Supporting Information

Types of rechargeable batteries	Served component in batteries	Employed lignin	Pivotal adopted strategies	ICE (%)	Capacity retention (%)	Rate capability	Ref.
LIB	porous carbon as anode active materials	steam explosion alkaline lignin	KOH activation	41.6 (200 mA g ⁻¹)	60.0 (400 cycles, 200 mA g ⁻¹)	1000 mA g ⁻¹ , 268 mAh g ⁻¹	1
		enzymatic hydrolysis lignin	ZnCO ₃ activation	54.9 (200 mA g ⁻¹)	99.0 (10000 cycles, -)	1000 mA g ⁻¹ , 423 mAh g ⁻¹	2
		sodium lignosulfonate	pre-oxidation treatment	44.3 (50 mA g ⁻¹)	60.0 (400 cycles, 500 mA g ⁻¹)	5000 mA g ⁻¹ , 32 mAh g ⁻¹	3
		enzymatic hydrolysis lignin	K ₂ CO ₃ activation at 900°C	37.0 (200 mA g ⁻¹)	78.9 (200 cycles, 200 mA g ⁻¹)	1000 mA g ⁻¹ , 223 mAh g ⁻¹	4
		sodium lignosulfonate	in situ polymerization of 2-ethylaniline	46.5 (60 mA g ⁻¹)	86.5 (20 cycles, 100 mA g ⁻¹)	-	5
		without details	synthesizing lignin- melamine resins	50.0 (100 mA g ⁻¹)	90.5 (300 cycles, 500 mA g ⁻¹)	$5000 \text{ mA g}^{-1}, 145 \text{ mAh g}^{-1}$	6
	carbon fibers as anode	organosolv (Alcell) lignin	fabricating lignin– polyethylene oxide, nitrogen doping	82.8 (30 mA g ⁻¹)	91.8 (50 cycles, 30 mA g ⁻¹)	$2000 \text{ mA g}^{-1}, 200 \text{ mAh g}^{-1}$	7
		with Alcel extraction process	blending of lignin and polylactic acid	-	-	10 C, 245 mAh g ⁻¹	8
		water soluble alkali lignin	lignin/poly (vinyl alcohol) polymer blends, KOH activation	45.7 (10 mA g ⁻¹)	84.0 (900 cycles, 300 mA g ⁻¹)	1000 mA g ⁻¹ , 75 mAh g ⁻¹	9

Table S1. Performance comparison of rechargeable batteries employed with lignin-derived materials.

	extracted from black liquor	carbonization at different temperatures	-	94.0 (-, 0.1 C)	2 C, 88 mAh g ⁻¹	10
	without details	embedding core- shell silicon/SiO ₂	-	80.0 (40 cycles, 0.2 C)	0.2 C, 550 mAh g ⁻¹	11
	alkali lignin	surface- functionalization with Fe ₂ O ₃ nanoparticles	80.9 (50 mA g ⁻¹)	95.1 (80 cycles, 50 mA g ⁻¹)	$200 \text{ mA g}^{-1}, 430 \text{ mAh g}^{-1}$	12
	lignosulfonate	in-situ synthesizing MoS2@porous carbon nanospheres	-	64.9 (50 cycles, 100 mA g ⁻¹)	-	13
conduct framewor	ive sodium k of lignosulfonate	in situ embedding NiO nanoparticles	84.9 (100 mA g ⁻¹)	95.8 (100 cycles, 100 mA g ⁻¹)	$1000 \text{ mA g}^{-1}, 548 \text{ mAh}$ g^{-1}	14
anode	without details	forming functional conformal network crosslinking Si nano particles	62.0 (300 mA g ⁻¹)	89.0 (100 cycles, 300 mA g ⁻¹)	9000 mA g^{-1} , 800 mAh g^{-1}	15
	kraft lignin	a low-temperature heat treatment of the silicon-lignin composite, PEO added	81.6 (100 mA g ⁻¹)	77.0 (100 cycles, 1000 mA g ⁻¹)	3600 mA g ⁻¹ , 1500 mAh g ⁻¹	16
binde	r kraft lignin	heat treatment of micro-nano SiO _x - lignin	61.0 (100 mA g ⁻¹)	-	$1600 \text{ mA g}^{-1}, 584 \text{ mAh}$ g^{-1}	17
	kraft lignin	interconnected core-shell Si/C composite, PEO added	71.6 (540 mA g ⁻¹)	89.3 (100 cycles, 540 mA g ⁻¹)	1440 mA g ⁻¹ , 1133 mAh g ⁻¹	18

