Supporting Information

Synergistic copper/ppm Pd-catalyzed hydrocarboxylation of alkynes with formic acid as CO surrogate as well as hydrogen source: an alternative indirect utilization of CO₂

Shu-Mei Xia, Zhi-Wen Yang, Xiang-Yang Yao, Kai-Hong Chen, Li-Qi Qiu, and Liang-Nian He*

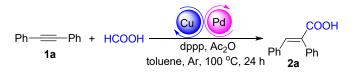
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai

University, Tianjin 300071, P. R. China.

Table of Contents

1. General information	S3
2. General procedure of the hydrocarboxylation of alkynes	S4
3. Investigation of the key reaction parameters	S5
4. General procedure for the gram-scale reactions	S6
5. The effect of cooperative catalysis on the release of CO	S7
6. Control experiments	S8
7. ³¹ P NMR investigation.	S12
8. DFT Caculations	S14
9. Hydride species detecting experiment	S15
10. Another possible mechanism	S16
11. Analytical data of the hydrocarboxylation products	S17
12. References	S56

1. General Information

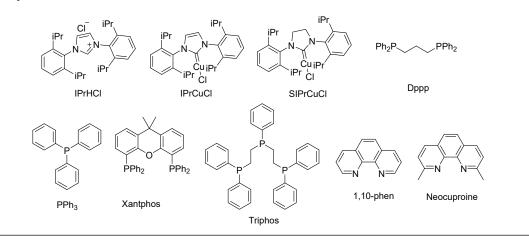

A. Materials:

Unless otherwise noted, all reagents were purchased from commercial sources and used as received. All the solvents used for reactions were distilled under argon after drying over an appropriate drying agent. All reactions were conducted in oven-dried glassware under argon atmosphere (purity \geq 99.99%). Alkyne compounds were prepared according to literature procedure. DCOOD (99%-D) were purchased from Cambridge Isotope Laboratories and Innochem.

B. Analytical Methods:

¹H-NMR spectra were recorded on Bruker 400 MHz or 600 MHz spectrometer using CDCl₃ (7.26 ppm), DMSO (2.50 ppm, 3.33 ppm of water peak), or Acetone (2.09 ppm) as solvent at ambient temperature. Data for ¹H-NMR are reported as follows: chemical shift (ppm, scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiplet resonances, br = broad), coupling constant (Hz), and integration. ¹³C-NMR spectra were recorded at 100.6 MHz in CDCl₃ using CDCl₃ (77.16 ppm) or DMSO-*d*₆ (40.45 ppm), Acetone (29.92, 206.68 ppm) as an internal reference. Data for ¹³C-NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constants (Hz). Gaseous product CO was analyzed by gas chromatograph FULI 9790 equipped with thermal conductivity detector (TCD) with Ar as carrier gas, and the column oven was maintained at 70 °C for the duration of the analysis. High resolution mass spectral analysis (HRMS) was performed on a Varian 7.0 T FTICR-MS by ESI technique. Infrared (IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectrophotometer with KBr pellets.

2. General procedure for the hydrocarboxylation of alkynes



In an argon gas filled glove box, to an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with $Pd_2(dba)_3$ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%) and dry toluene (1 mL). The resulting mixture was stirred at room temperature for 15 minutes. Alkyne substrate (0.5 mmol), formic acid (50 μ L, 2.7 equiv.), and Ac₂O (60 μ L, 1.2 equiv.) were added subsequently and heated at 100 °C (oil bath) for 24 or 36 h. After the reaction mixture was cooled to room temperature, the yield of product was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. To obtain pure products, the mixture was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1 to 2/1). Then the products were determined by NMR and HRMS (ESI).


3. Investigation of the key reaction parameters

	F	PhPh + H 1a	AC	2O, ligand 100 °C, 24	→ /=<	ЮОН h	
entry	[Pd]/ (x ppm)	[Cu]/ (y mol%)	ligand	L/Cu	solvent	T (°C)	2a/yield/%
1	-	CuCl (10)	dppp	1	toluene	100	0
2	-	$Cu_2(CO_3)_2(OH)_2$ (10)	dppp	1	toluene	100	0
3	-	SIPrCuCl (10)	dppp	1	toluene	100	0
4	-	IPrCuCl (10)	dppp	1	toluene	100	0
5	Pd(OAc) ₂ (200)	CuCl ₂ (10)	dppp	1	toluene	100	0
6	Pd(OAc) ₂ (200)	CuCl (10)	dppp	1	toluene	100	73
7	$Pd(OAc)_2(200)$	Cu ₂ (CO ₃) ₂ (OH) ₂ (10)	dppp	1	toluene	100	30
8	$Pd(OAc)_2$ (200)	SIPrCuCl (10)	dppp	1	toluene	100	85
9	Pd(OAc) ₂ (200)	IPrCuCl (10)	dppp	1	toluene	100	93
10	$Pd(OAc)_2$ (200)	IPrCuCl (10)	PPh ₃	2	toluene	100	13
11	Pd(OAc) ₂ (200)	IPrCuCl (10)	Xantphos	1	toluene	100	89
12	$Pd(OAc)_2$ (200)	IPrCuCl (10)	Triphos	1	toluene	100	Trace
13	$Pd(OAc)_2$ (200)	IPrCuCl (10)	1,10-Phen	1	toluene	100	Trace
14	$Pd(OAc)_2$ (200)	IPrCuCl (10)	Xantphos	1	toluene	100	Trace
15	Pd(OAc) ₂ (200)	IPrCuCl (10)	Neocuproine	1	toluene	100	Trace
16	$Pd(OAc)_{2}(50)$	IPrCuCl (10)	dppp	1	toluene	100	89
17	$Pd(OAc)_2$ (20)	IPrCuCl (10)	dppp	1	toluene	100	72
18	$Pd(OAc)_{2}$ (50)	IPrCuCl (5)	dppp	1	toluene	100	29
19	$Pd(OAc)_2(50)$	IPrCuCl (15)	dppp	1	toluene	100	93
20	Pd2(dba)3 (50)	IPrCuCl (15)	dppp	1	toluene	100	95
21	$Pd(PPh_{3})_{4}$ (50)	IPrCuCl (15)	dppp	1	toluene	100	90
22	Pd/C (50)	IPrCuCl (15)	dppp	1	toluene	100	83
23	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	0.6	toluene	100	24
24	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	0.2	toluene	100	6
25	Pd2(dba)3 (50)	IPrCuCl (15)	dppp	50ppm	toluene	100	Trace
26	$Pd_2(dba)_3$ (50)	IPrCuCl (15)	dppp	-	toluene	100	0
27	-	IPrCuCl (15)	dppp		toluene	100	0
28	Pd2(dba)3 (50)	-	dppp	-	toluene	100	31
29	Pd2(dba)3 (50)	IPrCuCl (15)	dppp	1	<i>p</i> -xylene	100	90
30	Pd2(dba)3 (50)	IPrCuCl (15)	dppp	1	<i>m</i> -xylene	100	86
31	Pd2(dba)3 (50)	IPrCuCl (15)	dppp	1	DMF	100	0
32	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	1	THF	100	0
33	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	1	MeOH	100	0
34	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	1	1,4- dioxane	100	90
35	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	1	H ₂ O	100	trace
36	Pd ₂ (dba) ₃ (50)	IPrCuCl (15)	dppp	1	toluene	110	89
37	$Pd_2(dba)_3(50)$	IPrCuCl (15)	dppp	1	toluene	80	86

^{*a*} Reaction conditions: diphenylacetylene **1a** (0.5 mmol), [Pd] (x ppm), [Cu] (y mol%), L (x equiv. relative to y mol% of IPrCuCl), HCOOH (50 μL, 2.7 equiv.), Ac₂O (60 μL, 1.2 equiv.), toluene (1 mL) at t °C for 24 h under an argon atmosphere. ^{*b*} Yields were determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

4. General procedure for the gram-scale reactions.

In a argon gas filled glove box, to an oven-dried 135 mL screw-cap reaction flask equipped with a stir bar was charged with Pd₂(dba)₃ (100 ppm, 100 μ L of the palladium solution (5 mM in toluene)), IPrCuCl (365.6 mg, 15 mol%), dppp (309.3 mg, 15 mol%) and dry toluene (25 mL). The mixture was stirred at room temperature for 15 minutes. Then diphenylacetylene (891.2 mg, 5 mmol), formic acid (509 μ L, 13.5 mmol) and Ac₂O (567 μ L, 6 mmol) were added through the injection port. The reaction mixture was stirred at 100 °C. After 24 h or 36 h the pressure flask was cooled to the room temperature. The reaction mixture was transferred to a round bottom flask and the solvent was evaporated in vacuo. The ¹H NMR yields were determined with 1,3,5-trimethoxybenzene as internal standard and the ratio of α and β were determined by ¹H NMR. Subsequently, the residue was purified with silica gel chromatography using petroleum ether/EtOAc (50/1 to 5/1, v/v) as an eluent, giving the white solid product.

5. The effect of cooperative catalysis on the release of CO

In an argon gas filled glove box, an oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with $Pd_2(dba)_3$ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%) and dry toluene (1 mL). The resulting mixture was stirred at room temperature for 15 minutes. Then formic acid (50 μ L, 2.7 equiv.), and Ac₂O (60 μ L, 1.2 equiv.) were added subsequently and then CH₄ (1 mL) as an internal standard was added to the reaction system through the injection port. The reaction mixture was heated at 100 °C (oil bath) for t minutes. After the reaction mixture was cooled to room temperature, the mixed gas in tube was detected by GC to give the mount of CO (Table S1).

t/min	2	20	40	60	80	100		
CO/µmol ^c	18.15	18.77	23.33	29.76	92.95	91.95		
t/min	1	2	3	4	5	10	15	20
CO/µmol ^d	119.80	222.94	318.21	453.17	511.07	635.48	699.67	725.59
t/min	0.5	1	1.5	2	5	10	15	20
CO/µmol ^e	14.55	47.52	219.10	301.43	426.37	530.42	533.43	534.43
t/min	2	5	10	15	2	0		
CO/µmol ^f	0	0	0	0	0			

Table S1. The amount of CO produced under different catalytic systems. *a,b*

^aReaction conditions: $Pd_2(dba)_3$ (50 ppm), IPrCuCl (15 mol%), dppp (15 mol%), HCOOH (50 μ L, 2.7 equiv.), Ac₂O (60 μ L 1.2 equiv.), toluene (1 mL), 100 °C, t min. ^bThe mount of gas was determined by GC using CH₄ (1 mL) as internal standard. ^cno catalysts. ^d Pd₂(dba)₃ (50 ppm), IPrCuCl (15 mol%), dppp (15 mol%). ^eno IPrCuCl. ^fno Ac₂O.

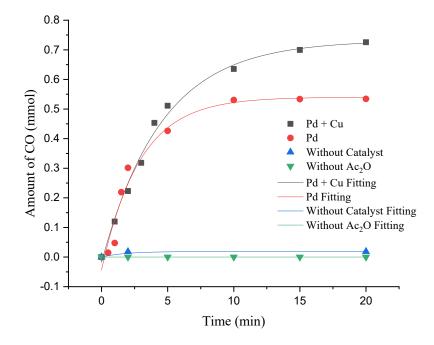
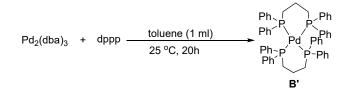



Fig. S1 The effect of cooperative catalysis on the release of CO.

6. Control Experiments

6.1 The coordination model of Pd₂(dba)₃ with dppp

A Schlenk tube with a magnetic stir bar was charged with $Pd_2(dba)_3$ (46 mg, 0.05 mmol), dppp (41.2 mg, 0.1 mmol) and dry toluene (1 mL). Then the reaction allows to stir at 25 °C for 12 h. Removal of volatiles under vacuum and 0.5 mL hexane and 0.5 mL toluene was added and standing the mixture at -20 °C, crystals suitable for X-ray crystallography was obtained and gave analytically pure product **B'**. The complex **B'** was then conducted for the hydrocarboxylation of alkynes under otherwise identical conditions in the absence of $Pd_2(dba)_3$ and dppp. Subsequently, the reaction solution was purified with silica gel chromatography using petroleum ether/EtOAc (50/1 to 5/1, v/v) as an eluent, giving the white solid product in 78%.

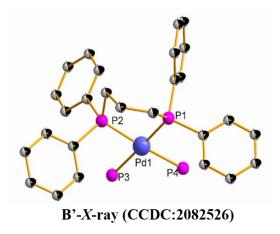
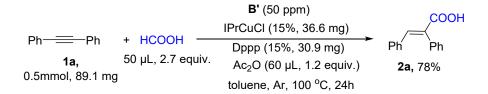
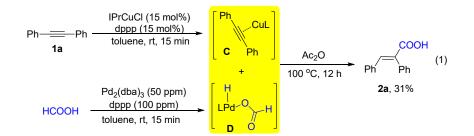
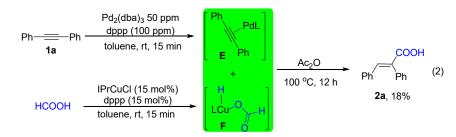
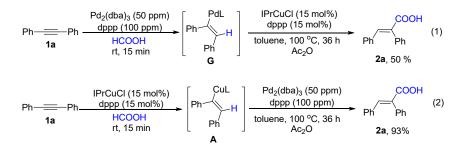




Fig. S2 Molecular structure of palladium complex B'. H atoms are omitted for clarity.



