Supplementary Information

2

1

- 3 Solvent Effect on Xylose-to-Furfural Reaction in Biphasic Systems:
- 4 Combined Experiments with Theoretical Calculations
- 5

6 Qixuan Lin,^a Qiwen Zhan^a, Rui Li^a, Shouwei Liao,^b Junli Ren,^{a,*} Feng Peng,^c Libo
7 Li^{b,*}

- 8 aState Key Laboratory of Pulp and Paper Engineering, South China University of
- 9 Technology, Wushan Road, Tianhe District, Guangzhou 510640, China.
- 10 bSchool of Chemistry and Chemical Engineering, South China University of
- 11 Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
- 12 °Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University,
- 13 East Qinghua Road, Haidian District, Beijing, 100083, China
- 14
- 15 *Email: renjunli@scut.edu.cn; celbli@scut.edu.cn;
- 16
- 17
- 18
- 19
- 20
- 21
- 22

23 Molecular Dynamics Simulation

Molecular dynamics (MD) simulation was performed using GROMACS 5.1.4 24 package.¹⁻³ OPLS topology data for molecules were obtained from LigParGen, a free 25 web service offered by Jorgensen research group.⁴⁻⁶ In the simulations, xylose and 26 furfural molecules (solute), were solvated in six biphasic systems, respectively (the 27 water and organic solvent volume ratio is 1:1). The simulation box sizes were \sim 3.0 nm 28 with PBC (periodic boundary condition) applied to all 3 dimensions of the system. The 29 OPLS/AA force-field^{6, 7} was employed to model the xylose, furfural and organic 30 solvent molecules, while TIP4P⁸ model was used to describe the water molecule. Each 31 system was simulated for 25 ns in an NVT ensemble with an integration time step of 2 32 fs and the last 20 ns was used for the subsequent analysis. This was preceded by a 5 ns 33 of NPT equilibration MD run. Steepest-descent energy minimization was performed 34 before the NPT MD simulation to remove accidental overlaps. All the simulation 35 systems were maintained at 298 K using the v-rescale thermostat.⁹ A time constant of 36 0.1 ps was applied for the temperature coupling. The Lennard-Jones (LJ) interactions 37 were switched off smoothly between 10 and 12 Å, and a long-range analytical 38 dispersion correction¹⁰ was applied to the energy and pressure to account for the 39 truncation of LJ interactions. The neighbour list was updated every 0.01 ps within 1.2 40 nm. The electrostatic interactions were evaluated with a real-space cutoff of 12 Å, with 41 the long-range component calculated with the PME (Particle Mesh Ewald) method.¹¹ 42 LINCS¹² algorithm was used to constraint the bonds involving hydrogen atoms, and 43 SETTLE¹³ algorithm was employed to constraint water geometry. The simulation 44

45	trajectory data (saved every 2ps) were analyzed with the GROMACS package, with
46	figures produced by the VMD ¹⁴ software. The Z-axis coordinates of xylose and furfural
47	over time, radial distribution functions (RDF), spatial density functions (SDF), and
48	hydrogen bonds (H-bonds) between solute and solvents were calculated. As for other
49	simulation details, please refer to our previous publications. ^{15, 16}
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

Systems	Time (min)	Partition coefficient					
		170°C	180°C	190°C			
2-Butanol/H ₂ O	40	362	65	6			
	60	66	9	5			
	80	12	8	30			
	100	12	7	4			
2-MTHF/H ₂ O	40	242	68	10			
	60	114	4	9			
	80	15	22	9			
	100	18	14	8			
CPME/H ₂ O	40	208	33	3			
	60	20	5	2			
	80	5	5	4			
	100	6	4	3			
Toluene/H ₂ O	40	21	10	2			
	60	9	3	2			
	80	6	5	3			
	100	4	4	3			
MIBK/H ₂ O	40	195	42	25			
	60	62	23	10			
	80	22	20	15			
	100	16	15	15			
DCM/H ₂ O	40	22	16	6			
	60	60 8		15			
	80	12	19	19			
	100	12	16	266			

