Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

1	Electronic Supplementary Information for
2 3	Tunable hybrid carbon metabolism coordination for carbon-efficient biosynthesis of 1,3-butanediol in <i>Escherichia coli</i>
4	Jian Wang ¹ , Ruihua Zhang ¹ , Jianli Zhang ¹ , Xinyu Gong ¹ , Tian Jiang ¹ , Xinxiao Sun ^{2,3} , Xiaolin
5	Shen ^{2,3} , Jia Wang ^{2,3} , Qipeng Yuan ^{2,3} , Yajun Yan ^{1,*}
6	
7	¹ School of Chemical, Materials and Biomedical Engineering, College of Engineering, The
8	University of Georgia, Athens, GA 30602, USA.
9	² Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing
10	University of Chemical Technology, Beijing 100029, China.
11	³ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical
12	Technology, Beijing 100029, China.
13	*Corresponding author:
14	Yajun Yan
15	146 Riverbend Research Lab South, the University of Georgia, Athens, GA 30602, USA.
16	E-mail: <u>yajunyan@uga.edu;</u> telephone: +1-706-542-8293
17	
18	

Supplementary Note 19

20 Yield calculation

- The yield calculation is based on the methods described previously by Deepak Dugar et al.¹. 21
- Theoretical maximum yield (Y^E) is the maximum amount of a product produced from the 22
- carbon source, which is merely calculated from the ratios of degree of reduction of substrate 23
- to that of product. The theoretical pathway yield (Y^p) is the maximum amount of a product 24

produced by a specified pathway from its stoichiometry, which can be resolved from the 25

- 26 following equations:
- Glucose \rightarrow a NADPH + b Product + c ATP + d NADH + e CO₂ 27 (1)(2)
- Glucose \rightarrow 12 NADPH + 6 CO₂ 28
- Glucose \rightarrow 28.92 ATP + 6 CO₂ 29 (3)
- 30

32

The theoretical pathway yield (Y^p) can be calculated with 31

$$Y^{p} = Y * \frac{1}{1 - a/12 - c/28.92}$$
(4)

Y is product yield based on equation (1) (Y=b). When a>0, which means NADPH is excessive, 33

- a is assigned 0 in the equation (4); when c > 0, which means ATP is abundant, c is assigned 0 34
- 35 in the equation (4). To calculate Y^p without cofactor imbalance, in which case NADH and
- 36 NADPH are interconvertible, a is assigned (a+c) if (a+c)<0, otherwise a is assigned 0 in the equation (4). 37
- 38

40 Fig. S1. Enzyme assay of F6P-to-AcP conversion using crude enzyme extracts of wildtype E.

41 coli BW25113 (F) harboring empty plasmid pZE12-luc (NC, negative control), expressing

42 BaPK and *glpX* (BaPK-glpX), expressing BaPK, *glpX* and *tktA* (BaPK-glpX-tktA), expressing

43 LlPK and *glpX* (LlPK-glpX), expressing LlPK, *glpX* and *tktA* (LlPK-glpX-tktA). 10 mM F6P

- 44 was added as the substrate. Data indicated the mean \pm standard deviation (n=3 independent 45 biological replicates).
- 45 1 46
- 40

47

Fig. S2. Shake flask experiments with M9 medium with 5 g I⁻¹ yeast extract without glucose in 72 h. (a) 3HB production with *E. coli* BW25113 (F') harboring p3HB. (b) 1,3-BDO production with *E. coli* BW25113 (F') harboring p3HB and pZE-MaCAR. Data indicated the

- 53 mean \pm standard deviation (n = 3 independent biological replicates).
- 54

57 Fig. S3. Comparison of 3HB production with or without P_LlacO1-controlled LIPK and

58 **BaPK based NOG pathway.** Shake flask experiments were performed with wildtype *E. coli* 59 BW25113 (F') (wt) and its derived mutant strain J03 for 48 h and 72 h. Data indicated the

61 62

64 Fig. S4. Glucose remaining and acetate accumulation during 3HB production via Plppx-

65 tuned LIPK-based NOG pathway in strain J03. Samples from 48 h and 72 h cultivation were

- analyzed by HPLC analysis. Data indicated the mean \pm standard deviation (n = 3 independent biological replicates).
- 68

Fig. S5. Test of the 3HB and 1,3-BDO toxicity to *E. coli* BW25113 (F'). 3HB (a) or 1,3-BDO (b) with different concentrations $(0-20 \text{ g } 1^{-1})$ was fed to BW25113 (F') at 3 h post

72 inoculation as indicated by the red arrows. Data indicated the mean \pm standard deviation (n = 3

73 independent biological replicates).