6.2 Separate Experiments


(1) In a argon-filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%), diphenylacetylene (89.1 mg, 0.5 mmol) and dry toluene (1 mL) at room temperature for about 15 min; Meanwhile, $Pd_2(dba)_3$ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), dppp (100 ppm, 50 μ L of the dppp solution (1 mM in toluene)), formic acid (50 μ L, 2.7 equiv.) were stirred in toluene (1 mL) in a Schlenk flask at room temperature for 15 min. The Pd complex solution and Ac₂O (60 μ L, 1.2 equiv.) were then added into the screw-cap reaction tube equipped with Cu complex. Then the reaction was performed for 12 h at 100 °C. After the reaction was cooled down to room temperature, and the pressure was released carefully, the yield of **2a** determined by ¹HNMR analysis using 1,3,5-trimethoxybenzene as internal standard (eq1).

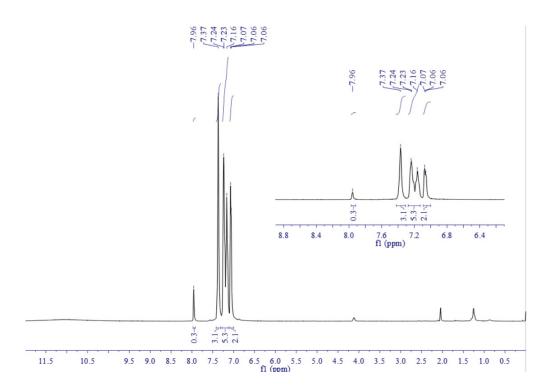
(2) In a argon-filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%), formic acid (50 μL, 2.7 equiv.), and Ac₂O (60 μL, 1.2 equiv.) and dry toluene (1 mL) at room temperature for about 15 min; Meanwhile, Pd₂(dba)₃ (50 ppm, 50 μL of the palladium solution (0.5 mM in toluene)), dppp (100 ppm, 50 μL of the dppp solution (1 mM in toluene)) diphenylacetylene (89.1 mg, 0.5 mmol) were stirred in toluene (1 mL) in a Schlenk flask at room temperature for 15 min. The Pd complex solution and Ac₂O (60 μL, 1.2 equiv.) were then added into the screw-cap reaction tube equipped with Cu complex. Then the reaction was performed for 12 h at 100 °C. After the reaction was cooled down to room temperature, and the pressure was released carefully, the yield of **2a** determined by ¹HNMR analysis using 1,3,5- trimethoxybenzene as internal standard (eq 2).

6.3 Study on key intermediates.

(1) In a argon-filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%), diphenylacetylene (89.1 mg, 0.5 mmol), HCOOH (50 μ L, 2.7 equiv.) and dry toluene (1.5 mL) at room temperature for 15 min. Then Pd₂(dba)₃ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), dppp (100 ppm, 50 μ L of the dppp solution (1 mM in toluene)) and Ac₂O (60 μ L, 1.2 equiv.) were added and the reaction was performed for 36 h at 100 °C. After the reaction was cooled down to room temperature, and the pressure was released carefully, 50% yield of **2a** was determined by ¹HNMR analysis using 1,3,5-trimethoxybenzene as internal standard (eq1).

(2) In a argon-filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with $Pd_2(dba)_3$ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), dppp (100 ppm, 50 μ L of the dppp solution (1 mM in toluene)), diphenylacetylene (89.1 mg, 0.5 mmol), HCOOH (50 μ L, 2.7 equiv.) and dry toluene (1 mL) at room temperature for 15 min. Then IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%) and Ac₂O (60 μ L, 1.2 equiv.) were added and the reaction was performed for 36 h at 100 °C. After the reaction was cooled down to room temperature, and the pressure was released carefully, 93% yield of **2a** was determined by ¹HNMR analysis using 1,3,5-trimethoxybenzene as internal standard (eq2).

6.4 D-labeling experiments under DCOOD.


In an argon gas filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with Pd₂(dba)₃ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), IPrCuCl (36.6 mg, 15 mol%), dppp (30.9 mg, 15 mol%) and dry toluene (1 mL). The resulting mixture was stirred at room temperature for 15 minutes. diphenylacetylene (0.5 mmol), DCOOD (50 μ L, 2.7 equiv.), and Ac₂O (60 μ L, 1.2 equiv.) were added subsequently and heated at 100 °C (oil bath) for 36 h. After the reaction mixture was cooled to room temperature, the mixture was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1 to 2/1) to give *d*-2a as a white solid (74.6 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 0.3H), 7.37 (s, 3H), 7.28 – 7.16 (m, 5H), 7.09 – 7.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 142.4, 135.3, 134.2, 131.5, 130.8, 129.7,

129.5, 128.7, 128.2, 128.0. HRMS (ESI) *calcd*. for (C₉H₁₆O₂-H): 155.1072, *found*: 155.1077. IR (KBr): 3500-2900 (br), 1673.3, 1612.9, 1448.3, 1417.2, 1325.8, 1264.6, 1185.3, 917.2, 770.6, 697.4, 600.0, 472.4, 435.3 cm⁻¹

Ph-----Ph + DCOOD **1a**, 0.5 mmol **1a**, 0.5 mmol **1b 1b 1b**

According to the ¹H NMR spectrum of D-labeling experiment, the hydrogen of the carboxyl group in the product is completely deuterated (100%) and the deuterium at the β -carbon to the carboxyl group was determined to be 46% by ¹H NMR, in which the relative ratio of non-labeled **2a** to D-labeled **2a** is 3:7.

The ¹H NMR chart of D-labeling experiment is given as bellow:

7. ³¹P NMR Investigation

(a) 0.1 mmol of dppp was dissolved in 0.5 ml of C_6D_6 in a NMR tube. The reaction was complete after standing the mixture at room temperature for 6 h as indicated from ³¹P NMR spectra. ³¹P NMR (160 MHz, C_6D_6): δ -17.74.

(b)

0.1 mmol of IPrCuCl and 0.1 mmol of dppp were dissolved in 0.5 mL of C_6D_6 in a NMR tube. The reaction was complete after standing the mixture at room temperature for 6 h as indicated from ³¹P NMR spectra. ³¹P NMR (160 MHz, C_6D_6): δ -13.68, -17.74.

(c)

$$Ph \longrightarrow Ph + IPrCuCl \xrightarrow{C_6D_6, 25 \text{ °C}, 20 \text{ h}} Ph \longrightarrow Ph \longrightarrow Ph (c)$$
1a, 0.06 mmol 0.06 mmol 0.06 mmol CuL

0.06 mmol of IPrCuCl, 0.06 mmol of dppp and 0.06 mmol diphenylacetylene **1a** were dissolved in 0.5 mL of C_6D_6 in a NMR tube. The reaction was complete after standing the mixture at room temperature for 6 h as indicated from ³¹P NMR spectra. ³¹P NMR (160 MHz, C_6D_6): δ -3.89, -13.66, -17.74.

(d)

$$Ph \longrightarrow Ph + AcOH + IPrCuCl \xrightarrow{C_6D_6, 25 \text{ °C}, 20 \text{ h}} \xrightarrow{Ph} \xrightarrow{Ph} (d)$$

$$1a, 0.06 \text{ mmol} \quad 0.3 \text{ mmol} \quad 0.06 \text{ mmol} \xrightarrow{0.06 \text{ mmol}} \xrightarrow{0.06 \text{ mmol}} \xrightarrow{OAc}$$

0.06 mmol of 1,2-diphenylethyne (**1a**), 0.06 mmol of IPrCuCl and 0.06 mmol of dppp were dissolved in 0.5 mL of C_6D_6 in NMR tube. 0.3 mmol of AcOH was then injected. The reaction was complete after standing the mixture at room temperature for 20 h and indicated by ³¹P NMR spectra. ³¹P NMR (160 MHz, C_6D_6): δ -4.22, -13.66.

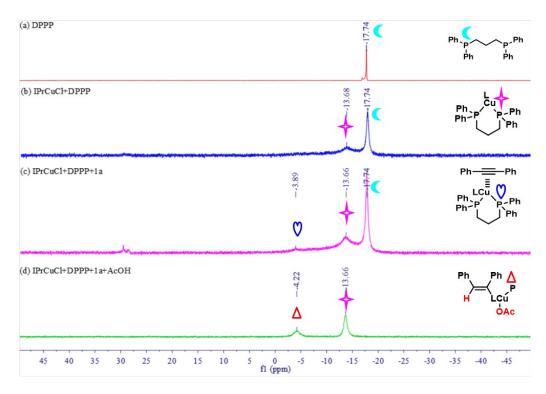
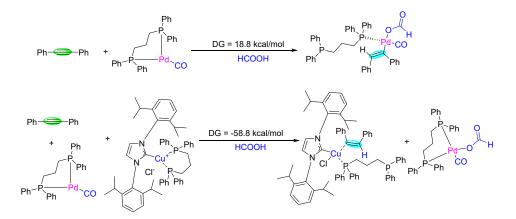



Fig. S3 ³¹P NMR investigation (161 MHz).

To further verify our hypothesis that the carbon-carbon triple bond of alkyne could be activated by the coordinate chelation of IPrCuCl with dppp,⁵ control experiments in the absence of Pd species were examined and monitored by ³¹P NMR technique. As depicted in Fig. S3, the ³¹P signal of dppp appeared at $\delta = -17.74$ ppm in accordance with the reported literature (Fig. S3a);^{5b,c} a broad signal emerged at $\delta = -13.68$ ppm when IPrCuCl reacted with dppp in C₆D₆ for 6 h, being assigned to the formation of [IPrCu(dppp)]Cl chelate complex **H**, locating in the range of copper (I) diphosphine complexes typically observed^{5a} (Fig. S3b). After the input of model substrate **1a**, IPrCuCl and dppp were consumed for 6 h at room temperature, and subsequently a characteristic ³¹P signal could be observed at -3.89 ppm, indicative of the possible intermediates between C=C bond and copper species (Fig. S3c). According to the reported literature,^{5f} the facile decomposition of alkenylmetal complex with HCOOH lead to poor detection, so acetic acid was added to the mixture of IPrCuCl and diphenylacetylene **1a** instead of formic acid (Fig. S3d), giving rise to one singlet at - 4.22 ppm, being attributed to the formation of the corresponding alkenyl copper complex **1a**'.

8. DFT Calculation

Theoretical calculations were performed with the Gaussian 09 program⁶. Geometry optimizations and frequency calculations were carried out at the DFT-D3(BJ) functional with B3LYP ⁷⁻¹⁰/LANL2DZ for Pd atom and 6-31G(d) for other atoms. Single point energy calculations for optimized structures were performed at DFT-D3(BJ) functional with def2-TZVP level and SMD(toluene)¹¹ solvation model was used to account for solvent effects.

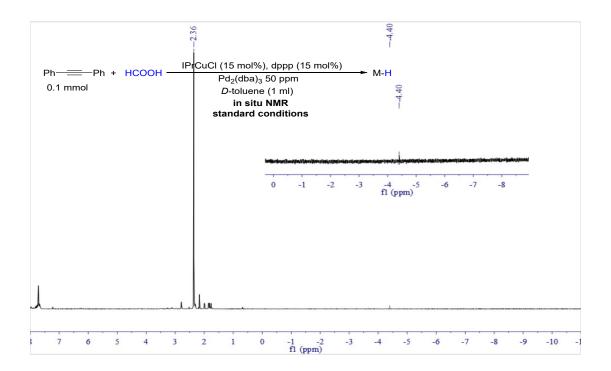
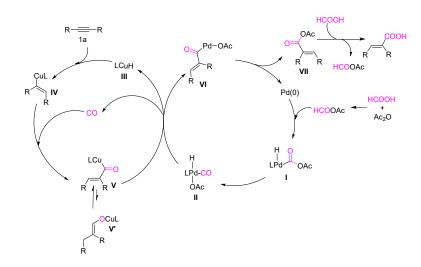
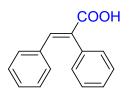


Fig. S4 DFT-D3(BJ) calculations on Cu/Pd (ppm) synergistic effects at SMD (toluene)-B3LYP/def2-TZVP//B3LYP/6-31G(d)+LANL2DZ(Pd) level.

