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Table S1 Comparison of various cellulosic devices.

Application

Highlights

Reference

Nanofluidic device

Heat-to-electricity conversion

device

Versatile sensing devices

Wearable textile sensors

An e-skin device

Electrochemical sensing

device

i) Cationic wood membrane developed for the nanofluidic
device. i) Highly conductivity achieved by etherification

and densification.

i) Oxidation of 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) enhanced the negative charge density of the
cellulose nanofibers. ii) An enhancement effect on
thermal-to-voltage conversion achieved on Na-—cellulose
complex, which was prepared via an electrolyte

infiltration.

i) Flexible and breathable electronic devices constructed
by using cellulose nanocrystals/iron (III) ion/polyvinyl
alcohol composites. i7) Good sensing performance in
monitoring real-time physical and infection related

signals.

i) Conductive silk-polyurethane blended yarns/cellulose
nanocrystals-polypyrrole composites applied for multiple
signals monitoring. ii) Wearable textile sensors assembled

by traditional sewing technology with different shapes.

i) Novel cellulose-based dynamic gel constructed by a
universal hydrogen-bond topology-regulation strategy. i)
Dynamic gel applied for sensing touching, breathing, and

sensitive changes in the surrounding environment.

i) PB-mineralized wood membrane applied for sensitively
electrochemical sensing platform. i7) Sensing signals
effectively amplified by the target activated cascade

reactions.

S1

S2

S3

S4

S5

This work




= s PPN Y

Natural wood “/5de =y tural wood

-~

oYy R
AL T T X ,

ST L

Fig. S3 SEM images of (A) top view and (B) cross-sectional view of natural wood. SEM images of (C)
top view and (D) cross-sectional view of CM. SEM images of (E) top view and (F) cross-sectional view

of PB-decorated CM. Insets: the corresponding high-magnification SEM images.
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Fig. S4 (A) Digital images of natural wood and CM. (B) Digital images of directional fluidic transport of

natural wood and CM.
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Fig. S5 FT-IR spectra of natural wood and CM.
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Fig. S6 Zeta potentials of CM, PB/CM, PAH/PB/CM, and GOx/PB/CM. The pH is 6.0 for zeta potential

measurements.
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Fig. S7 Colorimetric assay of POD-like reaction of PB. (A) UV—vis spectra of different samples: (a)
CM + ABTS + H,0,, (b) PB/CM + ABTS, (¢) PB/CM + H,0,, and (d) PB/CM + ABTS + H,0,. Inset

images: the corresponding photographs of the solutions corresponding to each curve. POD-like catalytic

activity of PB is dependent on (B) pH and (C) H,O, concentration.
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Fig. S8 Variation in pH arising from the reaction between GOx and different concentrations of (A)
L-Glu and (B) D-Glu. (C) The pH of different reaction systems in PBS buffer. (D) Standard photographs
of phosphate buffers at different pH upon the addition of methyl red. (E) Corresponding photographs of

different reaction systems in (C) upon the addition of methyl red.
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Fig. S9 Colorimetric assay of POD-like activity of PB activated by L/D-Glu. (A) UV—vis spectra of
different samples in 1 mM D-Glu, 0.5 mM ABTS, and 0.2 mM PBS buffer solutions: (a) CM, (b)
PB/CM, (c¢) GOx/PB/CM, and (d) GOx/CM. (B) UV—vis spectra of GOx/PB/CM in different solutions:
(a) ABTS, (b) D-Glu, (c) ABTS + D-Glu, and (d) ABTS + L-Glu. Inset image: the corresponding

photographs of solutions corresponding to each curve. (C and D) Photographs of different reaction
systems in 1 mM L/D-Glu and 0.2 mM PBS buffer upon the addition of methyl red. (E and F) UV—vis
absorption spectra over time in the presence of 1 mM L/D-Glu, 0.5 mM ABTS, and 0.2 mM PBS (pH

6.0).
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Fig. S10 I~V curves for evaluating the POD-like activity in different electrolytes: (A) 0.2 mM PBS bufter,

(B) 1 mM D-Glu and 0.2 mM PBS bufter, (C) 0.5 mM ABTS and 0.2 mM PBS buffer, and (D) 1 mM
D-Glu, 0.5 mM ABTS, and 0.2 mM PBS buffer.
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Fig. S11 -V curves for evaluating the effect of membrane composition on POD-like activity: (A) CM,
(B) PB/CM, (C) GOx/CM, and (D) GOx/PB/CM. The electrolyte for electrochemical measurement
contains 1 mM D-Glu, 0.5 mM ABTS, and 0.2 mM PBS buffer (pH 6.0).
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Fig. S12 I-V curves for evaluating the effect of the deposition time of PB on the POD-like activity.

