Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

> Supplementary Materials for "The Ethylmalonyl-CoA Pathway for Methane-based Biorefineries: A Case Study of Using Methylosinus trichosporium OB3b, an Alphaproteobacterial Methanotroph, for Producing 2-Hydroxyisobutyric Acid and 1,3-Butanediol from Methane"

Dung Mai Hoang Anh[‡], Thu Nguyen Thi[‡], Yeol Lee Eun*

Department of Chemical Engineering (Integrated Engineering), Kyung Hee University,

Gyeonggi-do 17104, Republic of Korea

*Corresponding Author Information eunylee@khu.ac.kr; Tel: +82-31-201-3839; Fax: +82-31-204-8114

SUPPLEMENTARY MATERIALS

 Table S1. List of primers used in this study.

Number	Name	Sequence (5' - 3')		
1	rcm _EcoRI_FWD	AAATGGGTCGCGGATCCGATGTTAGGTAAATTATTGAAAGAAGTTGA		
2	rcm_EcoRI_REV	GCTTGTCGACGGAGCTCGTTACCCTATTTTTTTCCCTACATGCT		
3	P89-RCM-FWD	TTCACACAGGAAACAGCTATGTTAGGTAAATTATTGAAAGAAGTTGA		
4	P89-RCM-REV	GCATCTTCCCGACAACTAAGTTCCTCCTTTCAGCAAAAAACC		
5	P89BB_FWD	TAGTTGTCGGGAAGATGCGT		
6	P89BB_REV	AGCTGTTTCCTGTGTGAATACCT		
7	pET28-Adhac_FWD	AAATGGGTCGCGGATCCGATGAAAGTTACAAATCAAAAAGAACT		
8	pET28-Adhac_REV	GCTTGTCGACGGAGCTCGTAAAATGATTTTATATAGATATCCT		
9	pET28-Adhe_FWD	AAATGGGTCGCGGATCCGATGGCTGTTACTAATGTCGCTGA		
10	pET28-Adhe_REV	GCTTGTCGACGGAGCTCGTTAAGCGGATTTTTTCGCTT		
11	pET28-Adhac- bld_FWD	CTCCGTCGACAAGCTTGCAGGAGATATAAATGATTAAAGACACGCTAGTTTCT		
12	pET28-Adhac- bld_REV	GTGGTGGTGCTCGAGTGCACCGGCGAGTACACATCTTC		
13	pET28-Adhe- bld_FWD	CTCCGTCGACAAGCTTGCAGGAGATATAAATGATTAAAGACACGCTAGTTTCT		
14	pET28-Adhe- bld_REV	GTGGTGGTGCTCGAGTGCACCGGCGAGTACACATCTTC		
15	P89-Adhac-bld_FWD	TTCACACAGGAAACAGCTATGAAAGTTACAAATCAAAAAGAACT		
16	P89-Adhac-bld_REV	GCATCTTCCCGACAACTAGGATATAGTTCCTCCTTTCAGCA		
17	P89-Adhe-bld_FWD	TTCACACAGGAAACAGCTATGGCTGTTACTAATGTCGCTGA		
18	P89-Adhe-bld_REV	GCATCTTCCCGACAACTAATAGTTCCTCCTTTCAGCAA		
19	16S-RT-F	TATTGGACAATGGGCGCAAG		
20	16S-RT-R	CAGTGATTCCGAACAACGCT		
21	phaA3-RT -F	TGACCGACGCCTTCAACAATTACC		
22	phaA3 -RT -R	CGTCCTGGTCGACGATCACGT		
23	phaB-RT -F	GAACTCGCTGTTCAACGTCA		
24	phaB-RT -R	GGCGGAATAATTGGTTTGGC		
25	Cro-RT -F	CACGGTGATCGGCATGTATC		
26	Cro-RT -R	GATCTCGACCACCATGGA		
27	Ccr-RT -F	AACCGCAAGGATTTCAAGGG		
28	Ccr-RT -R	CGATGTCGACGTCCTTCTTG		
29	Epi-RT -F	ACGGTGGTGTTCGTCGAAC		
30	Epi-RT -R	GGCTTGCCATGGGCGC		
31	Ecm-RT -F	CTCTCGGACAAGGATTTCGC		
32	Ecm-RT -R	TTCTCATCCGTGACGCCATA		
33	Mcd-RT -F	GTCGTCGGCAATAAGACCTG		