		alkali lignin	lignin- <i>graft</i> -sodium polyacrylate	91.0 (-)	-	-	19
		without details	scavenging free radicals by lignin	-	91.4 (1000 cycles, 150 mA g ⁻¹)	1500mA g ⁻¹ , 97.2 mAh g ⁻¹	20
SIB	porous carbon as anode active materials	concentrated strong acid hydrolysis lignin	carbonized at 1300°C	68.0 (50 mA g ⁻¹)	98.3 (500 cycles, 2500 mA g ⁻¹)	$2500 \text{ mA g}^{-1}, 116 \text{ mAh}$ g^{-1}	21
		collected from a delignification apparatus	carbonized at 1300°C	69.0 (50 mA g ⁻¹)	99.9 (700 cycles, 300 mA g ⁻¹)	1000 mA g ⁻¹ , 49 mAh g ⁻¹	22
		sodium lignin sulfonate	spray drying process	88.3 (0.1 C)	80.4% (200 cycles, 1 C)	2 C, 150 mAh g ⁻¹	23
		collected from Shandong Longlive Bio- Technology Co., Ltd.	forming interpenetrating polymer networks	82.0 (30 mA g ⁻¹)	90.0% (150 cycles, 30 mA g ⁻¹)	600 mA g ⁻¹ , 106 mAh g ⁻¹	24
		without details	emulsification interaction between pitch and lignin	82.0 (30 mA g ⁻¹)	89.0% (150 cycles, 30 mA g ⁻¹)	300 mA g^{-1} , 162 mAh g $^{-1}$	25
		alkali lignin	nitrogen-doped, hard-template method	20.0 (50 mA g ⁻¹)	92.0% (1100 cycles, 1000 mA g ⁻¹)	$6400 \text{ mA g}^{-1}, 48 \text{ mAh g}^{-1}$	26
	carbon fibers as anode	kraft lignin	well interacting between kraft lignin and cellulose acetate	52.0 (50 mA g ⁻¹)	-	500 mA g^{-1} , 143 mAh g^{-1}	27

		water soluble alkali lignin	lignin/poly (vinyl alcohol) polymer blends, KOH activation	65.0 (10 mA g ⁻¹)	-	500 mA g ⁻¹ , 60 mAh g ⁻¹	9
		lignosulfonate	fabricating polyacrylonitrile/ lignin blend	70.5 (20 mA g ⁻¹)	90.2 (200 cycles, 100 mA g ⁻¹)	1000 mA g ⁻¹ , 80 mAh g ⁻¹	28
		kraft lignin	carbonization at varying temperatures	89.0 (30 mA g ⁻¹)	94.0 (100 cycles, 100 mA g ⁻¹)	-	29
Li–S	conductive framework of cathode	without details	nitrogen- incorporated, KOH activation	-	50.0 (600 cycles, 0.1 C)	3.0 C, 208.3 mAh g ⁻¹	30
		cellulose enzyme residual lignin	NaHCO ₃ activation	-	92.0 (200 cycles, 0.5 C)	0.5 C, 1035 mAh g ⁻¹	31
		alkaline lignin	one-step carbonization/activ ation method	-	64.8 (100 cycles, 0.5 C)	2.0 C, 460.6 mAh g ⁻¹	32
	binder	lignosulfonate sodium salt	the negatively charged sulfonate functional group	-	66.7 (100 cycles, 0.2 C)	1.0 C, 710.0 mAh g ⁻¹	33
	modification	sodium lignosulfonate	negatively charged sulfonic groups	-	74.0 (1000 cycles, 2.0 C)	2.0 C, 707.0 mAh g ⁻¹	34
	materials of separator	extracted with benzenesulfonic acid	chemically alleviation of polysulfides	-	65.2 (500 cycles, 1.0 C)	2.0 C, 377.0 mAh g ⁻¹	35
Li–Se	conductive framework of cathode	commercial alkaline lignin	KOH activation	-	76.0 (300 cycles, 0.5 C)	4.0 C, 363.2 mAh g ⁻¹	36
Li–O ₂	conductive framework of cathode	alkaline lignin	KOH, H ₃ PO ₄ , or steam activation	-	-	$0.2 \text{ mA g}^{-1}, 1.6 \text{ mAh g}^{-1}$	37