67 Table S1. The partition coefficient of furfural in the biphasic systems during reaction

Solvent system	Temp.	k ₁ (min ⁻¹)	k ₂ (min ⁻¹)	k ₃ (min ⁻¹)	k ₄ (min ⁻¹)
	170°C	0.011	27.28	1.65×10 ⁻¹¹	0.025
2-Butanol/H ₂ O	180°C	0.0086	92.17	0.015	0.0058
	190°C	0.0066	92.12	0.020	3.19×10 ⁻⁹
	170°C	0.016	22.34	1.32×10^{-13}	0.018
2-MTHF/H ₂ O	180°C	0.0089	44.76	0.013	8.46×10 ⁻¹⁶
	190°C	0.0064	35.34	0.016	1.88×10 ⁻¹⁶
	170°C	0.0050	29.80	0.0022	0.013
CPME/H ₂ O	180°C	0.0082	60.08	0.0032	0.025
	190°C	0.0037	40.89	0.0091	2.03×10^{-16}
	170°C	0.0041	92.12	0.0091	4.29×10 ⁻¹⁸
Toluene/H ₂ O	180°C	0.0073	92.13	0.0034	0.040
	190°C	0.0032	92.10	0.0137	4.42×10^{-17}
	170°C	0.011	37.85	4.18×10 ⁻¹²	0.026
MIBK/H ₂ O	180°C	0.0075	91.44	0.013	2.77×10^{-14}
	190°C	0.0099	92.13	0.014	1.13×10 ⁻¹⁶
	170°C	0.021	91.44	0.0154	1.56×10 ⁻¹³
DCM/H ₂ O	180°C	0.077	92.47	2.21×10 ⁻¹²	0.017
	190°C	0.050	92.98	0.058	0.013

Table S2. Kinetics parameters for xylose conversion in the six biphasic systems

S5

	Solvents	$\Delta \mathbf{G}_{sol}$ in the	$\Delta \mathbf{G}_{\mathbf{sol}}$ in the	$\Delta \mathbf{G}_{sol}$ in the	$\Delta \mathbf{G}_{\mathbf{sol}}$ in the
		first 1 ns	first 2 ns	first 3 ns	first 4 ns
		(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
	Water	-17.32 ± 0.40	-17.22±0.26	-16.84±0.26	-16.89±0.26
	Toluene	-23.42±0.27	-23.55±0.22	-23.56±0.12	-23.53±0.15
	MIBK	-26.17±0.31	-26.29±0.15	-26.43±0.20	-26.34±0.13
	CPME	-30.71±0.26	-30.53±0.15	-30.46±0.25	-30.54±0.15
	2- MTHF	-30.48±0.20	-30.39±0.27	-30.73±0.19	-30.62±0.12
	2- Butanol	-33.93±0.43	-34.56±0.59	-34.39±0.36	-34.09±0.44
	DCM	-37.93±0.22	-37.62±0.24	-37.44±0.17	-37.39±0.18
83					
84					
85					
86					
87					
88					
89					
90					
91					
92					
93					
94					
95					

82 **Table S3**. The solvation free energy (ΔG_{sol}) of furfural in various solvents

Systems	$\textbf{Total} \ \Delta \textbf{G}_{\textbf{sol}}$	$\textbf{Polar} \ \Delta \textbf{G}_{\textbf{sol}}$	Nonpolar ΔG_{sol}
	(kJ/mol) ^b	(kJ/mol) ^b	(kJ/mol) ^b
FF ^a in water	-16.89±0.26	-24.14±0.07	7.25±0.20
FF ^a in toluene	-23.53±0.15	-11.38 ± 0.08	-12.15±0.18
FF ^a in MIBK	-26.34±0.13	-13.19±0.08	-13.16±0.14
FF ^a in CPME	-30.54±0.15	-11.64 ± 0.07	-18.90±0.12
FF ^a in 2-MTHF	-30.62±0.12	-10.13 ± 0.04	-20.49±0.10
FF ^a in 2-butanol	-34.09 ± 0.44	-15.57±0.20	-18.52±0.26
FF ^a in DCM	-37.39±0.18	-18.74±0.14	-18.65 ± 0.06

Table S4. The solvation free energy of furfural in various solvents

 ${}^{a}FF$: Furfural. ${}^{b}\Delta G_{sol}$: Solvation free energy.