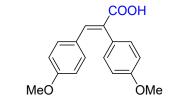

9. Hydride Species Detecting Experiment

In a argon gas filled glove box, an oven-dried 10 mL screw-cap reaction tube equipped with a stir bar was charged with $Pd_2(dba)_3$ (50 ppm, 50 μ L of the palladium solution (0.5 mM in toluene)), IPrCuCl (7.3 mg, 15 mol%), dppp (6.2 mg, 15 mol%) and dry toluene (1 ml). The resulting mixture was stirred at room temperature for 15 minutes. Alkyne substrate (0.1 mmol), formic acid (10 μ L, 2.7 equiv.), and Ac₂O (12

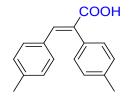
 μ L, 1.2 equiv.) were added subsequently and stirred at room temperature for 15 minutes. Then, the mixture was transferred to NMR tube before being sealed. The NMR tube was placed into pre-heated NMR spectrometer (25 °C). We could also find that the hydride species could be clearly observed via ¹H NMR after the NMR spectrometer temperature rised to 80 °C.


10. Another possible mechanism

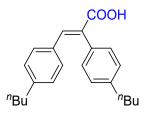
The mechanism may also undergo another Pd-catalyzed cycle. Firstly, oxidative insertion of Pd(0) to HCOOAc (generated from HCOOH and Ac₂O) gives H-Pd-OOAc complex I, which subsequently undergoes rearrangement to give H-Pd-CO species II. At the same time, *syn*-addition of the Cu-H species III with alkyne leads to the formation of the alkenyl copper complex IV. Then the insertion of CO generated *in situ* from Pd-CO species II into the C-Cu bond of complex IV to provide an acryloylcopper species V with the rearrangement to the complex V'. Transmetallation with H-Pd-CO species II, ensues to give the corresponding acyl palladium species VI and regenerate the Cu-H species III for the Cu-catalyzed cycle. The reductive elimination of complex VI produces the anhydride VII, which finally undergoes hydrolyzation with HCOOH to give the desired product and HCOOAc, and simultaneously regenerates the Pd⁰ species for the Pdcatalyzed cycle.


11. Analytical data of the hydrocarboxylation products

11.1 Structure characterization results

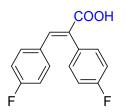

(E)-2,3-diphenylacrylic acid $(2a)^1$

White solid, m.p. 167-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.43-7.31 (m, 3H), 7.27-7.12 (m, 5H), 7.07-7.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 142.6, 135.4, 134.5, 131.8, 131.0, 129.9, 129.6, 128.9, 128.4, 128.2. HRMS (ESI) *calcd.* for (C₁₅H₁₂O₂-H): 223.0759, *found*: 223.0764. IR (KBr): 3500-2900 (br), 1678.8, 1621.7, 1456.1, 1268.8, 753.6, 617.3, 479.3 cm⁻¹

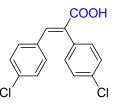

(*E*)-2,3-bis(4-methoxyphenyl)acrylic acid $(2b)^2$

Light yellow solid, m.p. 210-214 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.18 (d, *J* = 6.5 Hz, 2H), 7.06 (d, *J* = 6.8 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.71 (d, *J* = 6.7 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 160.6, 159.3, 142.1, 132.8, 131.1, 128.8, 127.9, 127.2, 114.4, 113.9, 55.4, 55.3. HRMS (ESI) *calcd*. for (C₁₇H₁₆O₄-H): 283.0970, *found*: 283.0980. IR (KBr): 3700-2900 (br), 1699.2, 1505.1, 1458.7, 1356.6, 1269.7, 1014.2, 754.7, 617.0 cm⁻¹.

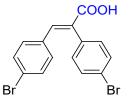
(*E*)-2,3-di-*p*-tolylacrylic acid $(2c)^1$


White solid, m.p. 178-182 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.17 (dd, J = 24.9, 7.8 Hz, 2H), 7.00 (s, 1H), 2.40 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 142.4, 139.9, 137.8, 132.6, 131.8, 131.0, 130.8, 129.7, 129.6, 129.1, 21.5. HRMS (ESI) *calcd*. for (C₁₇H₁₆O₂-H): 251.1072, *found*: 251.1077. IR (KBr): 3600-2900(br), 1682.6, 1630.9, 1459.9, 1267.4, 1093.9, 752.9 621.2 cm⁻¹.

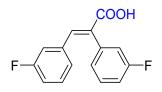
(*E*)-2,3-bis(4-butylphenyl)acrylic acid $(2d)^1$


White solid, m.p. 73-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.43 (s, 1H), 7.90 (s, 1H), 7.21 – 7.10 (m, 4H), 7.00 – 6.92 (m, 4H), 2.64 (t, *J* = 7.7 Hz, 2H), 2.51 (t, *J* = 7.7 Hz, 2H), 1.63 (dt, *J* = 15.3, 7.6 Hz, 2H), 1.52 (dt, *J* = 15.3, 7.6 Hz, 2H), 1.38 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.33 – 1.23 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 144.8, 142.6, 142.2, 132.9, 131.9, 131.1, 130.9, 129.6, 128.8, 128.4, 35.6, 35.5, 33.5, 33.3, 22.5, 22.4, 14.1,

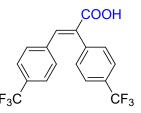
14.0. HRMS (ESI) *calcd*. for (C₂₃H₂₈O₂-H): 335.2011, *found*: 335.2011. IR (KBr): 3400-2800 (br), 1691.3, 1643.0, 1463.7, 1420.1, 1268.3, 1018.4, 753.2, 630.6 cm⁻¹.


(E)-2,3-bis(4-fluorophenyl)acrylic acid (2e)

White solid, m.p. 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.21 (m, 2H), 7.14 – 7.02 (m, 4H), 6.89 (t, J = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (s), 164.1 (d, $J^F = 253.4$ Hz), 162.4 (d, $J^F = 249.1$ Hz), 141.8 (s), 132.9 (d, $J^F = 8.4$ Hz), 131.8 (d, $J^F = 8.0$ Hz), 130.9 (d, $J^F = 3.5$ Hz), 130.4 (d, $J^F = 3.7$ Hz), 116.1 (d, $J^F = 21.5$ Hz), 115.7 (d, $J^F = 21.6$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 109.51, -113.24. HRMS (ESI) *calcd*. for (C₁₅H₁₀F₂O₂-H): 259.0571, *found*: 259.0580. IR (KBr): 3700-2900 (br), 1688.9, 1624.5, 1513.3, 1463.9, 1268.4, 1020.8, 754.4, 616.5 cm⁻¹.

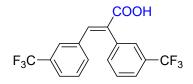

(*E*)-2,3-bis(4-chlorophenyl)acrylic acid (2f)¹

Light yellow solid, m.p. 178-181 °C . ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.40 – 7.35 (m, 2H), 7.21 – 7.15 (m, 4H), 7.03 – 6.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 141.7, 135.9, 134.5, 133.4, 132.5, 132.0, 131.3, 131.1, 129.3, 128.9. HRMS (ESI) *calcd*. for (C₁₅H₁₀Cl₂O₂-H): 290.9980, *found*: 290.9988. IR (KBr): 3500-2900 (br), 1625.6, 1458.0, 1383.5, 1300.4, 1224.7, 1088.1, 793.5, 720.5, 621.6 cm⁻¹.


(*E*)-2,3-bis(4-bromophenyl)acrylic acid $(2g)^1$

Light yellow solid, m.p. 188-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 141.8, 133.8, 132.9, 132.2, 131.8, 131.6, 131.2, 124.3, 122.7. HRMS (ESI) *calcd*. for (C₁₅H₁₀Br₂O₂-H): 378.8969, *found*: 378.8968. IR (KBr): 3600-2900 (br), 1626.3, 1267.5, 1149.7, 1080.4, 945.9, 753.9, 616.3, 478.8 cm⁻¹.

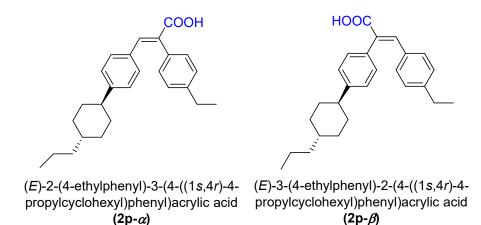
(E)-2,3-bis(3-fluorophenyl)acrylic acid $(2h)^1$


White solid, m.p. 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.34 (d, J = 2.8 Hz, 1H), 7.17 (d, J = 2.8 Hz, 1H), 7.07 (m, 1H), 7.03-6.92 (m, 3H), 6.89 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 9.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 164.3,163.7, 161.8, 161.3, 141.5, 137.0 (d, $J^{F} = 8.1$ Hz), 136.1 (d, $J^{F} = 8.1$ Hz), 132.0, 130.6 (d, $J^{F} = 8.2$ Hz), 130.0 (d, $J^{F} = 8.2$ Hz), 126.8 (d, $J^{F} = 2.9$ Hz), 125.6 (d, $J^{F} = 2.9$ Hz), 117.0 (t, $J^{F} = 22.1$ Hz), 115.5 (d, $J^{F} = 20.9$ Hz). HRMS (ESI) *calcd*. for (C₁₅H₁₀F₂O₂-H): 259.0571, found: 259.0577. IR (KBr): 3100-2900 (br), 1688.7, 1624.7, 1514.2, 1463.9, 1268.4, 1020.1, 754.4, 615.0, 480.5 cm⁻¹.

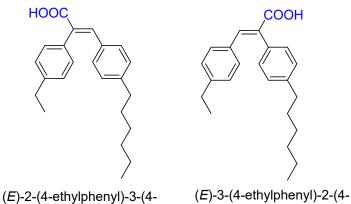
(*E*)-2,3-bis(4-(trifluoromethyl)phenyl)acrylic acid $(2i)^1$

White solid, m.p. 227-230 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.66 (d, J = 7.9 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 142.0, 138.3, 137.2, 132.7, 131.5 (d, $J^{\text{F}} = 33.3$ Hz), 130.9, 130.8 (d, $J^{\text{F}} = 32.3$ Hz), 130.5, 125.9 (q, $J^{\text{F}} = 4.0$ Hz), 125.6 (q, $J^{\text{F}} = 4.0$ Hz), 124.1 (d, $J^{\text{F}} = 273.7$ Hz), 123.8 (d, $J^{\text{F}} = 273.7$ Hz). HRMS (ESI) *calcd*. for (C₁₇H₁₀F₆O₂-H): 359.0507, *found*: 359.0502. IR (KBr): 3100-2500(br), 1685.2,

1614.1, 1418.7, 1328.9, 1301.6, 1167.61, 1128.5, 1068.9, 913.4, 843.5, 700.0, 654.9, 598.3 cm⁻¹.

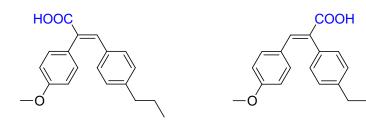

(*E*)-2,3-bis(3-(trifluoromethyl)phenyl)acrylic acid (**2j**)¹

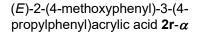
White solid, m.p. 87-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.31 (s, 1H), 8.05 (s, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.43 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.27 (s, 1H), 7.21 (d, J = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 142.1, 135.4, 134.6, 133.7, 133.5, 132.3, 131.6 (d, *J*^F = 32.3 Hz), 131.1 (d, *J*^F = 32.3 Hz), 129.6, 129.2, 127.4 (q, *J*^F = 11.3 Hz), 126.9 (d, *J*^F = 3.7 Hz), 126.5 (d, *J*^F = 3.4 Hz), 125.4 (d, *J*^F = 3.7 Hz), 125.1 (d, *J*^F = 31.3 Hz), 122.4 (d, *J*^F = 31.2 Hz). HRMS (ESI) *calcd.* for (C₁₇H₁₀F₆O₂-H): 359.0507, *found*: 359.0504. IR (KBr): 3100-2500 (br), 1696.0, 1620.5, 1424.1, 1329.7, 1295.8, 1201.4, 1175.8, 1167.6, 1124.4, 1073.2, 919.3, 808.5, 688.4, 654.5 cm⁻¹.


COOH

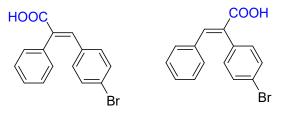
(E)-2-propylhex-2-enoic acid (20)³

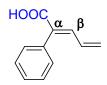
Colourless Oil, ¹H NMR (400 MHz, CDCl₃) δ 6.92 (t, J = 7.5 Hz, 1H), 2.32-2.24 (m, 2H), 2.19 (m, 2H), 1.54 -1.38 (m, 4H), 0.98-0.89 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 145.6, 131.8, 30.9, 28.5, 22.6, 22.1, 14.1, 14.1. HRMS (ESI) *calcd*. for (C₉H₁₆O₂-H): 155.1072, *found*: 155.1077. IR (KBr): 3400-2900 (br), 1745.7, 1625.8, 1464.2, 1414.2, 1268.3, 1057.3, 1020.9, 753.5, 616.8, 480.7 cm⁻¹.