- 74
- 75
- 76
- 77

79 Fig. S6. A duplicate run of fed-batch cultivation of J03 containing p3HB and pZLPK1.4 80 in 1-l bioreactor.

- 81
- 82
- 83

84

85 Fig. S7. 3HB production via strain J06 harboring chromosomally integrated 3HB 86 pathway. Data indicated the mean \pm standard deviation (n = 3 independent biological 87 replicates).

90 Fig. S8. Induction of wildtype HpdR/P_{hpdH} sensor regulator system by 3HP and 3HB. The

91 eGFP induction assay was performed with strain E. coli BW25113 (F') harboring pZE-HpdR-

92 PhpdH-eGFP. 3HP and 3HB were added at a final concentration of 1 g l⁻¹. NC indicates the

93 negative control without any inducer. Data indicated the mean \pm standard deviation (n = 3

94 independent biological replicates).

96

97 Fig. S9. Effects of spacer length on CRISPRi. The eGFP repression assay was performed 98 with strain J07 transformed with pZE-eGFP and pCS-sgRNA harboring sgegfp with spacer

99 length of 10, 12, 14, 16, and 20 bp. NC indicates the negative control with pZE-eGFP and

100 pCS27. Data indicated the mean \pm standard deviation (n = 3 independent biological replicates). 101

- 104 V1-sgaccA-14 and pSLPK0.5 in 1-l bioreactor.

Carbon Metabolism ^a	Metabolites per glucose	N/A stoichiomet ry ^b	C-yield ^c
EMP	2Acetyl-CoA+2CO ₂ +4NADH+2ATP	2	66.7%
PP	1.67Acetyl-CoA+2.67CO ₂ +3.33NADH+2NADPH+1.67ATP	3.19	55.7%
NOG	3Acetyl-CoA-1ATP	0	100%
EMP+PP	1.835Acetyl-CoA+2.335CO ₂ +3.665NADH+1NADPH+1.835ATP	2.54	61.2%
EMP+NOG	2.5Acetyl-CoA+1CO ₂ + 2NADH+0.5ATP	0.8	83.3%
PP+NOG	2.335Acetyl-CoA+1.335CO ₂ +1.67NADH+1NADPH+0.335ATP	1.14	77.8%
EMP+PP+NOG	2.223Acetyl-CoA+1.556CO ₂ +2.443NADH+0.67NADPH+0.89ATP	1.4	74.1%

106	Table S1. Reactions and performance of various carbon metabolism involved in this
107	study.

^a Glucose flux are presumed to equally enter the combined carbon metabolisms referred.
^b NAD(P)H/acetyl-CoA stoichiometry.
^c C-yield, or carbon yield, is the ratio of carbon in product acetyl-CoA to carbon in glucose.

Product pathways	Metabolic reactions	N/A stoichiometry
3HB	2 Acetyl-CoA + 1 NADH \rightarrow 3HB + 1 NAD ⁺	0.5
1,3-BDO	2 Acetyl-CoA + 1 NADH + 2 NADPH + 1 ATP \rightarrow 1,3-BDO + 1 NAD ⁺ + 2 NADP ⁺ + 1 AMP + 1 PPi	1.5
112		

111 Table S2. Metabolic pathways for acetyl-CoA derived products involved in this study.

113 Table S3. Stoichiometric coefficients in equation (1) with multiple carbon metabolisms ^{*a*}.

Product pathways	NADPH (a)	Product (b)	ATP (c)	NADH (d)	CO ₂ (e)
3HB	2у	-0.5x-0.67y+1.5	3x+2.67y-1	4.5x+4y-1.5	2x+2.67y
1,3-BDO	x+3.33y-3	-0.5x-0.67y+1.5	4x+4y-4 ^b	4.5x+4y-1.5	2x+2.67y

114 ^a 1 mol glucose is metabolized via three carbon metabolisms including EMP pathway (x mol),

115 PP pathway (y mol) and NOG pathway ((1-x-y) mol). ^b Two ATP inputs were needed

116 considering the additional need of an additional ATP for regeneration of AMP to ADP.

