Supplementary Information

Facile Synthesis of Hemiacetal Ester-based Dynamic Covalent Polymer Networks Combining Fast Reprocessability and High Performance

Hongzhi Feng^{1, 2}, Songqi Ma¹*, Xiwei Xu^{1, 2}, Qiong Li^{1, 2}, Binbo Wang^{1, 2}, Na Lu^{1, 2}, Pengyun Li^{1, 2}, Sheng Wang^{1, 2}, Zheng Yu¹, Jin Zhu¹

¹Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of

Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,

Ningbo 315201, P. R. China;

²University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

*Corresponding authors: (Songqi Ma) E-mail masongqi@nimte.ac.cn, Tel 86-574-87619806.

Contents

Fig. S1 FTIR spectra of PMMCs	3
Fig. S2 ¹ H NMR spectrum of IBA-CVE.	3
Fig. S3 ¹³ C NMR spectrum of IBA-CVE.	4
Fig. S4 ¹ H NMR spectrum of PPA-IVE	4
Fig. S5 ¹³ C NMR spectrum of PPA-IVE.	5
Fig. S6 ¹ H NMR spectrum of IBA-IVE.	5
Fig. S7 ¹³ C NMR spectrum of IBA-IVE.	6
Fig. S8 ¹ H NMR spectrum of PPA-CVE.	6
Fig. S9 ¹³ C NMR spectrum of PPA-CVE.	7
Fig. S10 Stress relaxation curves of PMMC-5 at different temperatures.	7
Fig. S11 Stress relaxation curves of PMMC-10 at different temperatures.	7
Fig. S12 Stress relaxation curves of PMMC-15 at different temperatures.	8
Fig. S13 Stress relaxation curves of PMMC-20 at different temperatures.	8
Fig. S14 Reprocess recycling through hot press with different time.	9
Fig. S15 Frequency sweep measurements at 150 °C of the original and reprocessed (compression remo	lded)
PMMC-10	9
Fig. S16 Reprocess recycling through extrusion plastometer and hot press at 160 °C for 10 min	10
Fig. S17 Representative tensile stress-strain curves of the original and reprocessed PMMC-5	10
Fig. S18 Representative tensile stress-strain curves of the original and reprocessed PMMC-10	10
Fig. S19 Representative tensile stress-strain curves of the original and reprocessed PMMC-15	11
Fig. S20 Representative tensile stress-strain curves of the original and reprocessed PMMC-20.	11
Fig. S21 Time sweep measurement at 120 °C of the PMMC-10.	11
Fig. S22 Mass spectra of PPA-IVE, IBA-CVE, IBA-IVE, PPA-CVE.	12
Fig. S23 Gas chromatograms of metathesis without PPA at 120 °C for different time	12
Fig. S24 Gas chromatograms of metathesis with PPA at 60 °C for different time	13
Fig. S25 Fraction of 1 as a function of time during the exchange experiment at different temperatures	13
Fig. S26 Plot of -ln ([1] [1] ₀) versus t for the small molecule 1. $kexp$ at each temperature was determined by	oy its
slope value	14
Fig. S27 Arrhenius analysis of the rate constant kexp versus T for 1 and 2 exchange	14
Table S1 Mechanical properties of different samples	15
Table S2 Thermo-physical properties of different samples	15
Table S3 Mechanical properties of the original and reprocessed PMMC-5	15
Table S4 Transition state geometry	16

Fig. S1 FTIR spectra of PMMCs.

Fig. S2 ¹H NMR spectrum of IBA-CVE.

ppm

Fig. S3 ¹³C NMR spectrum of IBA-CVE.

Fig. S4 ¹H NMR spectrum of PPA-IVE.

Fig. S5 ¹³C NMR spectrum of PPA-IVE.

Fig. S6 ¹H NMR spectrum of IBA-IVE.

Fig. S7 ¹³C NMR spectrum of IBA-IVE.

Fig. S8 ¹H NMR spectrum of PPA-CVE.

Fig. S9 ¹³C NMR spectrum of PPA-CVE.

Fig. S10 Stress relaxation curves of PMMC-5 at different temperatures.

Fig. S11 Stress relaxation curves of PMMC-10 at different temperatures.

Fig. S12 Stress relaxation curves of PMMC-15 at different temperatures.

Fig. S13 Stress relaxation curves of PMMC-20 at different temperatures.

