Supporting Information

CO₂-Tuned highly selective reduction of formamides to the corresponding methylamines

Zhiqiang Guo,*a Tengfei Pang,^b Leilei Yan,^b Xuehong Wei,*a Jianbin Chao^a and Chanjuan Xi*^c

^aScientific Instrument Center, Shanxi University, Taiyuan, 030006, P.R. China. E-mail: gzq@sxu.edu.cn, xhwei@sxu.edu.cn

^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China.

^cMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. E-mail: cjxi@tsinghua.edu.cn

Contents

General information	3
General procedure for hydrogenation of N-methylformanilide to N, N dimethylaniline	1-
General procedure for hydrogenation of N-methylformanilide to N-methylanilineS	3
Isotope labeling experiments with ¹³ CO ₂	5
Isotope labeling experiments with NaBD ₄)
Experiments under the mixed CO_2/N_2 atmosphereS7	7
Control experiment	3
The reaction of N-methylformanilide with NaBH(OAc) ₃ under N ₂ atmosphere	••
Characterization data of methylamines	1
References	1
¹ H and ¹³ C NMR spectra of methylated products	3

General Information

All solvents were dried and distilled before use according to the standard methods. The chemicals were purchased from commercial sources (purity > 97%) and used as received unless otherwise indicated. The N-methylformanilides were prepared according to the literature procedures.^[1] Carbon dioxide (99.999%) was used as received without further purification. Flash chromatography columns were packed with 200-300 mesh neutral alumina in petroleum (bp. 60-90 °C) and ethyl acetate. ¹H NMR (600 MHz), ¹³C NMR (150.9 MHz) data were recorded on a BRUKER AVANCE III 600MHz instrument at 298 K with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.16 ppm, chloroform), respectively.

General procedure for hydrogenation of N-methylformanilide to N, Ndimethylaniline

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaBH₄ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with CO₂ three times. Then, N-methylformanilide (67.6 mg, 0.5 mmol), 1.0 mL of 1,4-dioxane were added under the CO₂ atmosphere, and the reaction tube was sealed and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The yields were determined by using the ¹H NMR technique using trichloroethylene (45 µL, 0.5 mmol) as an internal standard. The crude product was purified by silica gel flash chromatography (petroleum ether/ EtOAc: 5/1). All of the products were characterized by NMR techniques.

General procedure for hydrogenation of N-methylformanilide to N-methylaniline

To a 25 mL sealed tube equipped with a magnetic stir bar was added $NaBH_4$ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with N_2 three times. Then, N-

methylformanilide (67.6 mg, 0.5 mmol), 1.0 mL of 1,4-dioxane were added under the N_2 atmosphere, the reaction tube was sealed and stirred at 100 °C for 24 h. After completion, the reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated. The yields were determined by using the ¹H NMR technique using trichloroethylene (45 μ L, 0.5 mmol) as an internal standard. The crude product was purified by silica gel flash chromatography (petroleum ether/ EtOAc: 5/1). All of the products were characterized by NMR techniques.

Scheme S1 Substrate scope for C-N hydrogenolysis of formanilides

^aReaction conditions: formanilide (0.5 mmol), 1,4-dioxane (2 mL), NaBH₄ (1.5 mmol), 100 °C, 24 h,

the sealed tube was evacuated and backfilled with N₂three time. ^bYield determinedby ¹H NMR spectroscopy using trichloroethylene as an internal standard. Values inparentheses refer to yields of isolatedproducts.

Isotope Labeling Experiments with ¹³CO₂

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaBH₄ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with ¹³CO₂ three times. Then, N-methylformanilide (67.6 mg, 0.5 mmol), 1.0 mL of 1, 4-dioxane were added at atmospheric pressure of ¹³CO₂ (1 atm), and the reaction tube was sealed and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The crude product (**2a**') was purified by silica gel flash chromatography (petroleum ether/EtOAc: 5/1). The methyl signals of (**2a**') were detected in the ¹³C NMR spectrum at δ = 40.75 ppm, which is not significantly different from what did in general carbon dioxide (see Fig. S1). It indicates that the methyl group did not come from CO₂.

