, 66.8, 58.5, 55.5, 53.8, 53.4, 53.2, 42.2, 38.5, 21.9, 21.8. HRMS (ESI) (m/z) calculated for C₂₇H₃₀NO₅ [M+H]⁺: 448.2118, found: 448.2117.

dimethyl 5'-methoxy-2-(prop-1-en-2-yl)-2'-(m-tolyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (5k). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (s, 1H), 8.05 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 2.5 Hz, 1H), 6.90 (dd, *J* = 8.5, 2.5 Hz, 1H), 4.55 – 4.47 (m, 2H), 3.92 – 3.80 (m, 9H), 3.77 (dd, *J* = 13.7, 6.2 Hz, 1H), 3.60 (d, *J* = 15.5 Hz, 1H), 3.16 (t, *J* = 13.8 Hz, 1H), 2.73 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.66 (d, *J* = 15.5 Hz, 1H), 2.47 (s, 3H), 1.14 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.6, 173.3, 172.4, 158.3, 147.3, 145.6, 141.5, 138.4, 132.8, 131.2, 128.8, 128.5, 125.2, 121.3, 112.8, 112.4, 110.0, 67.1, 58.4, 55.7, 53.8, 53.3, 53.2, 42.3, 38.3, 21.8, 21.5. HRMS (ESI) (m/z) calculated for C₂₇H₃₀NO₅ [M+H]⁺: 448.2118, found: 448.2120.

2-(iodomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylic acid (6). Yellow soild. Mp: 149.1-151.3. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.22 – 8.17 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.56 – 7.51 (m, 2H), 7.48 – 7.41 (m, 2H), 7.32 (td, *J* = 7.5, 1.1 Hz, 1H), 3.40 (d, *J* = 15.4 Hz, 1H), 3.33 – 3.25 (m, 1H), 2.92 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.69 – 2.58 (m, 2H), 2.53 (d, *J* = 9.7 Hz, 1H), 2.36 (dd, *J* = 10.0, 5.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 179.0, 174.5, 172.9, 152.8, 142.4, 132.0, 131.8, 129.3, 129.0, 128.8, 128.7, 126.8, 123.5,
121.2, 67.0, 58.3, 51.0, 42.7, 41.4, 3.3. **HRMS** (ESI) (m/z) calculated for C₂₁H₁₉INO₄ [M+H]⁺: 476.0353, found: 476.0355.

diethyl 2-(iodomethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (7). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (q, *J* = 6.75, 3.06 Hz, 2H), 7.69 (d, *J* = 7.68 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.44 – 7.37 (m, 2H), 7.25 (t, *J* = 7.26 Hz, 1H), 4.38 – 4.24 (m, 4H), 3.65 (d, *J* = 15.59 Hz, 1H), 3.44 – 3.34 (m, 1H), 3.07 (dd, *J* = 14.08, 6.35 Hz, 1H), 2.81 – 2.71 (m, 2H), 2.42 (dd, *J* = 10.08, 4.07 Hz, 1H), 2.35 (t, *J* = 10.35 Hz, 1H), 1.33 (t, *J* = 7.03 Hz, 3H), 1.28 (t, *J* = 7.14 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 180.0, 174.0, 172.9, 155.2, 143.5, 133.6, 132.3, 130.2, 130.1, 129.8, 127.7, 124.3, 122.9, 68.5, 63.8, 63.6, 59.6, 52.3, 43.8, 42.7, 15.5, 15.5, 3.6. HRMS (ESI) (m/z) calculated for C₂₅H₂₇INO₄ [M+H]⁺: 532.0979, found: 532.0986.

dimethyl 2-((nitrooxy)methyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (8). White solid. Mp: 93.4-95.4°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (dd, J = 6.79, 3.06 Hz, 2H), 7.74 (d, J = 7.75 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.45 (d, J = 7.49 Hz, 2H), 7.28 (t, J = 7.51 Hz, 1H), 3.89 (s, 3H), 3.88 – 3.81 (m, 4H), 3.77 – 3.64 (m, 2H), 3.44 – 3.31 (m, 1H), 2.88 (d, J = 10.30 Hz, 2H), 2.70 (d, J = 15.53 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 178.3, 172.8, 171.8, 153.6, 142.0, 132.0, 131.1, 129.0, 128.9, 128.4, 126.5, 122.6, 121.8, 72.0, 65.5, 59.3, 53.6, 53.4, 45.1, 41.6, 38.1. HRMS (ESI) (m/z) calculated for C₂₃H₂₃N₂O₇ [M+H]⁺: 439.1500, found: 439.1500.