Li–NCM811	carbon membrane as framework of Li anode	collected from Shandong Longlive Bio- Technology Co., Ltd.	surface ozonolysis	-	84.4 (135 cycles, 1.0 C)	-	38
Li–NCM333	separator	without details	lignin/polyvinyl alcohol blends	81.1 (0.1 C)	-	5.0 C, 33.4 mAh g ⁻¹	39
Li–LiFePO ₄	separator	without details	lignin/polyacrylonit rile composite	-	95.0 (50 cycles, 0.2 C)	8.0 C, 63.8 mAh g ⁻¹	40
Li–NCM523	modification materials of separator	lignosulfonate	in situ reacts between lignosulfonate and Li metal	-	73.5 (100 cycles, 0.4 C)	2.0 C, 98.2 mAh g ⁻¹	41
Li–LiFePO4	electrolyte	without details	mixing lignin and poly(N- vinylimidazole)-co- poly(poly(ethylene glycol) methyl ether methacrylate	-	~99.0 (450 cycles, 1.0 C)	10.0 C, 110 mAh g ⁻¹	42
Li–LiFePO ₄	electrolyte	gran lignin fiber	forming uniform suspension	-	97.7 (50 cycles, 0.2 C)	1.5 C, 129 mAh g ⁻¹	43
all-solid-state Li–LiFePO4	electrolyte	organosolv lignin	chemical modification and atom transfer radical polymerization	-	99.2 (100 cycles, 1.0 C)	5.0 C, 120 mAh g ⁻¹	44

ICE: initial Coulombic efficiency

LIB: lithium-ion battery

SIB: sodium-ion battery

In the table, the electrochemical performances of LIB and SIB are collected from provided half cells.

References:

- 1. W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang and W. Huang, *Electrochim. Acta*, 2015, **176**, 1136–1142.
- 2. Y. Xi, S. Huang, D. Yang, X. Qiu, H. Su, C. Yi and Q. Li, *Green Chem.*, 2020, 22, 4321–4330.
- 3. Y.-F. Du, G.-H. Sun, Y. Li, J.-Y. Cheng, J.-P. Chen, G. Song, Q.-Q. Kong, L.-J. Xie and C.-M. Chen, *Carbon*, 2021, **178**, 243–255.
- 4. Y. Xi, D. Yang, X. Qiu, H. Wang, J. Huang and Q. Li, *Ind. Crop. Prod.*, 2018, **124**, 747–754.
- 5. Z. W. He, Q. F. Lu and Q. Lin, *Bioresour. Technol.*, 2013, **127**, 66–71.
- 6. Z. Yang, H. Guo, F. Li, X. Li, Z. Wang, L. Cui and J. Wang, J. Energy Chem., 2018, 27, 1390–1396.
- 7. S. X. Wang, L. Yang, L. P. Stubbs, X. Li and C. He, ACS Appl. Mater. Interfaces, 2013, 5, 12275–12282.
- 8. M. Culebras, H. Geaney, A. Beaucamp, P. Upadhyaya, E. Dalton, K. M. Ryan and M. N. Collins, *ChemSusChem*, 2019, **12**, 4516–4521.
- 9. E. Stojanovska, E. S. Pampal, A. Kilic, M. Quddus and Z. Candan, *Compos. Part. B-Eng.*, 2019, **158**, 239–248.
- 10. A. P. Nowak, J. Hagberg, S. Leijonmarck, H. Schweinebarth, D. Baker, A. Uhlin, P. Tomani and G. Lindbergh, Holzforschung, 2018, 72, 81–90.
- 11. O. Rios, S. K. Martha, M. A. McGuire, W. Tenhaeff, K. More, C. Daniel and J. Nanda, *Energy Technol.*, 2014, 2, 773–777.
- 12. X. Ma, A. L. Smirnova and H. Fong, *Mater. Sci. Eng. B-Adv.*, 2019, 241, 100–104.
- 13. F. Chen, L. Wu, Z. Zhou, J. Ju, Z. Zhao, M. Zhong and T. Kuang, Chin. Chem. Lett., 2019, 30, 197–202.
- 14. Z. Zhou, F. Chen, T. Kuang, L. Chang, J. Yang, P. Fan, Z. Zhao and M. Zhong, *Electrochim. Acta*, 2018, 274, 288–297.
- 15. X. Niu, J. Zhou, T. Qian, M. Wang and C. Yan, *Nanotechnology*, 2017, **28**, 405401.
- 16. T. Chen, Q. Zhang, J. Pan, J. Xu, Y. Liu, M. Al-Shroofy and Y. T. Cheng, ACS Appl. Mater. Interfaces, 2016, 8, 32341–32348.
- 17. T. Chen, J. Hu, L. Zhang, J. Pan, Y. Liu and Y.-T. Cheng, J. Power Sources, 2017, **362**, 236–242.
- 18. T. Chen, Q. Zhang, J. Xu, J. Pan and Y.-T. Cheng, *RSC Adv.*, 2016, **6**, 29308–29313.
- 19. C. Luo, L. Du, W. Wu, H. Xu, G. Zhang, S. Li, C. Wang, Z. Lu and Y. Deng, ACS Sustain. Chem. Eng., 2018, 6, 12621–12629.
- 20. Y. Ma, K. Chen, J. Ma, G. Xu, S. Dong, B. Chen, J. Li, Z. Chen, X. Zhou and G. Cui, *Energ. Environ. Sci.*, 2019, **12**, 273–280.
- 21. D. Yoon, J. Hwang, W. Chang and J. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 569–581.