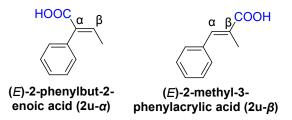

White solid, m.p. 161-163°C. The α/β mixture cannot be separated (**2p**, $\alpha:\beta=46:54$). ¹H NMR (400 MHz, CDCl₃) δ 12.09 (s, 1H), 7.89 (s, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.17-7.10 (m, 2H), 6.98 (d, J = 8.7 Hz, 4H), 2.68 (d, J = 7.6 Hz, 1H), 2.55 (dd, J =15.2, 7.6 Hz, 1H), 2.36 (t, J = 12.1 Hz, 1H), 1.99-1.74 (m, 5H), 1.38 - 1.12 (m, 11H), 1.11- 0.95 (m, 3H), 0.89 (dt, J = 10.9, 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 149.8, 147.6, 146.1, 143.9, 142.4, 132.9, 132.1, 132.0, 131.2, 131.1, 130.8, 130.6, 129.7, 129.6, 128.3, 127.9, 127.3, 126.9, 44.6, 44.5, 39.9, 39.8, 37.1, 37.0, 34.4, 34.1, 33.7, 33.5, 28.8, 20.2, 20.1, 15.4, 15.2, 14.6, 14.5. HRMS (ESI) *calcd.* for (C₂₆H₃₂O₂-H): 375.2324, *found*: 375.2325. IR (KBr): 3500-2900 (br), 1745.7, 1677.8, 1605.2, 1413.8, 1414.2, 1262.2, 1176.9, 827.5, 715.9, 570.7, 524.5, 445.6 cm⁻¹.

(*E*)-2-(4-ethylphenyl)-3-(4- (*E*)-3-(4-ethylphenyl)-2-(4hexylphenyl)acrylic acid (2q- α) hexylphenyl)acrylic acid (2q- β)

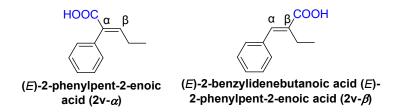

White solid, m.p. 75-78°C. The α/β mixture cannot be separated (**2q**, $\alpha:\beta=54:46$). ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.24 – 7.12 (m, 5H), 6.99 (d, J = 1.1 Hz, 4H), 2.74 – 2.45 (m, 5H), 1.69 – 1.48 (m, 3H), 1.29 (dd, J = 18.0, 10.4 Hz, 10H), 1.17 (t, J = 7.6 Hz, 2H), 0.94 – 0.79 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 146.1, 144.9, 143.9, 142.7, 142.4, 132.8, 131.9, 131.1, 131.1, 130.8, 130.7, 129.7, 129.6, 128.9, 128.4, 128.3, 127.9, 35.9, 31.8, 31.7, 31.3, 31.1, 29.1, 28.8, 22.8, 22.7, 15.4, 15.2, 14.2, 14.1. HRMS (ESI) *calcd*. for (C₂₃H₂₈O₂-H): 335.2011, *found*: 335.2019. IR (KBr): 3100-2800(br), 1681.3, 1604.9, 1508.86, 1456.94, 1418.2, 1268.7, 1213.5, 1182.9, 1116.2, 997.9, 833.1, 736.2, 569.2 cm⁻¹.


(*E*)-3-(4-methoxyphenyl)-2-(4propylphenyl)acrylic acid $2r-\beta$

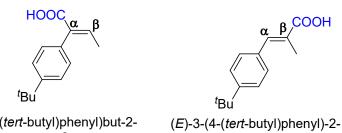
White solid, m.p. 172-174°C. The α/β mixture cannot be separated (**2r**, $\alpha:\beta=77:23$). ¹H NMR (400 MHz, CDCl₃) δ 11.75 (s, 1H), 7.89 (d, J = 6.1 Hz, 1H), 7.23 – 7.11 (m, 3H), 7.03-7.00 (q, J = 8.0 Hz, 5H), 6.92 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.5 Hz, 1H), 3.84 (s, 3H), 3.75 (s, 1H), 2.62 (t, J = 7.5 Hz, 1H), 2.51 (t, J = 7.5 Hz, 2H), 1.68 (dd, J = 14.8, 7.4 Hz, 1H), 1.57 (dt, J = 14.3, 7.2 Hz, 2H), 0.96 (t, J = 7.2 Hz, 1H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 159.4, 144.7, 142.5, 132.8, 132.1, 131.2, 131.0, 130.3, 129.7, 129.0, 128.6, 127.8, 114.3, 113.8, 55.3, 38.0, 24.3, 13.9. HRMS (ESI) *calcd*. for (C₁₉H₂₀O₃-H): 295.1334, *found*: 295.1340. IR (KBr): 3000-2837 (br), 1675.0, 1609.9, 1502.5, 1416.7, 1258.4, 1236.7, 1179.2, 1035.9, 928.4, 827.6, 741.8, 684.3, 569.3, 426.1 cm⁻¹.


(*E*)-3-(4-bromophenyl)-2- (*E*)-2-(4-bromophenyl)-3phenylacrylic acid ($2s - \alpha$) phenylacrylic acid ($2s - \beta$)

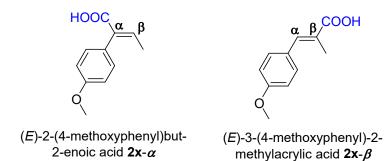
White solid, m.p. 179-182 °C. The α/β mixture cannot be separated (**2s**, $\alpha:\beta=59:41$). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.86 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.38 (s, 3H), 7.34 – 7.19 (m, 7H), 7.11 (dd, J = 16.4, 7.5 Hz, 2H), 6.92 (d, J = 8.2Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.10, 172.94, 143.27, 141.25, 134.95, 134.26, 134.06, 133.30, 132.47, 132.32, 131.69, 130.94, 129.93, 129.76, 129.00, 128.59, 128.44, 124.06, 122.48. HRMS (ESI) *calcd*. for (C₁₅H₁₁BrO₂-H): 300.9864, 300.9844, *found*: 300.9869, 300.9848. IR (KBr): 2926.1, 2847.1, 2349.5, 1678.5, 1654.9, 1481.5, 1387.1, 1259.9, 1079.3, 1000.3, 976.7, 913.1, 825.9, 707.9, 549.9, 486.3 cm⁻¹.

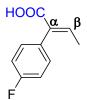


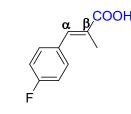
(E)-2-phenylpenta-2,4-dienoic acid (2t-α)


Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.48-7.41 (d, *J* = 6.8 Hz, 2H), 7.43-7.34 (m, 3H), 6.68-6.61 (dd, *J* = 17.8, 11.9 Hz, 1H), 5.94 (d, *J* = 17.8 Hz, 1H), 5.51 (d, *J* = 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 141.9, 135.0, 130.4, 129.3, 129.0, 128.5, 121.8. HRMS (ESI) *calcd*. for (C₁₁H₁₀O₂-H): 173.0603, *found*: 173.0600. IR (KBr): 3500-3000, 2358.2, 1683.3, 1447.7, 1266.4, 1214.8, 1154.9, 1006.4, 912.2, 755.3, 731.5, 695.4, 607.8cm⁻¹.

White solid, m.p. 92-94 °C. The α/β mixture cannot be separated (**2u**, $\alpha:\beta=71:29$). ¹H NMR (400 MHz, CDCl₃) δ 12.34 (s, 1H), 7.81 (s, 1H), 7.45-7.28 (m, 6H), 7.24 (s, 1H), 7.19 (d, J = 7.2 Hz, 2H), 2.13 (β -product, s, 1H, CH₃), 1.78 (α -product, d, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 172.8, 142.9, 141.3, 135.7, 134.5, 129.9, 128.8, 128.5, 128.2, 127.7, 15.9, 13.8. HRMS (ESI) *calcd*. for (C₁₀H₁₀O₂-H): 161.0603, found: 161.0608. IR (KBr): 3500-2500 (br), 1636.7, 1458.6, 1384.6, 1300.5, 1230.5, 1084.0, 791.2, 723.0, 618.5 cm⁻¹.

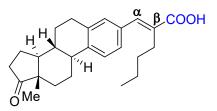

Colorless oil liquid. The α/β mixture cannot be separated (2v, $\alpha:\beta=71:29$). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.41-7.32 (m, 4H), 7.22-7.16 (m, 3H), 2.56 (βproduct, q, J = 7.5 Hz, 1H, CH₂), 2.18-2.08 (α -product, m, 2H, CH₂), 1.20 (s, 1H), 1.03 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 172.8, 149.3, 140.8, 135.4, 134.7, 133.9, 132.7, 129.7, 129.4, 128.7, 128.5, 128.0, 127.6, 23.1, 20.5, 13.7, 13.2. HRMS (ESI) calcd. for (C₁₁H₁₂O₂-H): 175.0759, found: 175.0766. IR (KBr): 3000-2700 (br), 1685.1, 1630.5, 1457.4, 1407.5, 1378.2, 1266.0, 1165.4, 1093.8, 1023.0, 749.4, 622.4 cm⁻¹.


(E)-2-(4-(tert-butyl)phenyl)but-2enoic acid, 2w-α

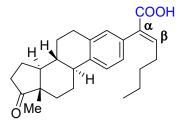

methylacrylic acid 2w-ß

White solid, m.p. 103-106 °C. The α/β mixture cannot be separated (2w, $\alpha:\beta=59:41$). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.44-7.38 (dd, J = 16.6, 8.1 Hz, 5H), 7.34 -7.29 (m, 1H), 7.14 (d, J = 8.1 Hz, 2H), 2.15 (β -product, s, 2H, C=C-CH₃), 1.80 (α -product, d, J = 7.2 Hz, 3H, C=C-CH₃), 1.33 (s, 16H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 173.1, 152.2, 150.4, 142.6, 141.1, 134.1, 132.9, 131.4, 130.0, 129.6, 126.8, 125.5, 125.0, 34.9, 34.7, 31.4, 31.3, 16.0, 13.8. HRMS (ESI) *calcd.* for (C₁₄H₁₈O₂-H): 217.1229, *found*: 217.1230. IR (KBr): 3000-2800 (br), 1667.2, 1518.5, 1425.1, 1362.5, 1268.1, 1198.3, 1127.6, 917.2, 822.8, 761.3, 698.7, 627.9, 565.3, 463.7 cm⁻¹.

White solid, m.p. 123-126 °C. The α/β mixture cannot be separated (2x, α : β =57:43). ¹H NMR (400 MHz, CDCl₃) δ 11.8 (s, 1H), 7.77 (s, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.93 (t, J = 8.0 Hz, 4H), 3.84 (s, 2H), 3.82 (s, 3H), 2.14 (β -product, s, 2H, C=C-CH₃), 1.79 (α -product, d, J = 7.2 Hz, 3H, C=C-CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 173.1, 160.1, 159.1, 142.5, 141.0, 138.8, 133.8, 131.9, 131.1, 129.2, 128.3, 126.7, 125.2, 114.0, 113.7, 55.4, 55.3, 15.9, 13.8. HRMS (ESI) *calcd.* for (C₁₁H₁₂O₃-H): 191.0708, *found*: 191.0706. IR (KBr): 3100-2500 (br), 1671.5, 1603.2, 1513.3, 1416.7, 1281.0, 1246.9, 1178.7, 1026.3, 918.9, 828.2, 799.9, 754.9, 731.6, 635.9, 567.7, 533.6, 476.9 cm⁻¹.



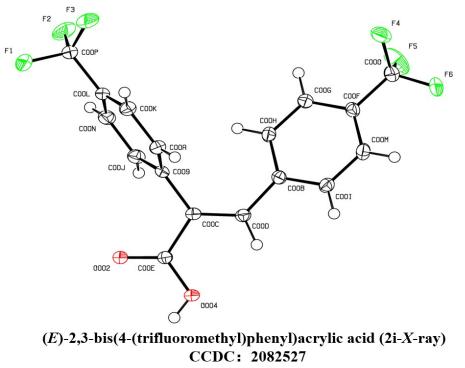
(*E*)-2-(4-fluorophenyl)but-2-enoic acid 2y- α


(*E*)-3-(4-fluorophenyl)-2methylacrylic acid 2y- β

White solid, m.p. 120-123 °C. The α/β mixture cannot be separated (2y, α : β =57:43). ¹H NMR (400 MHz, CDCl₃) δ 11.42 (s, 1H), 7.78 (s, 1H), 7.46 – 7.39 (m, 2H), 7.35 (dd, J = 14.4, 7.1 Hz, 1H), 7.21 – 7.14 (m, 1H), 7.09 (dd, J = 17.7, 8.9 Hz, 3H), 2.12 (β -product, s, 3H, CH₃), 1.79 (α -product, d, J = 7.1 Hz, 2H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 172.7, 163.8 (d, $J^{F} = 49.7$ Hz), 161.4 (d, $J^{F} =$ 46.4 Hz), 143.5, 140.1, 132.6 (d, $J^{F} = 158.6$ Hz), 131.9 (d, $J^{F} = 8.3$ Hz), 131.7 (d, $J^{F} = 8.0$ Hz), 130.4 (dd, $J^{F} = 9.0$, 5.7 Hz), 115.7 (d, $J^{F} = 21.7$ Hz), 115.3 (d, $J^{F} =$ 21.5 Hz). HRMS (ESI) *calcd*. for (C₁₀H₉FO₂-H): 179.0508, *found*: 179.0507. IR (KBr): 1663.7, 1625.3, 1505.1, 1422.7, 1292.8, 1220.8, 1158.0, 936.6, 835.3, 738.9, 627.8, 526.6, 435.1 cm⁻¹.