dimethyl 2'-phenyl-2-((tosyloxy)methyl)spiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (9). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 – 7.97 (m, 2H), 7.55 (d, *J* = 7.71 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.35 – 7.31 (m, 2H), 7.28 (td, *J* = 7.60, 1.13 Hz, 1H), 7.23 (d, *J* = 7.45 Hz, 1H), 7.11 (dd, *J* = 7.45, 1.08 Hz, 1H), 7.08 (d, *J* = 8.08 Hz, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 3.50 (d, *J* = 15.61 Hz, 1H), 3.48 – 3.41 (m, 1H), 3.27 – 3.16 (m, 2H), 2.75 – 2.62 (m, 2H), 2.52 (d, *J* = 15.62 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 178.7, 172.8, 171.8, 153.4, 144.7, 141.9, 132.2, 132.2, 130.8, 129.7, 128.7, 128.6, 128.4, 127.6, 126.2, 122.6, 121.6, 68.8, 65.4, 59.0, 53.5, 53.3, 46.5, 41.9, 37.8, 21.6. HRMS (ESI) (m/z): calculated for C₃₀H₃₀NO₇S [M+H]⁺: 548.1737, found: 548.1738.

dimethyl 2-(acetoxymethyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (10). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (ddd, J = 6.07, 2.96, 1.31 Hz, 2H), 7.70 (d, J = 7.67 Hz, 1H), 7.52 (ddd, J = 6.80, 2.99, 1.32 Hz, 3H), 7.44 – 7.39 (m, 2H), 7.29 – 7.24 (m, 1H), 3.88 (d, J = 1.26 Hz, 3H), 3.82 (d, J = 1.24 Hz, 3H), 3.79 (d, J = 1.26 Hz, 1H), 3.76 (dt, J = 6.31, 4.75 Hz, 1H), 3.61 (dd, J = 15.53, 1.26 Hz, 1H), 3.45 – 3.35 (m, 2H), 2.84 – 2.75 (m, 1H), 2.68 (dd, J = 15.52, 1.28 Hz, 1H), 1.72 (d, J = 1.26 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 178.6, 172.6, 171.5, 169.8, 153.3, 142.1, 132.1, 130.2, 128.4, 128.2, 128.1, 127.9, 127.6, 125.7, 122.3, 120.9, 65.3, 62.8, 58.7, 53.0, 52.8, 46.2, 41.5, 37.3, 19.8. HRMS (ESI) (m/z): calculated for C₂₅H₂₆NO₆ [M+H]⁺: 436.1755, found: 436.1765.

dimethyl 2-((2-phenoxyacetoxy)methyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (11). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (dd, J = 6.78, 3.04 Hz, 2H), 7.73 (d, J = 7.68 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.43 (t, J = 7.56 Hz, 2H), 7.32 – 7.21 (m, 3H), 6.98 (t, J = 7.32 Hz, 1H), 6.72 (d, J = 8.13 Hz, 2H), 4.35 – 4.19 (m, 2H), 3.96 – 3.79 (m, 7H), 3.63 (d, J = 15.55 Hz, 1H), 3.55 – 3.41 (m, 2H), 2.83 (t, J = 13.34 Hz, 1H), 2.77 – 2.67 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.0, 173.0, 171.9, 168.1, 157.6, 142.4, 132.4, 130.9, 129.5, 128.9, 128.7, 128.4, 126.3, 122.8, 121.6, 121.5, 114.5, 65.7, 64.5, 64.0, 59.1, 53.5, 53.4, 46.9, 42.0, 37.5. HRMS (ESI) (m/z): calculated for C₃₁H₃₀NO₇ [M+H]⁺: 528.2017, found: 528.2027.

dimethyl 2-((((R)-4-((3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)oxy)methyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (12). White solid. Mp: 90.5-92.5°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (dd, J = 5.33, 2.56 Hz, 2H), 7.68 (d, J = 7.42 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.42 – 7.35 (m, 2H), 7.23 (t, J = 7.57 Hz, 1H), 3.88 – 3.74 (m, 8H), 3.57 (dd, J = 15.55, 3.07 Hz, 1H), 3.49 – 3.36 (m, 3H), 3.37 – 3.31 (m, 1H), 2.82 – 2.71 (m, 1H), 2.67 (d, J = 15.53 Hz, 1H), 2.52 – 2.42 (m, 1H), 2.21 (q, J = 12.52 Hz, 1H), 1.99 – 1.89 (m, 4H), 1.85 – 1.77 (m, 4H), 1.73 – 1.64 (m, 2H), 1.64 – 1.57 (m, 1H), 1.52 – 1.42 (m, 5H), 1.40 – 1.30 (m, 3H), 1.25 (dd, J = 11.99, 4.69 Hz, 2H), 1.19 – 1.12 (m, 1H), 1.06 (ddd, J = 21.93, 12.02, 5.83 Hz, 3H), 0.97 (td, J = 14.38, 13.98, 3.36 Hz, 1H), 0.89 (s, 3H), 0.84 – 0.78 (m, 3H), 0.60 (d, J = 3.17

Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 179.1, 176.2, 174.9, 173.5, 173.0, 172.0, 153.7, 143.9, 142.6, 132.5, 130.7, 128.9, 128.7, 128.7, 128.5, 128.4, 128.3, 128.3, 128.2, 126.1, 123.0, 122.8, 121.4, 121.1, 72.0, 68.5, 65.8, 63.2, 59.2, 55.8, 55.7, 53.4, 53.3, 52.2, 50.4, 46.9, 43.3, 42.6, 42.1, 41.5, 39.9, 39.6, 39.4, 37.7, 35.4, 35.2, 35.1, 34.6, 34.6, 32.8, 30.7, 30.5, 30.5, 30.5, 28.1, 23.7, 22.8, 20.6, 18.2, 18.2, 11.8. HRMS (ESI) (m/z): calculated for C₄₇H₆₂NO₈ [M+H]⁺: 768.4470, found: 768.4477.

dimethyl 2-((((R)-2-(6-methoxynaphthalen-2-yl)propanoyl)oxy)methyl)-2'-phenylspiro[cyclopentane-1,3'indole]-4,4-dicarboxylate (13). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.29 – 7.99 (m, 2H), 7.73 – 7.61 (m, 1H), 7.61 – 7.43 (m, 6H), 7.40 – 7.28 (m, 2H), 7.22 (ddd, J = 26.72, 7.53, 1.18 Hz, 1H), 7.15 – 7.05 (m, 3H), 3.89 (s, 4H), 3.83 – 3.66 (m, 6H), 3.57 – 2.88 (m, 4H), 2.81 – 2.15 (m, 3H), 1.28 (dd, J = 45.62, 7.22 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 179.0, 178.4, 173.5, 173.4, 172.6, 172.5, 171.5, 171.5, 157.1, 153.2, 142.1, 141.9, 134.9, 134.7, 133.2, 133.1, 132.2, 132.0, 130.3, 130.2, 128.9, 128.8, 128.4, 128.4, 128.3, 128.3, 128.1, 128.0, 127.8, 126.5, 125.8, 125.7, 125.7, 125.6, 125.5, 125.4, 122.4, 122.3, 121.0, 120.9, 118.4, 118.4, 105.0, 65.3, 65.3, 63.3, 63.3, 58.6, 58.6, 54.9, 53.0, 52.9, 52.8, 46.4, 46.1, 44.6, 44.2, 41.8, 41.6, 37.2, 37.1, 17.6, 17.6. HRMS (ESI) (m/z): calculated for C₃₇H₃₆NO₇ [M+H]⁺: 606.2486, found: 606.2488.

dimethyl 2-(((2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoyl)oxy)methyl)-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (14). White solid. Mp: 110.4-112.4°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 – 8.18 (m, 2H), 7.67 (dd, *J* = 18.85, 7.65 Hz, 1H), 7.55 – 7.47 (m, 3H), 7.41 – 7.33 (m, 2H), 7.28 – 7.20 (m, 1H), 7.01 – 6.94 (m, 3H), 6.90 (d, *J* = 7.85 Hz, 1H), 3.90 – 3.76 (m, 7H), 3.58 – 3.48 (m, 1H), 3.46 – 3.40 (m, 1H), 3.37 – 3.21 (m, 2H), 3.07 (dt, *J* = 13.45, 3.06 Hz, 1H), 2.81 – 2.62 (m, 3H), 2.50 – 2.40 (m, 1H), 2.37 – 2.25 (m, 2H), 2.16 – 2.00 (m, 2H), 1.98 – 1.90 (m, 1H), 1.79 – 1.66 (m, 1H), 1.58 – 1.44 (m, 1H), 1.29 – 1.19 (m, 2H), 1.15 (d, *J* = 7.12 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 220.3, 179.3, 178.8, 173.9, 173.8, 173.1, 173.0, 171.9, 171.9, 153.7, 142.6, 142.4, 138.7, 138.7, 138.0, 137.8, 132.4, 130.7, 130.6, 128.9, 128.8, 128.7, 128.6, 128.5, 128.2, 127.5, 126.2, 126.1, 122.8, 122.8, 121.4, 121.3, 65.8, 65.7, 63.7, 63.6, 59.1, 59.0, 53.5, 53.4, 53.3, 51.0, 46.9, 46.6, 44.7, 44.3, 42.2, 42.1, 38.2, 37.6, 37.6, 35.2, 29.2, 20.5, 17.9. HRMS (ESI) (m/z): calculated for C₃₈H₄₀NO₇ [M+H]⁺: 622.2799, found: 622.2798.