ſ	34	Mcd-RT -R	GCCCTTATAGCCCTTCTCGT
	35	Mch-RT -F	ACTATGAGGTCGGCGAGAAG
ſ	36	Mch-RT -R	AGATGATGCGCTTTCCGAAC
	37	phaC-RT -F	AACTTGCTCTCGTCGCTCTG
	38	phaC-RT -R	CGACAATCCCTTCTTCGATTGC
	37	F1-phaC- FWD	GGCGGGTCCTATTTCGCC
	39	F1-phaC- REV	CAACAGCTCATTTCAGAGATGTGGCCGAGGAATGCTG
	40	F2-phaC- FWD	GCCGAGGAGCAGGACTGAGCAGTCCCACAATGCCCT
	41	F2-phaC- REV	ATGAGACGAATTTTCGCGCTTG
	42	ZeoR-FWD	CTCTGAAATGAGCTGTTG
	43	ZeoR-REV	TCAGTCCTGCTCCTCGGC

Table S2. List of RNA-seq datasets used in this study

Sample name	Overall alignment rate	Number of reads	Culture condition	Source
NMS_Cu10_Rep1	96.92%	25595084	NMS 10uM CuSO ₄	This study
NMS_Cu10_Rep2	96.14%	24578150	NMS 10uM CuSO ₄	This study
REF_Cu_10_Rep1	88.85%	29349680	NMS 10uM CuSO ₄	SRX2391218
REF_Cu_10_Rep2	89.72%	32054084	NMS 10uM CuSO ₄	SRX2391219
REF_Cu_10_Rep3	81.33%	39629235	NMS 10uM CuSO ₄	SRX2391220
REF_Cu_0_Rep1	88.85%	29349680	NMS no CuSO ₄	SRX2391212
REF_Cu_0_Rep2	75.59%	28603376	NMS no CuSO ₄	SRX2391213
REF_Cu_0_Rep3	77.83%	22867261	NMS no CuSO ₄	SRX2391214

Fig. S1) Detection of PHB formation in wildtype and ΔC strain (strain S2) by GC-MS. (a). GC–MS elution profiles showing the detection of methyl-3-hydroxybutyrate from the methanolized 3-hydroxybutyrate standard (PHB standard). No PHB formation was detected in ΔC strain (b). Mass fragmentation patterns for the peaks detected in the GC–MS. (c). Comparison of PCR products from mutant strains and wildtype. WT= *M. trichosporium* OB3b wildtype, S1, S2, S3 = *M. trichosporium* OB3b recombinant strains obtained after gene knockout. +

Fig. S2) Growth performance of phaC null mutant compared to wildtype. WT = Methylosinustrichosporium OB3b wildtype, ΔC strain = phaC-knockout mutant of *M. trichosporium* OB3b.

Fig. S3) Expression patterns of *M. trichosporium* OB3b phaC null mutant strain compared to *M. trichosporium* OB3b wildtype during PHB accumulation process. Data were analyzed by PCR package for R. mRNA expression of *M. trichosporium* OB3b phaC-knock out strain (DT_PHB) and *M. trichosporium* OB3b wildtype in nitrogen limiting condition are compared and normalized against *M. trichosporium* OB3b wildtype cultured in NMS media. (n =3)

Under nitrogen-limiting conditions, in *M. trichosporium* OB3b wildtype *phaA* and *phaB* were upregulated after day 1. From day 1 to day 2, the other genes in the EMC pathway were downregulated. After day 3 all genes were downregulated and recovered on day 4.

For the *phaC* null mutant of *M. trichosporium* OB3b the expression patterns of all genes involved in the EMC pathways were different from the wildtype. On day 3 all genes in the EMC pathways were upregulated significantly and then decrease dramatically on day 4 in a similar way to day 3 of wildtype strain excepting the *cro* gene. The upregulation of *cro* in both strains is likely responsible for mediating (R)-3-hydroxy-butanoyl-CoA and crotonyl-CoA abundance when ccr and ecm were down regulated. It appeared that the EMC can actively shut down and reactivate in response to external stimuli. This might be a mechanism for actively controlling the concentration of toxic intermediate metabolites, such as glyoxylate.

Fig. S4) Product formation of 2-hydroxyisobutyric acid and 1,3-butanediol in recombinant strains. 2HIBA standard = 200mg/L ; 1,3BDO standard = 400mg/L.