(*E*)-2-(((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)methylene)hexanoic acid (**2aa**-*β*)

White solid. m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.23 (t, *J* = 9.5 Hz, 1H), 7.16 (s, 1H), 2.94 (d, *J* = 4.8 Hz, 2H), 2.55 – 1.96 (m, 9H), 1.65 – 1.37 (m, 10H), 0.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 221.0, 174.3, 140.9, 136.8, 133.2, 132.3, 130.5, 127.1, 125.7, 50.6, 48.1, 44.6, 38.2, 36.0, 32.1, 31.7, 29.5, 29.0, 26.6, 25.8, 22.5, 21.7, 14.2, 14.0.



(*E*)-2-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)hept-2-enoic acid (**2aa**-*α*)

Orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.1 Hz, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.02 – 6.84 (m, 2H), 2.91 (d, *J* = 4.7 Hz, 2H), 2.55 – 1.97 (m, 9H), 1.65 – 1.25 (m, 10H), 0.92 (s, 3H), 0.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 221.2, 172.8, 148.0, 139.1, 136.1, 132.3, 130.3, 127.2, 125.1, 50.7, 48.1, 44.5, 38.1, 36.0, 31.7, 31.5, 29.9, 29.5, 28.5, 25.7, 22.5, 21.7, 14.1, 14.0.

HRMS (ESI) *calcd*. for (C₂₅H₃₂O₃-H): 379.2273, *found*: 379.2279. IR (KBr): 3500-2800(br), 2238.5, 2075.6, 1737.8, 1683.3, 1633.1, 1499.9, 1455.2, 1274.8, 1260.42, 1118.7, 975.8, 822.7, 765.4, 676.5, 650.5, 580.6 cm⁻¹.

11.2. X-Ray crystallographic data

Table S2 Crystal data and structure refinement for 2i.

Identification code	(<i>E</i>)-2,3-bis(4-(trifluoromethyl)phenyl)acrylic acid (2i)
Empirical formula	$C_{17}H_{10}F_6O_2$
Formula weight	360.25
Temperature/K	100.00(10)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	5.5094(3)
b/Å	15.2120(8)
c/Å	18.2863(9)
$\alpha/^{\circ}$	90
β/°	96.429(6)
$\gamma/^{\circ}$	90
Volume/Å ³	1522.92(14)
Z	4
$ ho_{calc}g/cm^3$	1.571
µ/mm ⁻¹	0.151
F(000)	728.0
Crystal size/mm ³	0.22 imes 0.15 imes 0.14
Radiation	MoKα ($\lambda = 0.71073$)
20 range for data collection/°	7.242 to 60.778

Index ranges	$\textbf{-7} \leq h \leq \textbf{7}, \textbf{-21} \leq k \leq \textbf{21}, \textbf{-26} \leq \textbf{l} \leq \textbf{22}$
Reflections collected	10535
Independent reflections	$4010 \ [R_{int} = 0.0294, R_{sigma} = 0.0371]$
Data/restraints/parameters	4010/0/227
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0404, WR_2 = 0.0977$
Final R indexes [all data]	$R_1 = 0.0524, wR_2 = 0.1026$
Largest diff. peak/hole / e Å-3 $$	0.37/-0.37

 Table S3 Bond Lengths for (E)-2,3-bis(4-(trifluoromethyl)phenyl)acrylic acid

 (2i).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F4	C00O	1.3356(16)	C00B	C00H	1.4014(18)
O002	C00E	1.2241(15)	C00B	C00I	1.3979(17)
F1	C00P	1.3450(17)	C00C	C00D	1.3447(17)
O004	C00E	1.3168(15)	C00C	C00E	1.4902(16)
F6	C00O	1.3288(16)	C00F	C00G	1.3912(18)
F5	C00O	1.3385(17)	C00F	C00M	1.3859(19)
F3	C00P	1.3348(19)	C00F	C00O	1.4975(17)
F2	C00P	1.336(2)	C00G	C00H	1.3844(18)
C009	C00A	1.3915(17)	C00I	C00M	1.3898(18)
C009	C00C	1.4879(16)	C00J	C00N	1.3868(19)
C009	C00J	1.3956(17)	C00K	C00L	1.3889(19)
C00A	C00K	1.3894(18)	C00L	C00N	1.383(2)
C00B	C00D	1.4722(16)	C00L	C00P	1.4999(18)

Table S4 Bond Angles for	(E)-2,3-bis(4-(trifluoromet)	hyl)phenyl)acrylic acid (2i).
--------------------------	------------------------------	-------------------------------

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C00A C009 C00C	119.49(11)	C00N C00J C009	120.64(12)
C00A C009 C00J	119.29(11)	COOL COOK COOA	119.70(12)
C00J C009 C00C	121.20(11)	COOK COOL COOP	119.08(13)
C00K C00A C009	120.23(12)	COON COOL COOK	120.69(12)
C00H C00B C00D	123.01(11)	COON COOL COOP	120.23(13)
C00I C00B C00D	118.36(11)	COOF COOM COOI	119.50(12)
C00I C00B C00H	118.46(11)	COOL COON COOJ	119.45(12)
C009 C00C C00E	114.79(10)	F4 C000 F5	105.19(12)

C00D C00C C009	126.15(11) F4	C000 C00F	112.78(10)
C00D C00C C00E	119.05(11) F6	C000 F4	106.45(11)
C00C C00D C00B	128.96(11) F6	C000 F5	107.45(11)
O002 C00E O004	123.32(11) F6	C000 C00F	113.23(12)
O002 C00E C00C	121.33(11) F5	C000 C00F	111.24(11)
O004 C00E C00C	115.33(10) F1	COOP COOL	112.25(11)
C00G C00F C00O	118.32(12) F3	C00P F1	106.28(14)
C00M C00F C00G	120.27(12) F3	C00P F2	106.49(12)
C00M C00F C00O	121.35(12) F3	COOP COOL	112.35(12)
C00H C00G C00F	120.09(12) F2	C00P F1	106.26(12)
C00G C00H C00B	120.56(12) F2	COOP COOL	112.72(13)
C00M C00I C00B	121.10(12)		

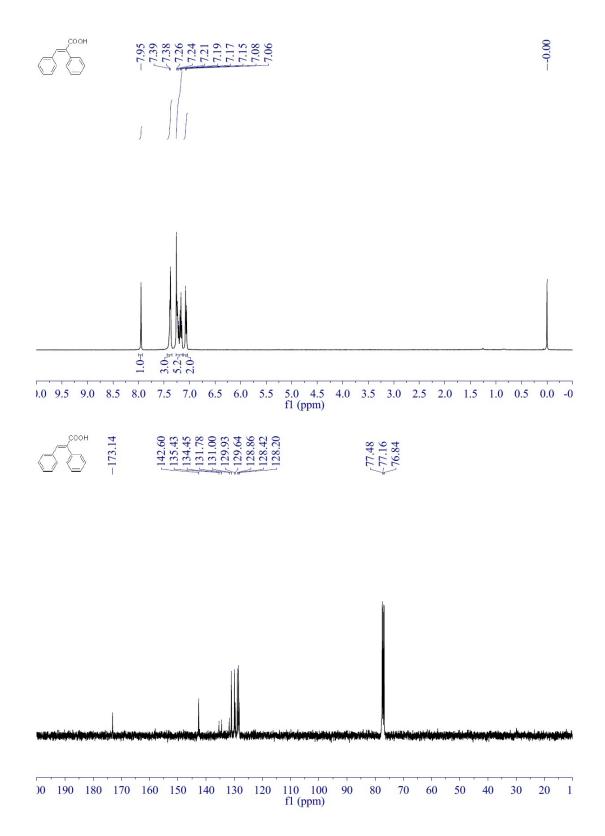
B'-X-ray (CCDC:2082526)

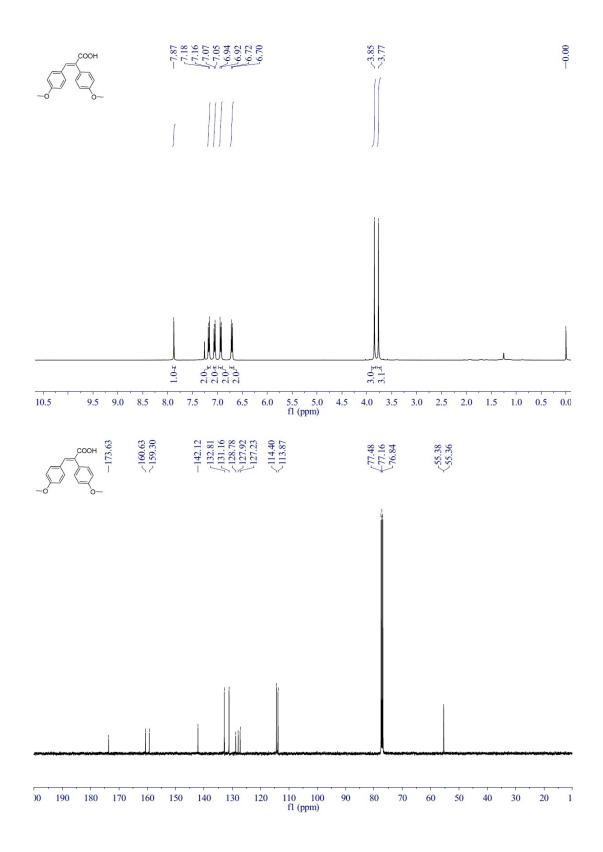
Table S5 Crystal data and structure refinement for compound B'.

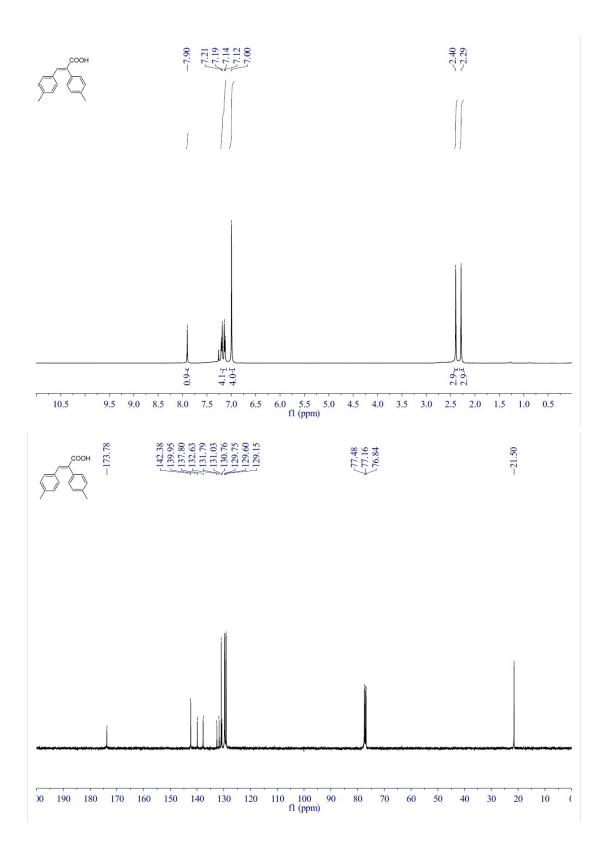
Identification code	compound B'
Empirical formula	$\mathrm{C}_{27}\mathrm{H}_{26}\mathrm{P}_{4}\mathrm{Pd}$
Formula weight	580.76
Temperature/K	113.15
Crystal system	triclinic
Space group	P-1
a/Å	8.4671(5)
b/Å	10.5451(6)
c/Å	14.4131(7)
α/\circ	88.379(4)
β/°	80.098(4)
$\gamma/^{\circ}$	73.608(5)
Volume/Å ³	1215.92(12)
Z	2