Fig. S1 ¹³C NMR spectrum of 2a'

Isotope Labeling Experiments with NaBD₄

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaBD₄ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with CO₂ three times. Then, N-methylformanilide (67.6 mg, 0.5 mmol), 1.0 mL of 1,4-dioxane were added under the CO₂ atmosphere, and the reaction tube was sealed and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The crude product (**2a**'') was purified by silica gel flash chromatography (petroleum ether/ EtOAc: 5/1).

Fig. S2 ¹H NMR spectrum of 2a"

Fig. S3 ¹³C NMR spectrum of 2a"

Experiments under the mixed CO₂/N₂ atmosphere

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaBH₄ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with CO₂-N₂ three times. Then, N-methylformanilide (67.6 mg, 0.5 mmol), 1.0 mL of 1,4-dioxane were added under the CO₂-N₂ atmosphere, and the reaction tube was sealed and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The crude product was determined by using the ¹H NMR technique using trichloroethylene (45 µL, 0.5 mmol) as an internal standard. (See Fig. S4).

Fig. S4 ¹H NMR spectrum of the reaction mixture after reaction under the mixed CO₂ and N₂ atmosphere for determined the yields

Control experiment

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaBH₄ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with CO₂ three times. 1.0 mL of 1,4-dioxane were added, the reaction tube was sealed and stirred at 100 °C for 24 h, the reaction mixture was allowed to room temperature. Then CO₂ was replaced with N₂ atmosphere and N-methylformanilide (67.6 mg, 0.5 mmol) was added, and the reaction tube was sealed again and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The yields were determined by using the ¹H NMR technique using trichloroethylene (45 μ L, 0.5 mmol) as an internal standard (See

Fig. S5).

Fig. S5 ¹H NMR spectrum of the reaction mixture after reaction for determined the yields

The reaction of N-methylformanilide with NaBH(OAc)₃ under N₂ atmosphere

To a 25 mL sealed tube equipped with a magnetic stir bar was added NaHB(OAc)₃ (56.7 mg, 1.5 mmol), this tube was evacuated and backfilled with CO₂ three times. 2.0 mL of 1,4-dioxane, N-methylformanilide (67.6 mg, 0.5 mmol) were added, and the reaction tube was sealed and stirred for 24 h at 100 °C. The reaction was carefully quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The yields were determined by using the ¹H NMR technique using trichloroethylene (45 µL, 0.5 mmol) as an internal standard (See Fig. S6).

Fig. S6 ¹H NMR spectrum of the reaction mixture after reaction for determined the yields

Characterization data of methylamines

(All products were identified through comparisons with the corresponding ¹H NMR, ¹³C NMR data reported in the literatures.)

N, N-Dimethylaniline (2a)¹⁵

Colorless oil, yield: 84%, ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, J = 7.7 Hz, 2H), 6.76 (dd, J = 17.4, 7.9 Hz, 3H), 2.97 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 150.72 (s), 129.18 (s), 116.75 (s), 112.77 (s), 40.75 (s).

N, N-Dimethyl-p-toluidine (2b)¹⁵

Colorless oil, yield: 66%, ¹H NMR (600 MHz, CDCl₃) δ 7.09 (d, J = 8.1 Hz, 2H), 6.73 (d, J = 7.9 Hz, 2H), 2.92 (s, 6H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.88 (s), 129.72 (s), 126.34 (s), 113.40 (s), 41.26 (s), 20.39 (s).

N, N-Dimethyl-m-toluidine $(2c)^{15}$

Colorless liquid, yield: 54%, ¹H NMR (600 MHz, CDCl₃) δ 7.15 (t, J = 7.7 Hz, 1H), 6.58 (d, J = 9.0 Hz, 3H), 2.94 (s, 6H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.81 (s), 138.88 (s), 129.07 (s), 117.87 (s), 113.66 (s), 110.11 (s), 40.90 (s), 22.04 (s).

N, N-Dimethyl-o-toluidine (2d)¹⁵

Colorless liquid, yield: 39%, ¹H NMR (600 MHz, CDCl₃) δ 7.20 (d, J = 6.9 Hz, 2H), 7.07 (d, J = 7.7 Hz, 1H), 6.99 (t, J = 7.1 Hz, 1H), 2.74 (s, 6H), 2.37 (s, 3H). ¹³C NMR

(151 MHz, CDCl₃) δ 152.77 (s), 132.20 (s), 131.27 (s), 126.55 (s), 122.69 (s), 118.44 (s), 44.35 (s), 18.50 (s).