Fig. S14 Reprocess recycling through hot press with different time.

Fig. S15 Frequency sweep measurements at 150 °C of the original and reprocessed (compression remolded) PMMC-10.

Fig. S16 Reprocess recycling through extrusion plastometer and hot press at 160 °C for 10 min.

Fig. S17 Representative tensile stress-strain curves of the original and reprocessed PMMC-5.

Fig. S18 Representative tensile stress-strain curves of the original and reprocessed PMMC-10.

Fig. S19 Representative tensile stress-strain curves of the original and reprocessed PMMC-15.

Fig. S20 Representative tensile stress-strain curves of the original and reprocessed PMMC-20.

Fig. S21 Time sweep measurement at 120 °C of the PMMC-10.

Fig. S22 Mass spectra of PPA-IVE, IBA-CVE, IBA-IVE, PPA-CVE.

Fig. S23 Gas chromatograms of metathesis without PPA at 120 °C for different time.

Fig. S24 Gas chromatograms of metathesis with PPA at 60 °C for different time.

Fig. S25 Fraction of 1 as a function of time during the exchange experiment at different temperatures.

As shown in the main text, this reaction can be described in terms of second-order kinetics (eq (1)). In addition, considering a vast excess of PPA-IVE, eq (1) can be transformed into eq (2). Small molecule IBA-CVE = 1, PPA-IVE = 2.

$$\frac{dl[1]}{dlt} = -k[1][2] \tag{1}$$
$$= -k_{exp}[1] \tag{2}$$

k: rate constant, k_{exp} : experimental rate constant

If the initial concentration of 1 is described as $[1]_0$, eq (2) can be transformed to eq (3)¹.

$$ln\left(\frac{[1]}{[1]^0}\right) = -k_{exp}t \tag{3}$$

Fig. S26 Plot of $-\ln ([1] [1]_0)$ versus t for the small molecule 1. k_{exp} at each temperature was determined by its slope value.

120 °C	y= 0.0000962963x -0.059	$R^2 = 0.96$
130 °C	y= 0.000158194x -0.08401	$R^2 = 0.95$
120 °C	y= 0.000205213x -0.05006	$R^2 = 0.97$
120 °C	y= 0.000348328x -0.04085	$R^2 = 0.95$

To calculate the activation energy for each reaction, the Arrhenius plots were made using k_{exp} .

k = A exp(-Ea/RT) (A : pre-exponential factor, Ea : activation energy, R : universal gas constant) R = 8.314 J K⁻¹ mol⁻¹ was used to calculate the activation energies from the slope values.

Fig. S27 Arrhenius analysis of the rate constant k_{exp} versus T for 1 and 2 exchange.

Sample	$T_g(^{\circ}\mathrm{C})$	$v_e (\text{mol cm}^{-3})$	$T_{d5\%}(^{\circ}\mathrm{C})$	<i>T_{d30%}</i> (°C)	$T_s(^{\circ}\mathrm{C})$
PMMC-5	126	154	238	379	158
PMMC-10	124	130	227	386	158
PMMC-15	117	114	217	388	157
PMMC-20	113	164	218	387	157

Table S1 Thermo-physical properties of different samples

 $T_s = 0.49 \big[T_{d5\%} + 0.6 \big(T_{d30\%} - T_{d5\%} \big) \big]$

Table S2 Mechanical properties of different samples

Sample	Young's modulus	Tensile strength	Elongation at
Sumple	(MPa)	(MPa)	break (%)
PMMC-5	1967±43	57±5	5.63±0.37
PMMC-10	1906±34	54±6	5.66±0.18
PMMC-15	1864±55	53±4	5.83±0.27
PMMC-20	1773±47	52±9	5.49±0.32

Table S3 Mechanical properties of the original and reprocessed PMMC-5

Sample	Young's modulus	Tensile strength	Elongation at
Sample	(MPa)	(MPa)	break (%)
Original	1967±43	57±5	5.43±0.32
Hot press	1827±60	55±8	4.79±0.45
Melt flow	1760±72	53±6	4.40 ± 0.54
Extrude	1810±48	56±4	4.37±0.27

Table S4 Transition state geometry

References

1 Q. Li, S. Ma, P. Li, B. Wang, H. Feng, N. Lu, S. Wang, Y. Liu, X. Xu, J. Zhu, *Macromolecules*, 2021, **54**, 1742-1753.