Products	NADPH (a)	NADPH (a)	Product (b)	ATP (c)	NADH (d)	CO ₂ (e)	Pathway yields (Y ^p) ^b
	1 EMP ^{<i>a</i>}	0.00	1.000	2.00	3.00	2.00	1.00
	1 PP	2.00	0.830	1.67	2.50	2.67	0.83
3HB	0.33 EMP+0.67 NOG	0.00	1.33	0.00	0.00	0.67	1.33
	0.38 PP+0.62 NOG	0.76	1.25	0.00	0.00	1.00	1.25
	1 EMP	-2.00	1.00	0.00	3.00	2.00	1.00
	1 PP	0.33	0.83	0.00	2.50	2.67	0.83
	0.75 PP+0.25 NOG	-0.50	1.00	-1.00	1.50	2.00	0.96
1,3-BDO	0.82 EMP+0.18NOG	-2.18	1.09	-0.72	2.19	1.64	1.05
	0.46 EMP+0.27PP+0.27 NOG	-1.64	1.09	-1.08	1.65	1.64	1.05

Table S4. Pathway yields for acetyl-CoA derived products with coordinated carbon metabolism.

120 ^{*a*} Mol of glucose entering each carbon metabolism.

121 ^b The pathway yields (Y^{p}) were obtained from equation (4) in Supplementary Note

122 considering NADH and NADPH are interconvertible.

123

125	Table S5. Biochemical reactions for maximal glucose-to-product conversion with
126	coordinated carbon metabolism.

Product pathways	Biochemical reactions
3HB	Glucose \rightarrow 1.33 3HB + 0.67 CO ₂
1,3-BDO	Glucose \rightarrow 1.05 1,3-BDO + 1.80 CO ₂

128 Table S6. Specific activities of purified His₆-tagged phosphoketolases from different

129 microorganisms.

- 130 One unit of enzyme activity (U) is defined as conversion of 1 µmol of substrate per minute.
- 131 For R5P as the substrate, additional enzyme Rpe and RpiA was added at ten-fold
- 132 concentration of PK.
- 133

РК	Organisms	Substrates	Specific Activity
		(10 mM)	(µmol/min/mg protein)
BaPK	Bifidobacterium adolascentis	F6P	8.42
	uuolesceniis	R5P	9.17
LIPK	Lactococcus lactis	F6P	7.26
		R5P	14.06
LcPK	Lactobacillus casei	F6P	6.54
		R5P	11.22
PaPK	Pseudomonas aeruginosa	F6P	5.54
	TAOT	R5P	5.43
SyPK	Synechocystis sp. PC 6803	F6P	4.69
		R5P	5.73

134

135

Enzyme	K_m (mM)	k_{cat} (min ⁻¹)	k_{cat}/K_m (mM ⁻¹ min ⁻¹)
MmCAR	17.22±3.13	10.86 ± 0.88	0.61
MaCAR	10.87±3.30	19.00±2.86	1.75