4-Methoxy-N, N-dimethylaniline (2e)¹⁵

White solid, yield: 89%, ¹H NMR (600 MHz, CDCl₃) δ 6.86 (d, J = 9.1 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 3.77 (s, 3H), 2.88 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 152.16 (s), 145.76 (s), 115.10 (s), 114.72 (s), 55.86 (s), 42.02 (s).

4-Fluoro-N, N-dimethylaniline (2f)¹⁵

White solid, yield: 85%, ¹H NMR (600 MHz, CDCl₃) δ 6.96 (t, J = 8.8 Hz, 2H), 6.72-6.67 (m, 2H), 2.91 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 156.50 (s), 154.94 (s), 147.61 (s), 115.57 (s), 115.43 (s), 114.07 (d, J = 7.3 Hz), 41.52 (s).

4-Chloro-N, N-dimethylaniline (2g)¹⁵

White solid, yield: 92%, ¹H NMR (600 MHz, CDCl₃) δ 7.15 (d, J = 9.0 Hz, 2H), 6.62 (d, J = 8.9 Hz, 2H), 2.90 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 149.22 (s), 128.89 (s), 121.47 (s), 113.73 (s), 40.76 (s).

4-Bromo-N, N-dimethylaniline (2h)¹⁵

White solid, yield: 94%, ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.7 Hz, 2H), 6.60 (d, *J* = 7.2 Hz, 2H), 2.93 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 149.57 (s), 131.77 (s), 114.19 (s), 108.57 (s), 40.68 (s).

4-Nitro-N, N-dimethylaniline (2i)¹⁵

Yellow solid, yield: 33%, ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 2H), 3.11 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 154.32 (s), 137.02 (s), 126.26 (s), 110.33 (s), 40.41 (s).

N-Ethyl-N-methylaniline (2j)¹⁵

Colorless liquid, yield: 88%, ¹H NMR (600 MHz, CDCl₃) δ 7.22 (t, *J* = 7.8 Hz, 2H), 6.72 (d, *J* = 8.3 Hz, 2H), 6.68 (t, *J* = 7.2 Hz, 1H), 3.39 (q, *J* = 7.1 Hz, 2H), 2.89 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.17 (s), 129.29 (s), 116.19 (s), 112.54 (s), 46.95 (s), 37.59 (s), 11.29 (s).

N-Isopropyl-N-methylaniline (2k)¹⁵

Colorless liquid, yield: 77%, ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, J = 7.9 Hz, 2H), 6.85 (d, J = 8.2 Hz, 2H), 6.75 (t, J = 7.2 Hz, 1H), 4.15 (dt, J = 13.2, 6.6 Hz, 1H), 2.78 (s, 3H), 1.22 (d, J = 6.8 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 150.30 (s), 129.23 (s), 116.49 (s), 113.40 (s), 48.99 (s), 29.87 (s), 19.43 (s).

N-Benzyl-N-methylaniline (21)¹⁵

Colorless oil, yield: 71%, ¹H NMR (600 MHz, CDCl₃) δ 7.44 (t, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 5H), 6.91 – 6.82 (m, 3H), 4.65 (s, 2H), 3.13 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.78 (s), 139.09 (s), 129.27 (s), 128.64 (s), 126.94 (s), 126.80 (s), 116.61 (s), 112.41 (s), 56.67 (s), 38.58 (s).

N-Methyl-N-phenylaniline (2m)¹⁵

Colorless oil, yield: 89%, ¹H NMR (600 MHz, CDCl₃) δ 7.31 (t, *J* = 7.1 Hz, 4H), 7.07 (d, *J* = 7.7 Hz, 4H), 7.00 (t, *J* = 7.3 Hz, 2H), 3.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.10 (s), 129.31 (s), 121.38 (s), 120.55 (s), 40.37 (s).

N-Methyl-N-phenylnaphthalen-2-amine (2n)¹⁵

Colorless oil, yield: 85%, ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 1H), 7.75 (dd, J = 13.7, 8.6 Hz, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.41-7.35 (m, 4H), 7.28 (dd, J = 8.9, 2.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 3.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.09 (s), 146.61 (s), 134.77 (s), 129.42 (s), 129.25 (s), 128.71 (s), 127.66 (s), 126.86 (s), 126.39 (s), 123.88 (s), 122.15 (s), 121.88 (s), 121.52 (s), 114.73 (s), 40.78 (s).