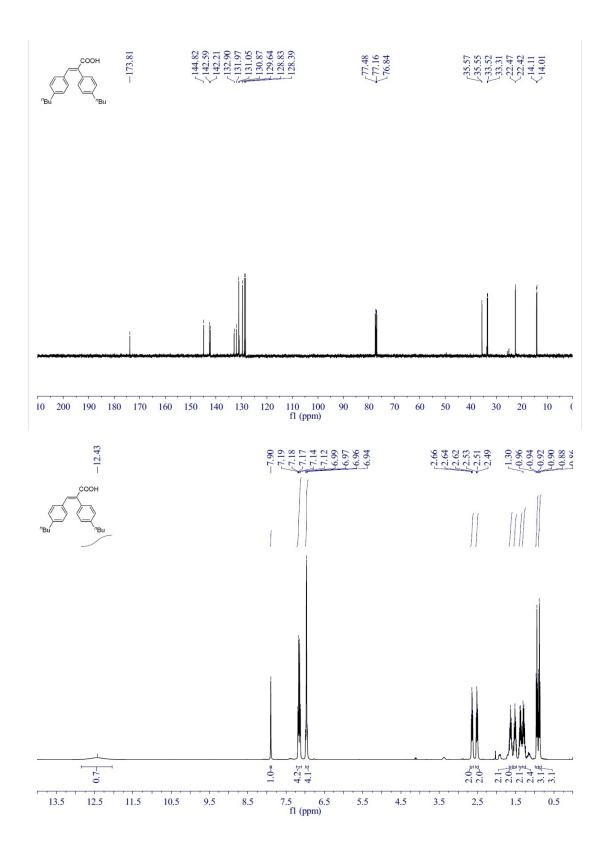
$ ho_{calc}g/cm^3$	1.586
µ/mm ⁻¹	1.041
F(000)	588.0
Crystal size/mm ³	0.2 imes 0.18 imes 0.16
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.028 to 52.74
Index ranges	$\text{-10} \le h \le 10, \text{-13} \le k \le 13, \text{-18} \le l \le 17$
Reflections collected	12663
Independent reflections	4961 [$R_{int} = 0.0540, R_{sigma} = 0.0603$]
Data/restraints/parameters	4961/0/289
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0439, wR_2 = 0.1112$
Final R indexes [all data]	$R_1 = 0.0536, wR_2 = 0.1177$
Largest diff. peak/hole / e Å-3	0.94/-0.69

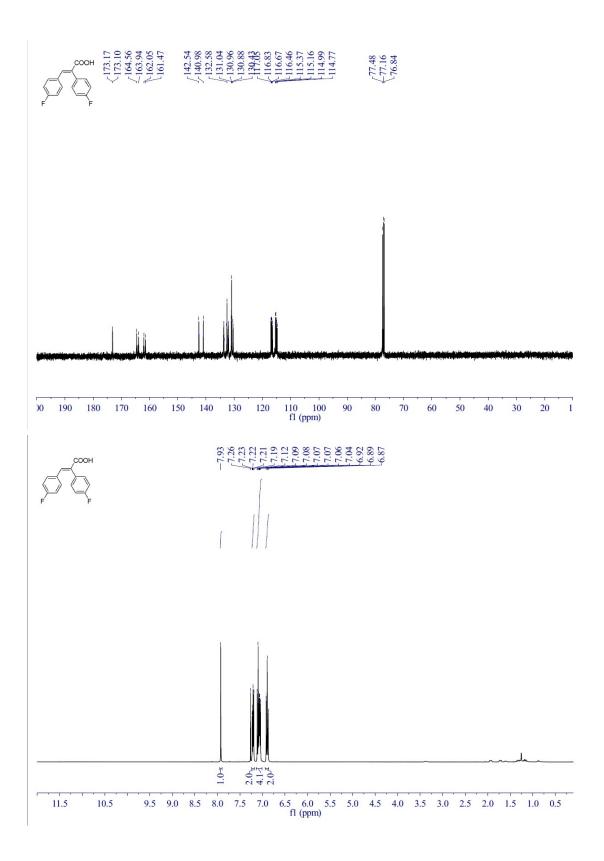
Table S6 Bond Lengths for compound B'.

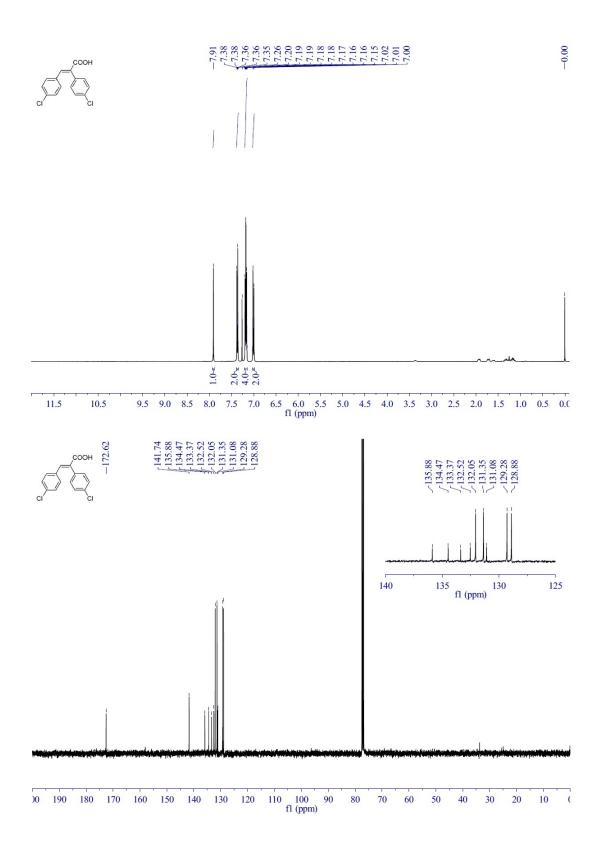

Table So Bond Lengths for compound B.					
Aton	n Atom	Length/Å	Atom Atom	Length/Å	
Pd1	P1	2.2529(11)	C8 C9	1.380(8)	
Pd1	P2	2.2445(11)	C9 C10	1.349(9)	
Pd1	P3	2.3589(10)	C10 C11	1.354(8)	
Pd1	P4	2.3558(11)	C11 C12	1.389(8)	
P1	C1	1.814(5)	C13 C14	1.528(6)	
P1	C7	1.816(5)	C14 C15	1.522(6)	
P1	C13	1.834(5)	C16 C17	1.381(7)	
P2	C15	1.823(4)	C16 C21	1.386(6)	
P2	C16	1.816(4)	C17 C18	1.377(7)	
P2	C22	1.814(5)	C18 C19	1.384(8)	
C1	C2	1.397(7)	C19 C20	1.363(8)	
C1	C6	1.379(7)	C20 C21	1.394(7)	
C2	C3	1.386(7)	C22 C23	1.387(6)	
C3	C4	1.384(8)	C22 C27	1.386(7)	
C4	C5	1.375(8)	C23 C24	1.378(7)	
C5	C6	1.399(7)	C24 C25	1.367(7)	
C7	C8	1.374(7)	C25 C26	1.379(7)	
C7	C12	1.370(7)	C26 C27	1.401(7)	

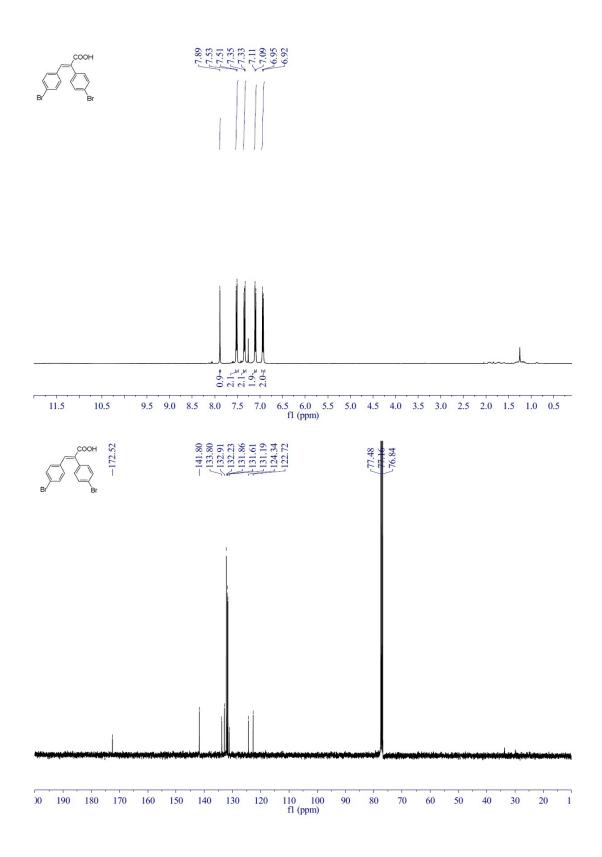

Table S7 Bond Angles for compound B'.

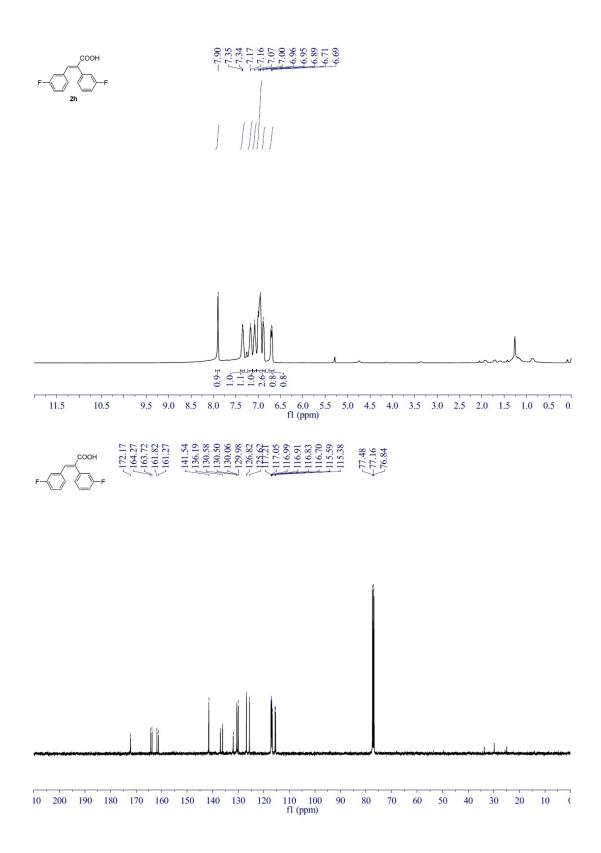

Atom Atom Atom		Angle/°	Atom Atom Atom	Angle/°
P1	Pd1 P3	177.99(4)	C12 C7 P1	118.6(4)

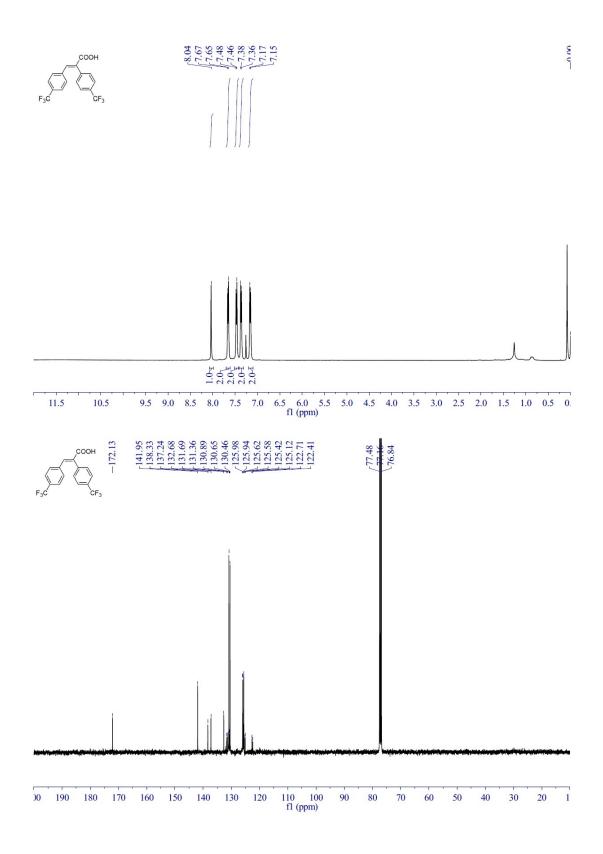

P1	Pd1	P4	91.36(4)	C12	C7	C8	118.2(5)
P2	Pd1	P1	90.62(4)	C7	C8	С9	119.8(5)
P2	Pd1	P3	87.68(4)	C10	C9	C8	122.1(6)
P2	Pd1	P4	172.25(5)	C9	C10	C11	118.4(5)
P4	Pd1	P3	90.47(4)	C10	C11	C12	120.8(5)
C1	P1	Pd1	114.40(15)	C7	C12	C11	120.6(5)
C1	P1	C7	106.6(2)	C14	C13	P1	117.9(3)
C1	P1	C13	102.6(2)	C15	C14	C13	116.2(4)
C7	P1	Pd1	109.42(15)	C14	C15	P2	111.3(3)
C7	P1	C13	107.2(2)	C17	C16	P2	121.1(3)
C13	P1	Pd1	115.92(15)	C17	C16	C21	119.2(4)
C15	P2	Pd1	116.54(15)	C21	C16	P2	119.5(4)
C16	P2	Pd1	114.74(15)	C18	C17	C16	120.4(5)
C16	P2	C15	102.7(2)	C17	C18	C19	120.0(5)
C22	P2	Pd1	109.41(14)	C20	C19	C18	120.2(5)
C22	P2	C15	105.2(2)	C19	C20	C21	119.9(5)
C22	P2	C16	107.4(2)	C16	C21	C20	120.1(5)
C2	C1	P1	118.2(4)	C23	C22	P2	121.5(4)
C6	C1	P1	121.9(4)	C27	C22	P2	119.1(4)
C6	C1	C2	119.8(4)	C27	C22	C23	119.2(4)
C3	C2	C1	120.4(5)	C24	C23	C22	120.4(5)
C4	C3	C2	119.0(5)	C25	C24	C23	120.4(5)
C5	C4	C3	121.2(5)	C24	C25	C26	120.5(5)
C4	C5	C6	119.7(5)	C25	C26	C27	119.4(5)
C1	C6	C5	119.7(5)	C22	C27	C26	120.1(5)
C8	C7	P1	123.2(4)				