137 Table S7. Kinetic parameters of CARs towards 3-hydroxybutyrate.

141 Table S8. Nucleotide sequence of HpdR/P_{hpdH} wildtype or variant promoters.

Plasmids	Nucleotide Sequences
wt	(HpdR) cat gettgtcetttatggcagttegtteeggeetettaaegggeatgeegatgeeggtgaa caccetgaaggtaaegtgateeetgagetgegggegageeegtgaagaggteggtaeaggetgegegaaatetegtgttteateeaegaaattaetaaagatggategggaa aagaataaaaaaegaatteattaaagaggagaaaggtaeeATG(eGFP)
V1	(HpdR) cat gcttgtcctttatggcagttcgttcGTCGACtacaggcttgcccctgtgctaaaacgc acagcggctgcgcgaaatctcgtgtttcatccacgaaattactcactaagatggatcgggacaagaataaaa aacgaattcattaaagaggagaaaggtaccATG(eGFP)
V2	(HpdR)catggtacctttctcctctttaatcaattccgttacaagtattacacaaagttttttatgttgaga atatttttttgatGTCGACtacaggcttgcccctgtgctaaaacgcacagcggctgcgcgaaatctcgtgt ttcatccacgaaattactcactaagatggatcgggacaagaataaaaaacgaattcattaaagaggagaaag gtaccATG(eGFP)
V3	(HpdR) cat gettgtcetttatggcagttegttcGTCGAC tacaggettgeceetgtgetaaaaege acageggetgegegaaatetegtgttgacaceetgaaattaeteaeggataetggggacaagaataaaa aaegaatteattaaagaggagaaaggtaecATG(eGFP)

142 Note: Bold triple nucleotides are start codons; nucleotides in red lower cases are the putative

143 palindromic sequence (-209 to -118 bp); nucleotides in red upper cases denote SalI restriction

site; nucleotides in grey shade denote -35 and -10 boxes in wildtype P_{hpdH} promoter;

145 nucleotides in green shade denote substituted -35 and -10 boxes from $P_L lacO1$ promoter;

146 nucleotide in yellow shade is the transcription initiation site on P_{hpdH} promoter.

Strains	Properties	Source
E. coli XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac F' [traD36 proAB lacIªZΔM15 Tn10 (Tet [*])]	Stratagene
E. coli BL21 Star(DE3)	F ⁻ ompT hsdSB (rB-mB-) gal dcm rne131 (DE3)	Invitrogen
<i>E. coli</i> BW25113 (F')	rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33 ∆rhaBADLD78 F' [traD36 proAB lacIªZ∆M15 Tn10(Tet ^r)]	2
J01	E. coli BW25113 (F') Δedd	This study
J02	E. coli BW25113 (F') $\Delta edd \Delta pfkA$	This study
J03	E. coli BW25113 (F') $\Delta edd \Delta pfkB$	This study
J04	E. coli BW25113 (F') $\Delta edd \Delta pfkA \Delta zwf$	This study
J05	E. coli BW25113 (F') $\Delta edd \Delta pfkB \Delta zwf$	This study
J06	J03 with the 3HB pathway integrated into the genome at <i>asl</i> locus	This study
J07	J06 with $P_L lacOI$ -dCas9 integrated into the genome at $dkgB$ locus	This study
Plasmids	Properties	Source
pETDuet-1	PT7, pBR322 ori, Amp ^r	Novagen
pETDuet-1 pZE12-luc	<i>PT7</i> , <i>pBR322</i> ori, Amp ^r $P_L lacO1$, <i>colE</i> ori, Amp ^r	Novagen 3
pETDuet-1 pZE12-luc pCS27	$PT7$, $pBR322$ ori, Amp^r $P_L lacO1$, $colE$ ori, Amp^r $P_L lacO1$, $P15A$ ori, Kan^r	Novagen 3 4
pETDuet-1 pZE12-luc pCS27 pSA74	$PT7$, $pBR322$ ori, Amp^r $P_L lacO1$, $colE$ ori, Amp^r $P_L lacO1$, $P15A$ ori, Kan^r $P_L lacO1$, $pSC101^*$ ori, Cl^r	Novagen 3 4 5
pETDuet-1 pZE12-luc pCS27 pSA74 pSA-dCas9	$PT7, pBR322$ ori, Ampr $P_L lacO1, colE$ ori, Ampr $P_L lacO1, P15A$ ori, Kanr $P_L lacO1, pSC101^*$ ori, Clr $pSA74$ harboring dCas9 from Streptococcus $pyogenes$	Novagen 3 4 5 6
pETDuet-1 pZE12-luc pCS27 pSA74 pSA-dCas9 pCS-sgRNA	$PT7, pBR322$ ori, Ampr $P_LlacO1, colE$ ori, Ampr $P_LlacO1, P15A$ ori, Kanr $P_LlacO1, pSC101^*$ ori, Clr $pSA74$ harboring dCas9 from Streptococcus $pyogenes$ $pCS27$ harboring sgRNA targeting eGFP	Novagen 3 4 5 6 6
pETDuet-1 pZE12-luc pCS27 pSA74 pSA-dCas9 pCS-sgRNA pZE-eGFP	$PT7, pBR322$ ori, Ampr $P_LlacO1, colE$ ori, Ampr $P_LlacO1, P15A$ ori, Kanr $P_LlacO1, pSC101^*$ ori, Clr $pSA74$ harboring dCas9 from Streptococcus $pyogenes$ $pCS27$ harboring sgRNA targeting eGFP $pZE12$ -luc harboring eGFP	Novagen 3 4 5 6 6 This study
pETDuet-1 pZE12-luc pCS27 pSA74 pSA-dCas9 pCS-sgRNA pZE-eGFP pZE-MmCAR	PT7, pBR322 ori, Ampr $P_LlacO1, colE$ ori, Ampr $P_LlacO1, P15A$ ori, Kanr $P_LlacO1, PSC101^*$ ori, ClrpSA74 harboring dCas9 from Streptococcus pyogenespCS27 harboring sgRNA targeting eGFPpZE12-luc harboring car from Mycobacterium marinum M and sfp amplified from Bacillus subtilis 168	Novagen 3 4 5 6 6 This study 7
pETDuet-1 pZE12-luc pCS27 pSA74 pSA-dCas9 pCS-sgRNA pZE-eGFP pZE-MmCAR	PT7, pBR322 ori, Ampr $P_LlacO1, colE$ ori, Ampr $P_LlacO1, P15A$ ori, Kanr $P_LlacO1, pSC101^*$ ori, ClrpSA74 harboring dCas9 from StreptococcuspyogenespCS27 harboring sgRNA targeting eGFPpZE12-luc harboring eGFPpZE12-luc harboring car from Mycobacteriummarinum M and sfp amplified from Bacillus subtilis168pZE12-luc harboring car from Mycobacteriumabscessus and sfp amplified from Bacillus subtilis	Novagen 3 4 5 6 7 This study 7