Methyl 4-dimethylaminobenzoate (20)¹⁵

White solid, yield: 91%, ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 8.5 Hz, 2H), 3.85 (s, 3H), 3.01 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 167.55 (s), 153.30 (s), 131.28 (s), 116.91 (s), 110.70 (s), 51.53 (s), 40.08 (s).

4-(N, N-Dimethylamino)benzonitrile (2p)¹⁵

White solid, yield: 82%, ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 9.0 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 3.03 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 152.51 (s), 133.47 (s), 120.87 (s), 111.48 (s), 97.34 (s), 40.04 (s).

1-methylindoline (2q)¹⁵

Colorless oil, yield: 87%, ¹H NMR (600 MHz, CDCl₃) δ 7.11 (s, 2H), 6.71 (t, *J* = 7.0 Hz, 1H), 6.53 (d, *J* = 7.6 Hz, 1H), 3.31 (t, *J* = 8.0 Hz, 2H), 2.97 (t, *J* = 7.9 Hz, 2H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.39 (s), 130.47 (s), 127.44 (s), 124.40 (s), 118.02 (s), 107.47 (s), 56.29 (s), 36.48 (s), 28.85 (s).

1-Methyl-1,2,3,4-tetrahydroquinoline (2r)¹⁵

Colorless oil, yield: 83%, ¹H NMR (600 MHz, CDCl₃) δ 7.13 (d, *J* = 4.1 Hz, 1H), 7.01 (s, 1H), 6.66 (s, 2H), 3.27 (d, *J* = 3.3 Hz, 2H), 2.93 (s, 3H), 2.82 (d, *J* = 4.1 Hz, 2H), 2.04 (d, *J* = 4.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 146.84 (s), 128.92 (s), 127.14 (s), 122.94 (s), 116.29 (s), 111.05 (s), 51.37 (s), 39.23 (s), 27.89 (s), 22.55 (s).

4-Dimethylaminopyridine (2s)¹⁵

White solid, yield: 52%, ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 5.9 Hz, 2H), 6.47 (d, J = 6.1 Hz, 2H), 3.08 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 154.69 (s), 146.88 (s), 106.47 (s), 39.59 (s).

CH₃

N, N-Dimethylbenzylamine (2t)¹⁵

Colorless oil, yield: 69%, ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 5.0 Hz, 3H), 7.32 (d, J = 5.0 Hz, 2H), 3.98 (s, 2H), 2.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 132.31 (s), 131.27 (s), 129.23 (s), 128.57 (s), 67.58 (s), 49.71 (s).

N-Methyldihexylamine (2u)¹⁵

Colorless oil, yield: 62%. ¹H NMR (600 MHz, CDCl₃) δ 2.69 (tt, J = 20.6, 10.5 Hz, 4H), 2.50 (s, 3H), 1.69-1.57 (m, 5H), 1.27 (d, J = 31.0 Hz, 12H), 0.88 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 61.40 (s), 49.45 (s), 31.60 (s), 27.05 (s), 23.38 (s), 22.67 (s), 14.10 (s).

Butenafine

White solid, yield: 78%. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 7.3 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.56-7.48 (m, 3H), 7.47-7.41 (m, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 3.97 (s, 2H), 3.62 (s, 2H), 2.25 (s, 3H), 1.36 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 149.97 (s), 136.43 (s), 135.21 (s), 134.03 (s), 132.67 (s), 128.92 (s), 128.48 (s), 128.00 (s), 127.51 (s), 125.72 (d, J = 16.6 Hz), 125.20 (s), 125.03 (s), 77.37 (s), 77.16 (s), 76.95 (s), 62.18 (s), 60.57 (s), 42.52 (s), 34.59 (s), 31.56 (s).

N-methylaniline (3a)²

Colorless oil, yield: 92%. ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.12 (m, 2H), 6.70 (t, J = 7.1 Hz, 1H), 6.59 (d, J = 7.4 Hz, 2H), 3.63 (s, 1H), 2.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.40 (s), 129.26 (s), 117.27 (s), 112.46 (s), 30.76 (s).