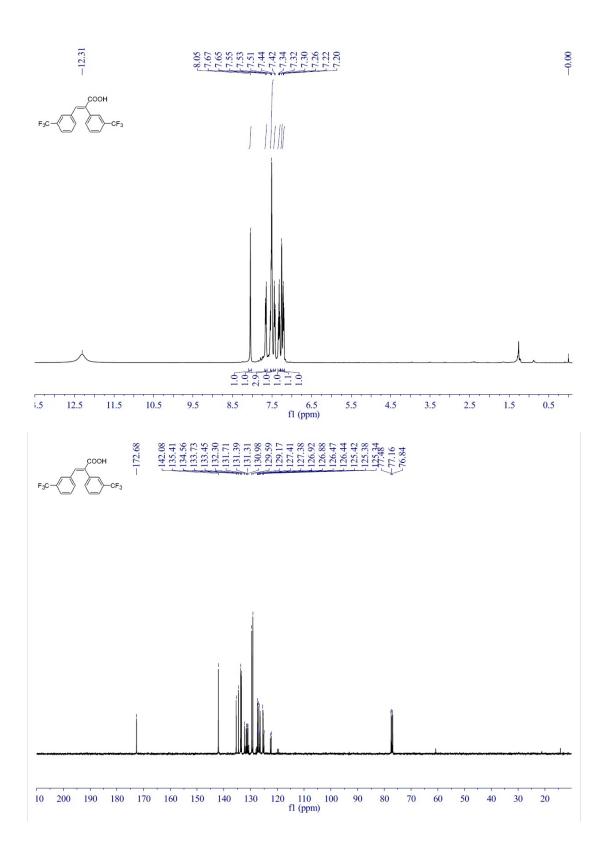

11.3. NMR Charts

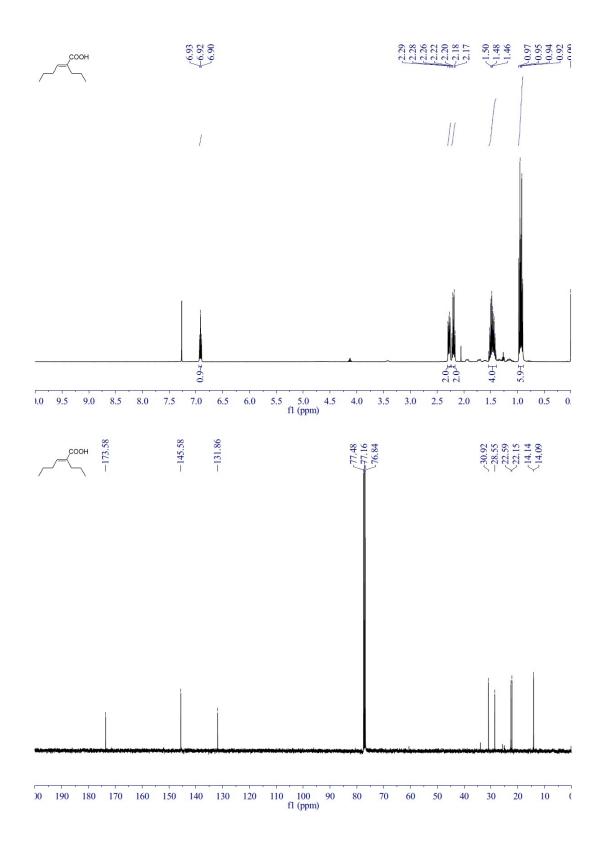


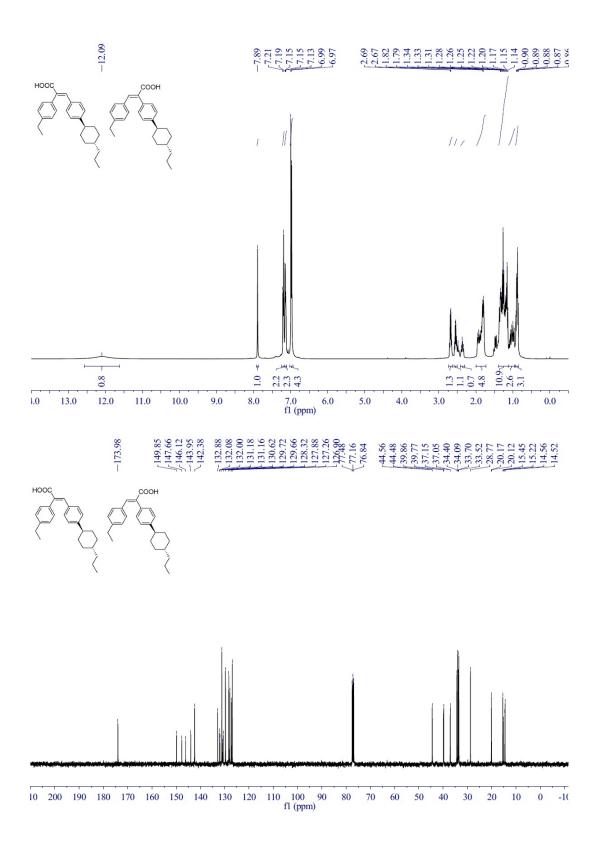


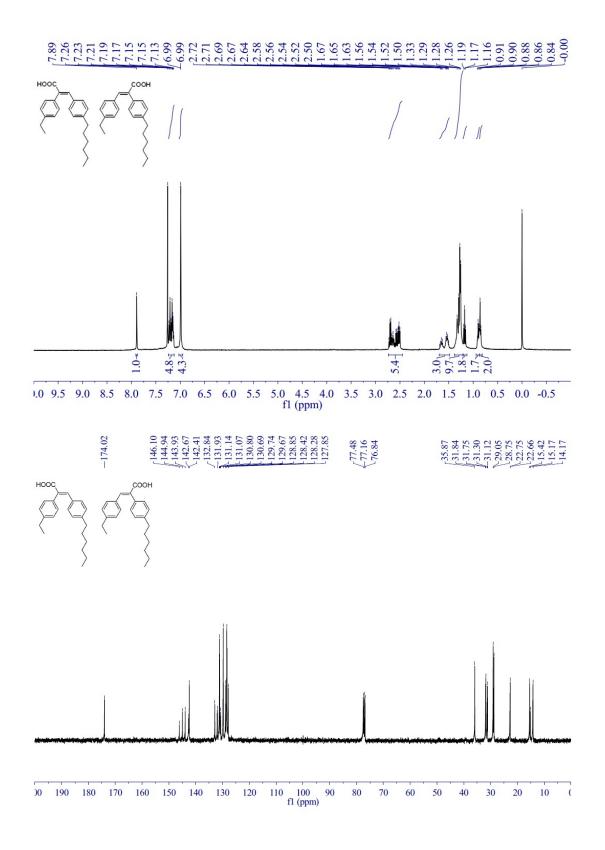


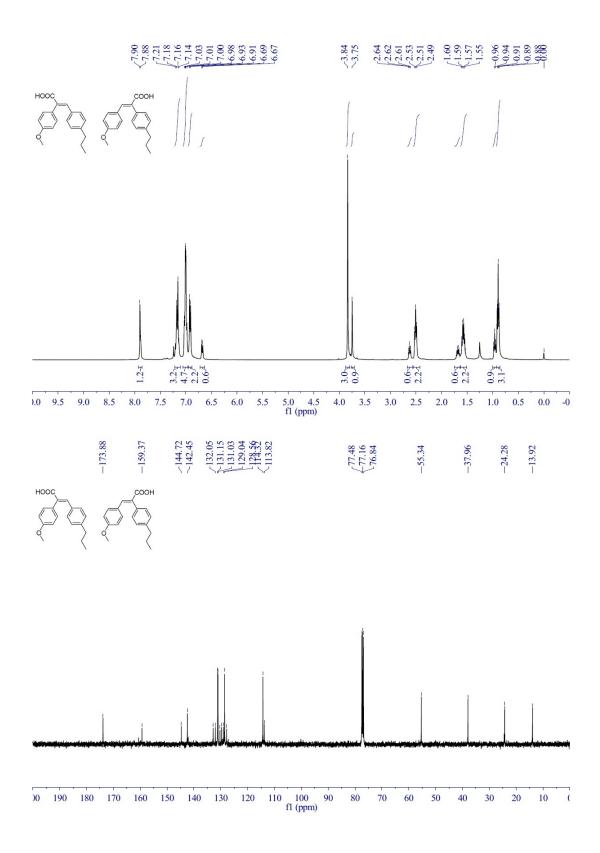


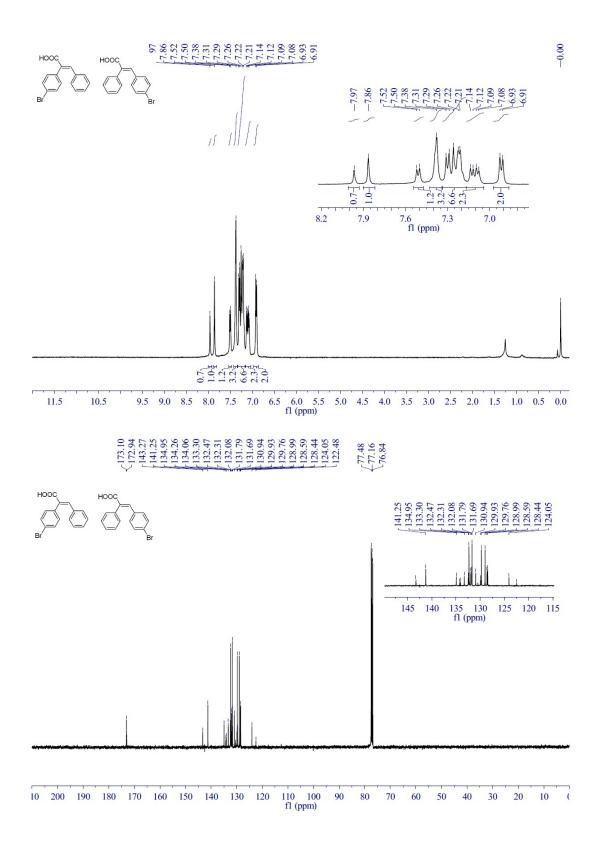


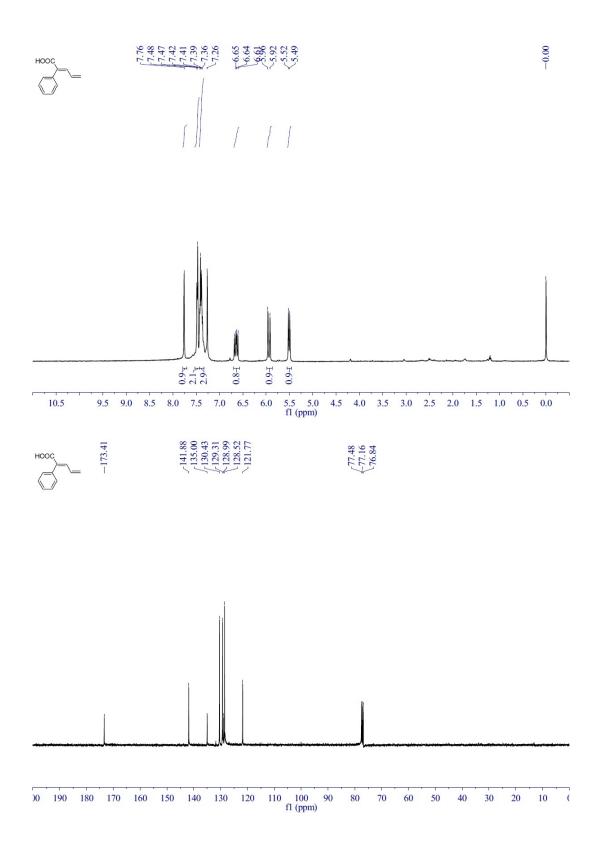


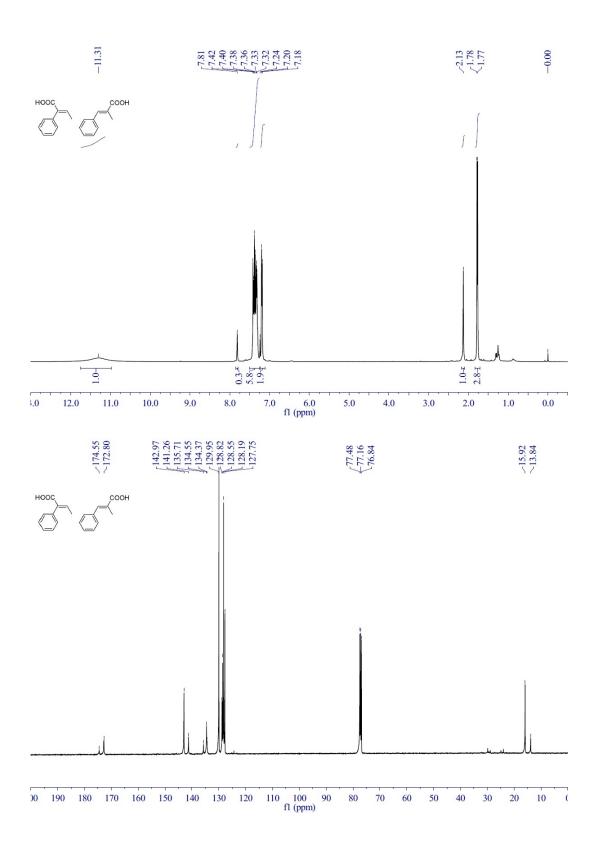


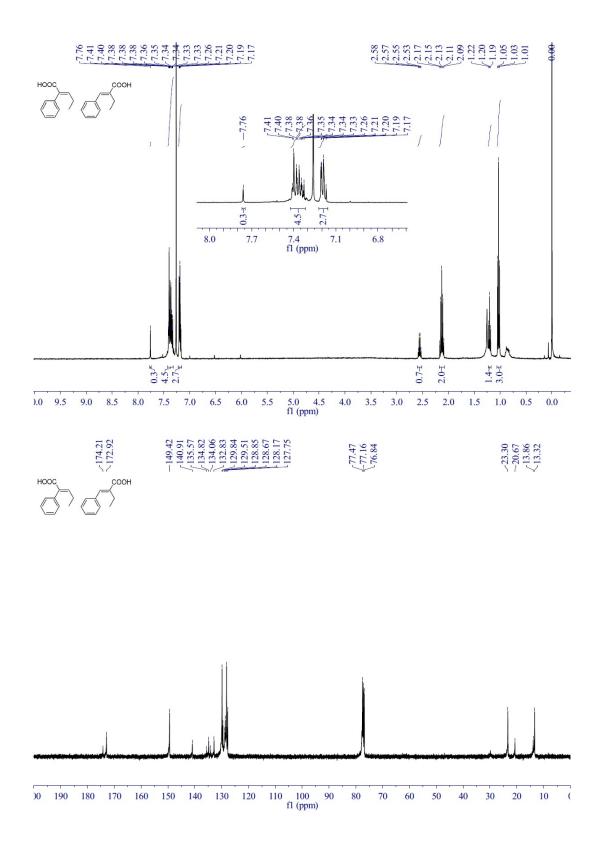


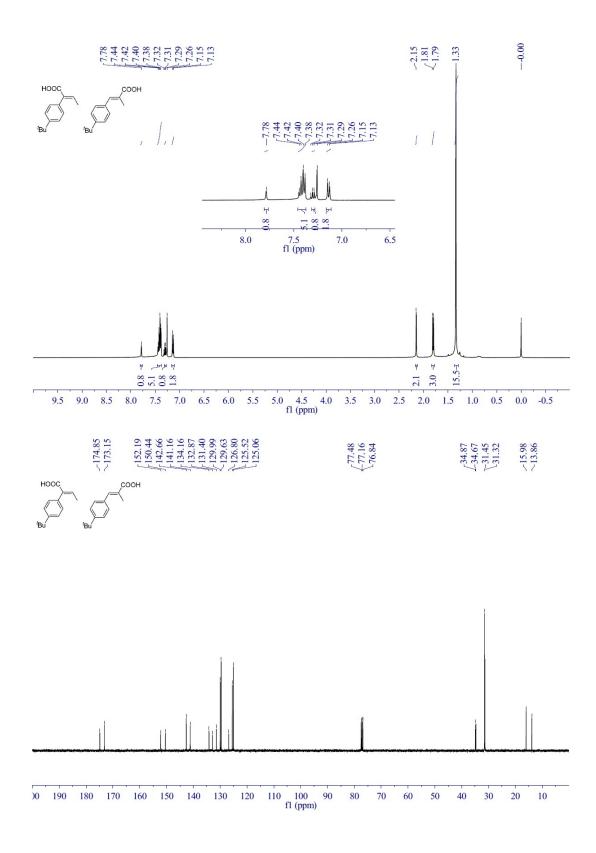


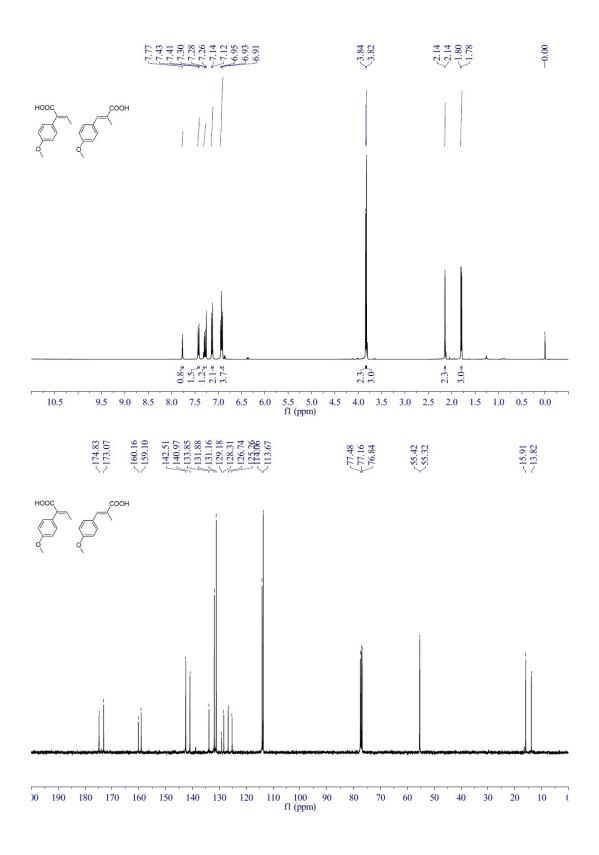


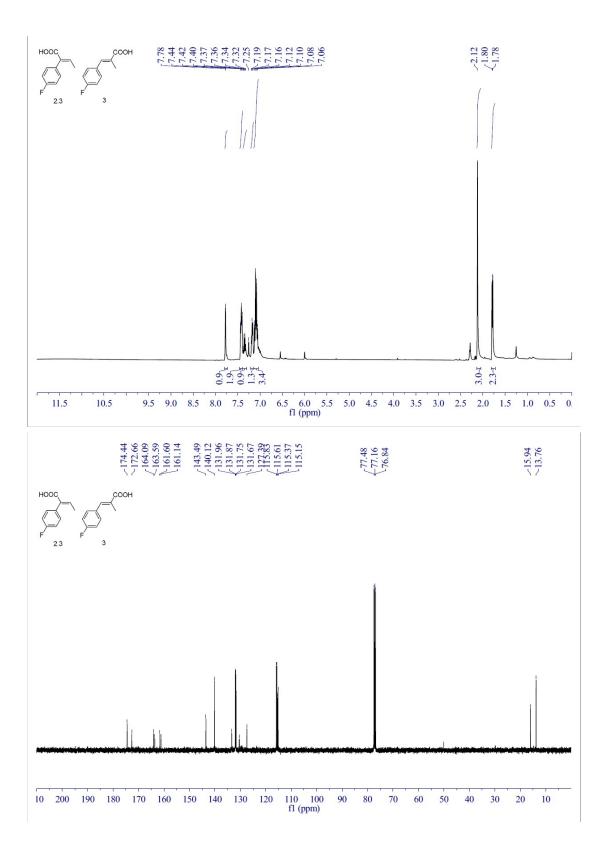


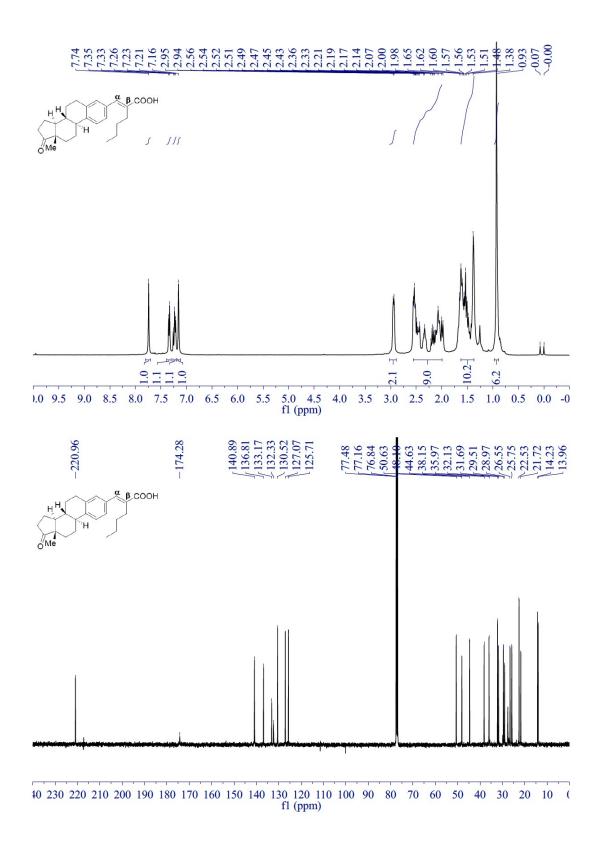


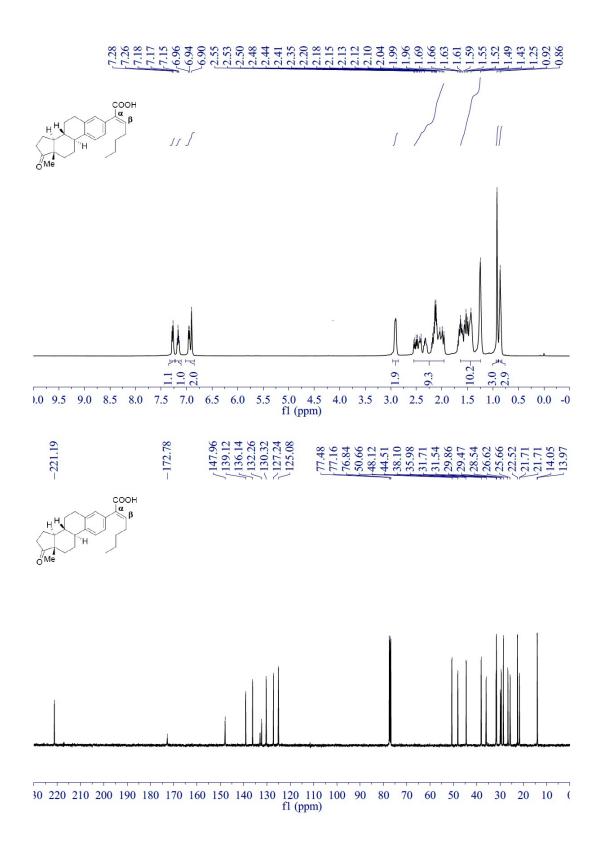












12. References

- (1) T. Fujihara, T. Xu, K. Semba, J. Terao, and Y. Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523-527.
- (2) S. Li, W. Yuan and S. Ma, Angew. Chem., Int. Ed., 2011, 50, 2578-2582.
- (3) T. G. Back, and K. Minksztym, Chem. Commun., 1997, 1759-1760.
- (4) J. Hou, J. H. Xie and Q. L. Zhou, Angew. Chem., Int. Ed., 2015, 54, 6302