dimethyl 2-((2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)methyl)-2'-phenylspiro[cyclopentane-1,3'indole]-4,4-dicarboxylate (15). Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 – 8.26 (m, 2H), 7.67 (d, *J* = 7.68 Hz, 1H), 7.47 (dd, *J* = 8.36, 6.98 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.35 – 7.28 (m, 3H), 7.26 – 7.19 (m, 1H), 7.04 (td, *J* = 7.68, 1.59 Hz, 1H), 6.99 – 6.92 (m, 2H), 6.84 (td, *J* = 7.43, 1.26 Hz, 1H), 6.47 (s, 1H), 6.42 (d, *J* = 8.04 Hz, 1H), 3.86 (s, 4H), 3.80 (s, 3H), 3.61 (d, *J* = 15.61 Hz, 1H), 3.55 – 3.45 (m, 3H), 3.40 (d, *J* = 14.68 Hz, 1H), 2.82 (t, *J* = 13.37 Hz, 1H), 2.71 (dd, *J* = 14.06, 6.36 Hz, 1H), 2.67 (d, *J* = 15.61 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 178.6, 172.6, 171.5, 171.1, 142.2, 137.3, 130.4, 130.3, 129.2, 128.3, 128.3, 128.2, 128.0, 127.4, 125.8, 123.5, 123.4, 122.3, 121.4, 121.0, 117.5, 65.3, 63.7, 58.7, 53.1, 52.9, 46.3, 41.7, 37.3, 37.0. HRMS (ESI) (m/z): calculated for C₃₇H₃₃Cl₂N₂O₆ [M+H]⁺: 671.1710, found: 671.1717.

dimethyl 2-acetyl-2'-phenylspiro[cyclopentane-1,3'-indole]-4,4-dicarboxylate (16). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 – 8.26 (m, 2H), 7.71 (dd, *J* = 7.9, 2.2 Hz, 1H), 7.57 (q, *J* = 2.8 Hz, 3H), 7.45 – 7.38 (m, 1H), 7.34 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.21 (m, 1H), 4.1 – 4.0 (m, 1H), 3.88 (d, *J* = 2.0 Hz, 3H), 3.83 (d, *J* = 2.2 Hz, 3H), 3.47 (dd, *J* = 15.5, 2.2 Hz, 1H), 3.4 – 3.3 (m, 1H), 2.9 – 2.8 (m, 2H), 1.41 (d, *J* = 2.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 203.6, 178.5, 173.3, 171.7, 153.0, 142.6, 131.9, 131.2, 129.0, 128.8, 128.3, 126.8, 122.9, 121.4, 64.8, 60.4, 58.2, 53.5, 53.3, 42.7, 36.2, 28.6. HRMS (ESI) (m/z) calculated for C₂₄H₂₄NO₅ [M+H]⁺: 406.1649, found: 406.1645.

12. References

- 1 A. B. Rolka and B. Koenig, Org. Lett., 2020, 22, 5035–5040.
- 2 M. Zhu, K. Zhou, X. Zhang and S. L. You, Org. Lett., 2018, 20, 4379–4383.

13. Characterization spectra of 2a-2y, 3a-3g, 5a-5k and 6-16.

2a (major), ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

2a (minor), ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

2b, ¹H NMR (500 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

2c, ¹**H NMR** (400 MHz, Chloroform-*d*) **and** ¹³**C NMR** (100 MHz, Chloroform-*d*)

2d, ¹H NMR (500 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

2e, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

2f, ¹H NMR (500 MHz, DMSO-d₆) and ¹³C NMR (125 MHz, DMSO-d₆)

2g, ¹H NMR (500 MHz, DMSO-*d*₆) and ¹³C NMR (125 MHz, DMSO-*d*₆)