N-Methyl-p-toluidine $(3b)^2$

Colorless oil, yield: 81%. ¹H NMR (600 MHz, CDCl₃) δ 7.02 (d, J = 7.6 Hz, 2H), 6.57 (d, J = 7.7 Hz, 2H), 2.83 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.18 (s), 129.82 (s), 126.68 (s), 112.78 (s), 31.27 (s), 20.52 (s).

N-Methyl-m-toluidine $(3c)^3$

Colorless oil, yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ 7.13 (s, 1H), 6.59 (d, J = 6.2 Hz, 1H), 6.48 (s, 2H), 2.86 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.49 (s), 139.06 (s), 129.17 (s), 118.28 (s), 113.26 (s), 109.71 (s), 30.86 (s), 21.74 (s).

N-Methyl-o-toluidine $(3d)^2$

Colorless oil, yield: 49%. ¹H NMR (600 MHz, CDCl₃) δ 7.21 (t, J = 6.9 Hz, 1H), 7.10 (d, J = 6.7 Hz, 1H), 6.72 (d, J = 7.1 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 2.93 (s, 3H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.32 (s), 130.00 (s), 127.29 (s), 122.01 (s), 116.93 (s), 109.20 (s), 30.88 (s), 17.52 (s).

N-Methyl-p-anisidine $(3e)^2$

White solid, yield: 86%. ¹H NMR (600 MHz, CDCl₃) δ 6.80 (d, J = 8.5 Hz, 2H), 6.59 (d, J = 8.5 Hz, 2H), 3.75 (s, 3H), 2.81 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 152.19 (s), 143.80 (s), 115.00 (s), 113.79 (s), 55.98 (s), 31.77 (s).

4-Fluoro-N-methylaniline $(3f)^4$

Colorless oil, yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ 6.91 (t, J = 8.3 Hz, 2H), 6.55 (dd, J = 8.2, 3.9 Hz, 2H), 2.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.68 (s), 155.12 (s), 145.82 (s), 115.79 (s), 115.64 (s), 113.23 (d, J = 7.4 Hz), 31.45 (s).

4-Chloro-N-methylaniline (3g)²

Colorless oil, yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ 7.13 (d, *J* = 8.7 Hz, 2H), 6.53 (d, *J* = 8.6 Hz, 2H), 2.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.97 (s), 129.10 (s), 121.85 (s), 113.52 (s), 30.91 (s).

Br

4-Bromo-N-methylaniline (3h)⁵

Colorless oil, yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 8.7 Hz, 2H), 6.48 (d, J = 8.7 Hz, 2H), 2.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.23 (s), 131.97 (s), 114.14 (s), 109.01 (s), 30.89 (s).

N-Methyl-4-nitroaniline (3i)²

Yellow solid, yield: 86%. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 9.1 Hz, 2H), 6.55 (d, J = 8.6 Hz, 2H), 2.94 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.28 (s), 138.04 (s), 126.54 (s), 110.86 (s), 30.29 (s).

N-Ethylaniline (3j)²

Colorless oil, yield: 78%.¹H NMR (600 MHz, CDCl₃) δ 7.21 (t, *J* = 7.6 Hz, 2H), 6.73 (t, *J* = 6.5 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 2H), 3.18 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.55 (s), 129.33 (s), 117.30 (s), 112.84 (s), 38.55 (s), 15.00 (s).

$$\overset{\mathsf{H}}{\underset{\mathsf{CH}_3}{\overset{\mathsf{CH}_3}{\overset{\mathsf{CH}_3}}}}$$

N-Isopropylaniline (3k)⁶

Colorless oil, yield: 79%. ¹H NMR (600 MHz, CDCl₃) δ 7.19 (t, J = 7.7 Hz, 2H), 6.70 (d, J = 6.9 Hz, 1H), 6.61 (d, J = 7.9 Hz, 2H), 3.65 (dd, J = 12.4, 6.2 Hz, 1H), 3.46 (s, 1H), 1.23 (d, J = 6.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 147.62 (s), 129.39 (s), 117.04 (s), 113.32 (s), 44.29 (s), 23.14 (s).