147 Table S9. Strains and plasmids used in this study.

pZE-BaPK-glpX	pZE12-luc harboring phosphoketolase (BaPK, BAF39468.1) from <i>Bifidobacterium adolescentis</i> ATCC 15703. <i>glpX</i> from <i>E_coli</i>	This study
pZLPK	pZE12-luc harboring phosphoketolase (LIPK, KST82569.1) from <i>Lactococcus lactis</i> NCTC 6681, <i>glnX</i> and <i>tktA</i> from <i>F</i> . <i>coli</i>	This study
pZBPK	pZE12-luc harboring phosphoketolase (BaPK, BAF39468.1) from <i>Bifidobacterium adolescentis</i> ATCC 15703. <i>glpX</i> and <i>tktA</i> from <i>E_coli</i>	This study
pZLPKx	pZE12-luc harboring LIPK, <i>glpX</i> and <i>tktA</i> from <i>E. coli</i>	This study
pSLPKx	pSA74 harboring LIPK, <i>glpX</i> and <i>tktA</i> from <i>E. coli</i> under control of constitutive promoter library Plppy	This study
p3HB	pCS27 carrying <i>thl</i> and <i>hbd</i> from <i>Clostridium difficile</i> 630 and <i>tesB</i> from <i>F</i> , <i>coli</i>	This study
pETDuet-MmCAR	pETDuet-1 harboring <i>car</i> from <i>Mycobacterium</i> <i>marinum</i> M and <i>sfp</i> amplified from <i>Bacillus subtilis</i> 168	This study
pETDuet-MaCAR	pETDuet-1 harboring <i>car</i> from <i>Mycobacterium abscessus</i> and <i>sfp</i> amplified from <i>Bacillus subtilis</i> 168	This study
pETDuet-BaPK	pETDuet-1 harboring BaPK from <i>Bifidobacterium</i>	This study
pETDuet-LlPK	pETDuet-1 harboring LIPK from <i>Lactococcus lactis</i>	This study
pETDuet-LcPK	pETDuet-1 harboring LcPK from Lactobacillus casei	This study
pETDuet-PaPK	pETDuet-1 harboring PaPK from Pseudomonas	This study
pETDuet-SyPK	pETDuet-1 harboring SyPK from <i>Synechocystis sp.</i> PCC 6803	This study
pETDuet-Rpi	pETDuet-1 harboring <i>rpi</i> from <i>E. coli</i>	This study
pETDuet-Rpe	pETDuet-1 harboring rpe from E. coli	This study
pZE-HpdR-eGFP	pZE12-luc containing HpdR-P _{<i>hpdH</i>} from <i>Pseudomonas putida</i> and eGFP	This study
pCS-wt	pCS27 containing HpdR-P _{hpdH} -eGFP	This study
pCS-V1	pCS-wt with deletion of a palindromic sequence (-209 to -118 bp) on the P _{brd} promoter	This study
pCS-V2	pCS-V1 with HpdR under control of P <i>lpp1.0</i> promoter	This study
pCS-V3	pCS-V1 by substituting the -35 and -10 boxes of P_{hpdH} promoter with those from $P_{I}lacO1$ promoter	This study
pCS-sgegfp-20	pCS-sgRNA containing sgegfp with 20 bp spacer targeting eGFP at the start codon region with a TGG PAM site	This study
pCS-sgegfp-16	pCS-sgRNA containing sgegfp with 16 bp spacer targeting eGFP at the start codon region with a TGG PAM site	This study
pCS-sgegfp-14	pCS-sgRNA containing sgegfp with 14 bp spacer targeting eGFP at the start codon region with a TGG	This study