98			
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			

	Windo	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	w index														
	λ_{vdw}	0	0	0	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	λ_{coul}	0	0.25	0.50	0.75	1	1	1	1	1.	1	1	1	1	1
113	*The λ_{vdw}	and	λ_{coul} re	efer to	the sca	aling 1	the va	ın der	· Waa	ls and	d Cou	ılomb	ic int	eracti	ons,
114	respective	ly, a	it each	windo	w.										
115															
116															
117															
118															
119															
120															
121															
122															

112 **Table S5**. λ Schedule^{*}

Figure S1. The moving trajectories of furfural and xylose in Z-axis in (a) MIBK/H₂O, (b) 2-MTHF/H₂O, (c) CPME/H₂O, and (d) 2-butanol/H₂O systems. Dotted lines show the boundary between the aqueous and organic phases. Initially, the organic phase is in the range of 0-3 nm, and the aqueous phase is in the range of 3-6 nm on the Z axis. The two phases cycle alternately. Blue: furfural; Green: xylose.

130

- 131
- 132
- 133

135 Figure S2. Centre of mass radial distribution functions (RDF) of solvent molecules136 with respect to xylose or furfural

147 References

- 148 1. B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, Journal of Chemical Theory
- and Computation, 2008, **4**, 435-447.
- 150 2. H. J. C. Berendsen, D. van der Spoel and R. van Drunen, Computer Physics
- 151 *Communications*, 1995, **91**, 43-56.
- 152 3. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
- 153 Berendsen, Journal of Computational Chemistry, 2005, 26, 1701-1718.
- 154 4. W. L. Jorgensen and J. Tirado-Rives, Proceedings of the National Academy of
- 155 Sciences of the United States of America, 2005, **102**, 6665-6670.
- 156 5. L. S. Dodda, J. Z. Vilseck, J. Tirado-Rives and W. L. Jorgensen, The Journal of
- 157 *Physical Chemistry B*, 2017, **121**, 3864-3870.
- 158 6. L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives and W. L. Jorgensen, Nucleic acids
- 159 *research*, 2017, **45**, W331-W336.
- 160 7. M. J. Robertson, J. Tirado-Rives and W. L. Jorgensen, Journal of Chemical Theory
- 161 *and Computation*, 2015, **11**, 3499-3509.
- 162 8. W. L. Jorgensen and J. D. Madura, *Molecular Physics*, 1985, 56, 1381-1392.
- 163 9. G. Bussi, D. Donadio and M. Parrinello, The Journal of Chemical Physics, 2007,
- 164 **126**, 014101.
- 165 10. M. R. Shirts, J. W. Pitera, W. C. Swope and V. S. Pande, The Journal of Chemical
- 166 *Physics*, 2003, **119**, 5740-5761.
- 167 11. T. Darden, D. York and L. Pedersen, *The Journal of Chemical Physics*, 1993, 98,
 168 10089-10092.

- 169 12. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, Journal of
- 170 *Computational Chemistry*, 1997, **18**, 1463-1472.
- 171 13. S. Miyamoto and P. A. Kollman, Journal of Computational Chemistry, 1992, 13,
- 172 952-962.
- 173 14. W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996,
- 174 **14**, 33-38.
- 175 15. H. Chen, L. Li, T. Zhang, Z. Qiao, J. Tang and J. Zhou, The Journal of Physical
- 176 *Chemistry C*, 2018, **122**, 2070-2080.
- 177 16. L. Li, C. J. Fennell and K. A. Dill, The Journal of Physical Chemistry B, 2014,
- 178 **118**, 6431-6437.
- 179