N-Benzylaniline (31)⁷

White solid, yield: 89%. ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.32 (m, 4H), 7.29 (t, *J* = 7.1 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 6.73 (t, *J* = 7.2 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 2H), 4.34 (s, 2H), 4.04 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.26 (s), 139.54 (s), 129.40 (s), 128.77 (s), 127.65 (s), 127.37 (s), 117.68 (s), 112.95 (s), 48.43 (s).

Diphenylamine (3m)⁸

White solid, yield: 90%. ¹H NMR (600 MHz, CDCl₃) δ 7.28 (s, 4H), 7.10 (s, 4H), 6.95 (d, J = 5.7 Hz, 2H), 5.75 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.20 (s), 129.49 (s), 121.14 (s), 117.92 (s).

N-Phenyl-2-naphthylamine (3n)9

White solid, yield: 87%. ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.70 (m, 2H), 7.65 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.31 (q, J = 7.6 Hz, 3H), 7.23 (d, J

= 8.7 Hz, 1H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.99 (t, *J* = 7.3 Hz, 1H), 5.90 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 129.57 (s), 129.31 (d, *J* = 4.6 Hz), 127.78 (s), 126.60 (d, *J* = 4.1 Hz), 123.63 (s), 121.54 (s), 120.17 (s), 118.38 (s), 111.66 (s).

Methyl 4-(methylamino)benzoate (30)¹⁰

White solid, yield: 80%. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 6.55 (d, J = 8.4 Hz, 2H), 4.19 (s, 1H), 3.85 (s, 3H), 2.88 (d, J = 4.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.54 (s), 153.00 (s), 131.65 (s), 118.31 (s), 111.21 (s), 51.69 (s), 30.29 (s).

4-(Methylamino)benzonitrile (3p)¹¹

White solid, yield: 85%. ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, J = 8.6 Hz, 2H), 6.59 (d, J = 8.5 Hz, 2H), 2.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.23 (s), 133.79 (s), 120.69 (s), 111.98 (s), 98.71 (s), 30.14 (s).

Indoline (3q)¹¹

Colorless oil, yield: 60%. ¹H NMR (600 MHz, CDCl₃) δ 7.15 (s, 1H), 7.05 (s, 1H), 6.74 (d, J = 4.3 Hz, 1H), 6.67 (d, J = 7.4 Hz, 1H), 3.76 (s, 1H), 3.56 (t, J = 8.3 Hz, 2H), 3.06 (t, J = 8.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 151.67 (s), 129.40 (s), 127.28 (s), 124.70 (s), 118.71 (s), 109.52 (s), 47.41 (s), 29.90 (s).

1,2,3,4-Tetrahydroquinoline (3r)¹²

Colorless oil, yield: 71%. ¹H NMR (600 MHz, CDCl₃) δ 7.01 (dd, *J* = 13.7, 7.3 Hz, 2H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.51 (d, *J* = 7.9 Hz, 1H), 3.84 (s, 1H), 3.36-3.30 (m, 2H), 2.81 (t, J = 6.3 Hz, 2H), 2.02-1.96 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 144.84 (s), 129.58 (s), 126.78 (s), 121.48 (s), 116.97 (s), 114.25 (s), 42.03 (s), 27.03 (s), 22.23 (s).

4-(Methylamino)pyridine (3s)²

White solid, yield: 41%. ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, J = 5.3 Hz, 2H), 6.43 (d, J = 5.4 Hz, 2H), 4.26 (s, 1H), 2.85 (d, J = 5.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.33 (s), 150.04 (s), 107.35 (s), 29.53 (s).

N-methyl-1-phenylmethanamine (3t)¹³

Colorless oil, yield: 54%. ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.29 (m, 4H), 7.28-7.24 (m, 1H), 3.75 (s, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.29 (s), 128.49 (s), 128.28 (s), 127.06 (s), 56.22 (s), 36.18 (s).

Di-n-hexylamine (3u)¹⁴

Colorless oil, yield: 12%. ¹H NMR (600 MHz, CDCl3) δ 2.56 (t, *J* = 7.3 Hz, 4H), 1.49-1.37 (m, 4H), 1.27 (s, 12H), 0.86 (d, J = 6.8 Hz, 6H). ¹³C NMR (151 MHz, CDCl3) δ 50.33 (s), 31.94 (s), 30.31 (s), 27.25 (s), 22.76 (s), 14.19 (s).