- (5) (a) E. Szłyk, R. Kucharek, I. Szymańska and L. Pazderski, Polyhedron 2003, 22, 3389; (b) X. Yu, W. Fan, G. Wang, S. Lin, Z. Li, M. Liu, Y. Yang, X. Xin and Q. Jin, *Polyhedron*, 2019, 157, 301; (c) P. Comba, C. Katsichtis, B. Nuber and H. Pritzkow, *Eur. J. Inorg. Chem.*, 1999, 777; (d) J. E. Borger, M. S. Bakker, A. W. Ehlers, M. Lutz, J. C. Slootwega and K. Lammertsm, *Chem. Commun.*, 2016, 52, 3284; (e) E. Fournier, S. Sicard, A. Decken, P. D. Harvey, *Inorg. Chem.*, 2004, 43, 1491; (f) R. Shen, T. Chen, Y. Zhao, R. Qiu, Y. Zhou, S. Yin, X. Wang, M. Goto and L. B. Han, *J. Am. Chem. Soc.*, 2011, 133, 17037.
- (6) M. J. Frisch, et al. Gaussian 09, Reversion D.01, Gaussian Inc., Wallingford, CT, (2009).
- (7) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- (8) A. D. Becke, *Phys. Rev. A.*, 1988, **38**, 3098-3100.
- (9) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- (10) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
- (11) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378-6396.