Electrochemical measurements were performed in an aqueous solution containing 1 mM D-Glu, 0.5 mM
ABTS, and 0.2 mM PBS bufter (pH 6.0).
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Fig. S13 -V curves for evaluating the effect of GOx concentration on the POD-like activity.

Electrochemical measurements were performed in an aqueous solution containing 1 mM D-Glu, 0.5 mM

ABTS, and 0.2 mM PBS bufter (pH 6.0).
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Fig. S14 -V curves for evaluating the effect of GOx assembly time on the POD-like activity.
Electrochemical measurements were performed in an aqueous solution containing 1 mM D-Glu, 0.5 mM

ABTS, and 0.2 mM PBS bufter (pH 6.0).
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Fig. S15 I-V curves for evaluating the effect of incubation time on POD-like activity. Electrochemical
measurements were performed in an aqueous solution containing 1 mM D-Glu, 0.5 mM ABTS, and 0.2

mM PBS buffer (pH 6.0).
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Fig. S16 -V curves for evaluating the effect of ABTS concentration on POD-like activity.
Electrochemical measurements were performed in an aqueous solution containing 1 mM D-Glu, 0-1 mM

ABTS, and 0.2 mM PBS buffer (pH 6.0).
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Fig. S17 -V curves for sensing different concentrations of L-Glu. Electrochemical measurements were
performed in an aqueous solution containing 0-10 mM L-Glu, 0.5 mM ABTS, and 0.2 mM PBS buffer
(pH 6.0).
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Fig. S18 -V curves for sensing different concentrations of D-Glu. Electrochemical measurements were
performed in an aqueous solution containing 0-10 mM D-Glu, 0.5 mM ABTS, and 0.2 mM PBS bufter
(pH 6.0).
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Table S2 Comparison of various methods for L/D-Glu detection.

Methods

Mechanisms

Sensitivity data

References

Chiral nanochannel-based

electrochemical method

Achiral glucose

receptor-based CD assay

Gold nanoparticles (AuNPs)
with DNA ligands—based

colorimetric assay

Chiral AuNP-based

colorimetric strategy

Self-activated cascade
reaction based

electrochemical assay

The chiral nanochannels modified with
a chiral pillar[6]arene-based host—guest
system show a high chiral-driven ionic

gate for glucose enantiomers.

Glucose receptor contains
bis-ureidobenzenecarboxamido units,
which bind to L/D-Glu expected to
cause twisting of these chromophores,

leading to strong CD signals

Random-coiled DNA-capped
nanoparticles preferentially catalyze
oxidation of L-Glu, and structured
DNA-capped nanoparticles show
higher activity toward D-Glu

AuNPs modified by polycationic
a-cyclodextrin allowed for precise the
photocontrol of recognition catalysis

for chiral monosaccharides.

GOx modified in wood channel
converts D-Glu (not L-Glu) into
gluconic acid and H,0,, activating the
POD-like activity of PB for further

triggering the ionic current response

1 mM

40 uM

2 mM

100 mM

3 uM

S6

S7

S8

S9

This study
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Fig. S19 -V curves for sensing different chiral molecules. Electrochemical measurements were
performed in an aqueous solution containing 1 mM L/D-Glu, | mM L/D-Man orl mM L/D-Xyl, 0.5 mM

ABTS, and 0.2 mM PBS bufter (pH 6.0).
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Fig. S20 /-V curves for sensing different interfering species. Electrochemical measurements were
performed in an aqueous solution containing 1 mM D-Glu, 0.5 mM AA, 0.5 mM DA, 0.5 mM UA or 0.5
mM PP, 0.5 mM ABTS, and 0.2 mM PBS bufter (pH 6.0).
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Table S3 Detection of D-Glu in real serum samples using the proposed method.

Known Detected
Sample concentration concentration
Recovery RSD
(mM) (mM)
Sample I 5.51 5.63£0.11 102.27% 1.97%
Sample I1 8.01 8.16 £0.23 101.82% 2.74%
Sample 111 9.51 9.51+£0.34 99.47% 3.62%
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