	PAM site	
pCS-sgegfp-12	pCS-sgRNA containing sgegfp with 12 bp spacer	This study
	targeting eGFP at the start codon region with a TGG	
	PAM site	
pCS-sgegfp-10	pCS-sgRNA containing sgegtp with 10 bp spacer	This study
	targeting eGFP at the start codon region with a TGG	
	PAM site	
pCS-V1-sgaccA-14	pCS-V1 harboring sgRNA targeting <i>accA</i> with 14 bp	This study
	spacer	T
pCS-V1-sgaccA-12	pCS-V1 harboring sgRNA targeting <i>accA</i> with 12 bp spacer	This study
nCS-V1-space A-10	pCS-V1 harboring sgRNA targeting <i>accA</i> with 10 bp	This study
pes vi sgueen it	spacer	2
pCS-V2-sgfabD-14	pCS-V2 harboring sgRNA targeting <i>fabD</i> with 14 bp	This study
1	spacer	
pCS-V2-sgaccA-12	pCS-V2 harboring sgRNA targeting <i>fabD</i> with 12 bp	This study
1 0	spacer	
pCS-V2-sgaccA-10	pCS-V2 harboring sgRNA targeting <i>fabD</i> with 10 bp	This study
	spacer	

150 Reference

- 151 1. D. Dugar and G. Stephanopoulos, *Nat. Biotechnol.*, 2011, **29**, 1074-1078.
- 152 2. S. Atsumi, A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K.
- 153 J. Chou, T. Hanai and J. C. Liao, *Metab. Eng.*, 2008, **10**, 305-311.
- 154 3. R. Lutz and H. Bujard, *Nucleic Acids Res.*, 1997, **25**, 1203-1210.
- 155 4. C. R. Shen and J. C. Liao, *Metab. Eng.*, 2008, **10**, 312-320.
- 156 5. Y.-X. Huo, K. M. Cho, J. G. L. Rivera, E. Monte, C. R. Shen, Y. Yan and J. C. Liao,
 Nat. Biotechnol., 2011, 29, 346-351.
- 158 6. J. Wang, Y. Wu, X. Sun, Q. Yuan and Y. Yan, ACS Syn. Biol., 2017, 6, 1922-1930.
- 159 7. Z. Chen, X. Sun, Y. Li, Y. Yan and Q. Yuan, *Metab. Eng.*, 2017, **39**, 102-109.