2h, ¹H NMR (400 MHz, Chloroform-d) ad ¹³C NMR (100 MHz, Chloroform-d)

2i, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

2j, ¹H NMR (600 MHz, DMSO-d₆) and ¹³C NMR (150 MHz, DMSO-d₆)

2k, ¹H NMR (500 MHz, DMSO-d₆) and ¹³C NMR (125 MHz, DMSO-d₆)

2l, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (150 MHz, Chloroform-*d*)

2m, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

2n, ¹**H NMR** (600 MHz, Chloroform-*d*) **and** ¹³**C NMR** (125 MHz, Chloroform-*d*)

20, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

2p, ¹H NMR (400 MHz, DMSO-d₆) and ¹³C NMR (150 MHz, DMSO-d₆)

2q, ¹H NMR (500 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

2r, ¹H NMR (500 MHz, DMSO-*d*₆) and ¹³C NMR (125 MHz, DMSO-*d*₆)

2s, ¹H NMR (500 MHz, DMSO-d₆) and ¹³C NMR (125 MHz, DMSO-d₆)

2t, ¹H NMR (500 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

2u, ¹H NMR (500 MHz, DMSO-*d*₆) and ¹³C NMR (125 MHz, DMSO-*d*₆)

2v, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

2w, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

2x, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (100 MHz, Chloroform-*d*)

2y, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

3a, ¹**H NMR** (600 MHz, Chloroform-*d*) **and** ¹³**C NMR** (125 MHz, Chloroform-*d*)

3b, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

3c, ¹**H NMR** (600 MHz, Chloroform-d) **and** ¹³**C NMR** (150 MHz, Chloroform-*d*)

3d, ¹**H NMR** (400 MHz, Chloroform-*d*) **and** ¹³**C NMR** (125 MHz, Chloroform-*d*)

3e, ¹**H NMR** (600 MHz, Chloroform-*d*) **and** ¹³**C NMR** (125 MHz, Chloroform-*d*)

3f, ¹**H NMR** (400 MHz, Chloroform-d) and ¹³**C NMR** (100 MHz, Chloroform-*d*)

3g, ¹**H NMR** (400 MHz, Chloroform-d) and ¹³**C NMR** (100 MHz, Chloroform-*d*)

5a, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

5b, ¹**H NMR** (400 MHz, Chloroform-*d*) **and** ¹³**C NMR** (100 MHz, Chloroform-*d*)

5c, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

5d, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (150 MHz, Chloroform-*d*)

5e, ¹H NMR (400 MHz, Chloroform-*d*) and ¹³C NMR (100 MHz, Chloroform-*d*)

5f, ¹H NMR (400 MHz, Chloroform-*d*) and ¹³C NMR (100 MHz, Chloroform-*d*)

5g, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (100 MHz, Chloroform-*d*)

5h, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

5i, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

5j, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

5k, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

6, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

7, ¹H NMR (400 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

8, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (150 MHz, Chloroform-d)

9, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

10, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (125 MHz, Chloroform-d)

12, ¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (125 MHz, Chloroform-*d*)

Formula Calcula	ator Results				
m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
768.4477	768.447	-0.74	-0.96	C47 H62 N O8	(M+H)+

--- End Of Report ---

13, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (150 MHz, Chloroform-d)

m/z Ca	alc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
606.2488	606.2486	-0.12	-0.2	C37 H36 N O7	(M+H)+

---- End Of Report ----

14, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

623.2834

Ion Formula

0.28 C38 H40 N O7

624.2868

Counts vs. Mass-to-Charge (m/z)

625.2889

Ion

(M+H)+

628.1938

622 623 624 625 626 627 628 629 630 631 632 633 634

 Formula Calculator Results

 m/z
 Calc m/z
 Diff (mDa)

 622.2798
 622.2799
 622.2799

615 616 617 618 619 620 621

Diff (ppm)

0.17

--- End Of Report ---

2-1.75-1.5-1.25-

1 · 0.75 · 0.5 ·

0.25

0-

15, ¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (150 MHz, Chloroform-d)

Sample Name Position E5IH202104229.d Data Filename B6-WXH-100-8 Sample ID P1-A6 Instrument Name Agilent G6520 Q-TOF Acq Method 20160322_M5_ESIH_PO5_1min.m Acquired Time 9/14/2021 19:37:48 IRM Calibration Status ESIH by zhuzhenyun DA Method small molecular data analysis method.m Comment User Spectra Fragmentor Voltage 175 Collision Energy Ionization Mode 0 ESI x10 6 + Scan (rt: 0.236-0.244 min, 2 scans) ESIH202104229.d 1.1 671.1717 1 0.9 0.8 673.1703

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
671.1717	671.171	-0.73	-1.09	C37 H33 Cl2 N2 O6	(M+H)+

--- End Of Report ---

16, ¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (100 MHz, Chloroform-d)

14. X-Ray structures and data

Sample preparation of **2a** and **5a**

Compound **2a** or **5a** (100mg) was dissolved in 5 mL DCM/MeOH (V/V= 2:1), and the solvent was slowly volatilized at temperature. The crystal of compound **2a** or **5a** was obtained after 24 h.