References

- [1] T. Leischner, L. Artús Suarez, A. Spannenberg, K. Junge, A. Nova and M. Beller, *Chem. Sci.*, 2019, **10**, 10566-10576.
- [2] J. Jiao, X-R. Zhang, N-H. Chang, J. Wang, J-F.Wei, X-Y. Shi, Z-G. Chen, J. Org. Chem. 2011, 76, 1180-1183.
- [3] I.1 Gonza'lez, J. Mosquera, C. Guerrero, R. Rodri'guez, and J. Cruces. Org. Lett., 2009, 11(8), 1677-1680.
- [4] N. Sun, S. Wang, W. Mo, B. Hu, Z. Shen, X. Hu. Tetrahedron, 2010, 66, 7142-7148.
- [5] M. Verma, K.N. Singh, E. D. Clercq, *Heterocycles*, 2006, 68(1), 11-22.

- [6] K. Shimizu, K. Ohshima, Y. Tai, M. Tamurab and A. Satsuma. *Catal. Sci. Technol.*, 2012, 2, 730-738.
- [7] D.B. Bagal, R.A. Watile, M.V. Khedkar, K.P. Dhake and B.M. Bhanage, *Catal. Sci. Technol.*, **2012**, 2, 354-358.
- [8] Z. Garkani-Nejad and M. Poshteh-Shirani, Can. J. Chem., 2011, 89, 598-607.
- [9] C. Cazorla, E. Pfordt, M. Duclos, E. Me'tay and M. Lemaire, *Green Chem.*, 2011, 13, 2482-2488.
- [10] A. L. Pera, A. Leggio and A.Liguori, *Tetrahedron*, 2006, 62, 6100-6106.
- [11] A. Kulkarni, W. Zhou, and B. Torok. Org. Lett., 2011, 13(19), 5124-5127.
- [12] F. Nador, Y. Moglie, C. Vitale, M. Yus, F. Alonso, G. Radivoy. *Tetrahedron*, 2010, 66, 4318-4325.
- [13] B. Cho and S. Kang, Tetrahedron, 2005, 61, 5725-5734.
- [14] R. Yamaguchi, M. Zhu, S. Kawagoe, K. Fujita. Synthesis, 2009, 7, 1220-1223.
- [15] Z. Guo, B. Zhang, X. Wei and C. Xi, ChemSusChem, 2018, 11, 2296-2299.

¹H and ¹³C NMR Spectra of Methylamines

¹H and ¹³C NMR Spectra of **2a**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of $\mathbf{2b}$

¹H and ¹³C NMR Spectra of **2c**

 1 H and 13 C NMR Spectra of **2d**

¹H and ¹³C NMR Spectra of **2e**

¹H and ¹³C NMR Spectra of **2f**

 1 H and 13 C NMR Spectra of **2g**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 2h

¹H and ¹³C NMR Spectra of 2i

¹H and ¹³C NMR Spectra of **2j**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 2k

¹H and ¹³C NMR Spectra of **2m**

¹H and ¹³C NMR Spectra of **20**

¹H and ¹³C NMR Spectra of **2p**

¹H and ¹³C NMR Spectra of **2q**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 2r

¹H and ¹³C NMR Spectra of 2s

¹H and ¹³C NMR Spectra of **2t**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 2u

¹H and ¹³C NMR Spectra of Butenafine

¹H and ¹³C NMR Spectra of **3a**

¹H and ¹³C NMR Spectra of **3b**

¹H and ¹³C NMR Spectra of **3c**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of $\mathbf{3d}$

¹H and ¹³C NMR Spectra of **3e**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 3f

¹H and ¹³C NMR Spectra of **3g**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of 3h

¹H and ¹³C NMR Spectra of **3**j

 ^{1}H and ^{13}C NMR Spectra of 3k

¹H and ¹³C NMR Spectra of **3n**

¹H and ¹³C NMR Spectra of **30**

¹H and ¹³C NMR Spectra of **3p**

¹H and ¹³C NMR Spectra of **3q**

 ^{1}H and ^{13}C NMR Spectra of 3r

¹H and ¹³C NMR Spectra of **3s**

¹H and ¹³C NMR Spectra of **3**t

¹H and ¹³C NMR Spectra of **3u**