Figure S2: Crystal structure of compound 2a (major) (CCDC: 2091594)

Table S3. Crystal data and structure refinement for compound 2a (ma	jor)
---	------

Identification code	mo_22020577_0m
Empirical formula	C23H22INO4
Formula weight	503.31
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21/c
a/Å	15.4121(6)
b/Å	8.5604(3)
c/Å	15.8404(6)
α/°	90

β/°	98.3650(10)
γ/°	90
Volume/Å ³	2067.65(13)
Z	4
ρcalcg/cm ³	1.617
μ/mm-1	1.578
F(000)	1008.0
Crystal size/mm ³	$0.15 \times 0.11 \times 0.04$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.422 to 52.758
Index ranges	$-19 \le h \le 19, -10 \le k \le 10, -19 \le l \le 19$
Reflections collected	14064
Independent reflections	4138 [Rint = 0.0309, Rsigma = 0.0300]
Data/restraints/parameters	4138/0/264
Goodness-of-fit on F ²	1.064
Final R indexes [I>=2σ (I)]	R1 = 0.0219, wR2 = 0.0504
Final R indexes [all data]	R1 = 0.0244, wR2 = 0.0524
Largest diff. peak/hole / e $Å^{-3}$	0.40/-0.44

Figure S3: Crystal structure of compound 2a (minor) (CCDC: 2096977)

Table S4. Crystal dat	a and structure refinement f	for compound 2a (minor)
-----------------------	------------------------------	-------------------------

Identification code	mo_22020594_0m
Empirical formula	C23H22INO4
Formula weight	503.31
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21/c
a/Å	8.0055(2)
b/Å	15.3728(5)
c/Å	17.6184(4)
α / °	90
β/°	101.5710(10)
γ/°	90

Volume/Å ³	2124.18(10)
Z	4
ρ calcg/cm ³	1.574
μ / mm-1	1.536
F(000)	1008.0
Crystal size/mm ³	$0.15 \times 0.08 \times 0.05$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.72 to 52.78
Index ranges	$-8 \leq h \leq 10, -19 \leq k \leq 15, -22 \leq l \leq 20$
Reflections collected	14703
Independent reflections	4305 [Rint = 0.0285, Rsigma = 0.0308]
Data/restraints/parameters	4305/0/273
Goodness-of-fit on F ²	1.040
Final R indexes [I>=2σ (I)]	R1 = 0.0434, wR2 =0.1082
Final R indexes [all data]	R1 = 0.0534, wR2 = 0.1176

Figure S4: Crystal structure of compound 5a (CCDC: 2091597)

Table 55. Crystal data and structure remember for compound 56	Table S5.	Crystal da	ta and s	tructure	refinement	for a	compound	5a
---	-----------	------------	----------	----------	------------	-------	----------	----

Identification code	2021600B6_0m
Empirical formula	C25H25NO4
Formula weight	403.46
Temperature/K	170
Crystal system	monoclinic
Space group	P21/n
a/Å	9.216(5)
b/Å	21.035(10)
c/Å	10.878(6)
a/°	90
β/°	98.207(19)
γ/°	90
Volume/Å ³	2087.3(19)

Z	4
ρcalcg/cm ³	1.284
μ/mm-1	0.087
F(000)	856.0
Crystal size/mm ³	$0.12 \times 0.06 \times 0.03$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.872 to 53.104
Index ranges	$-11 \le h \le 10, -26 \le k \le 24, -13 \le l \le 13$
Reflections collected	15977
Independent reflections	4292 [Rint = 0.0859, Rsigma = 0.0859]
Data/restraints/parameters	4292/0/274
Goodness-of-fit on F ²	1.007
Final R indexes [I>=2σ (I)]	R1 = 0.0664, wR2 = 0.1388
Final R indexes [all data]	R1 = 0.1381, wR2 = 0.1799
Largest diff. peak/hole / e Å $^{-3}$	0.62/-0.21