- 22. S. Alvin, D. Yoon, C. Chandra, H. S. Cahyadi, J.-H. Park, W. Chang, K. Y. Chung and J. Kim, *Carbon*, 2019, 145, 67–81.
- 23. C. Li, Y. Sun, Q. Wu, X. Liang, C. Chen and H. Xiang, *Chem. Commun.*, 2020, 56, 6078–6081.
- 24. H. Zhang, W. Zhang, H. Ming, J. Pang, H. Zhang, G. Cao and Y. Yang, Chem. Eng. J., 2018, 341, 280–288.
- 25. Y. Li, Y.-S. Hu, H. Li, L. Chen and X. Huang, J. Mater. Chem. A, 2016, 4, 96–104.
- 26. L. Du, W. Wu, C. Luo, D. Xu, H. Guo, R. Wang, T. Zhang, J. Wang and Y. Deng, J. Electrochem. Soc., 2019, 166, A423–A428.
- H. Jia, N. Sun, M. Dirican, Y. Li, C. Chen, P. Zhu, C. Yan, J. Zang, J. Guo, J. Tao, J. Wang, F. Tang and X. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 44368–44375.
- 28. J. Jin, B.-j. Yu, Z.-q. Shi, C.-y. Wang and C.-b. Chong, J. Power Sources, 2014, 272, 800–807.
- 29. K. Peuvot, O. Hosseinaei, P. Tomani, D. Zenkert and G. Lindbergh, J. Electrochem. Soc., 2019, 166, A1984–A1990.
- 30. J. S. Yeon, S. H. Park, J. Suk, H. Lee and H. S. Park, *Chem. Eng. J.*, 2020, **382**, 122946.
- 31. J. Xu, B. Liu, L. Wu, J. Hu, H. Hou and J. Yang, Ind. Crop. Prod., 2019, 129, 269–280.
- 32. F. Yu, Y. Li, M. Jia, T. Nan, H. Zhang, S. Zhao and Q. Shen, J. Alloys Compd., 2017, 709, 677–685.
- 33. J. Jeon, J.-K. Yoo, S. Yim, K. Jeon, G. H. Lee, J. H. Yun, D. K. Kim and Y. S. Jung, ACS Sustain. Chem. Eng., 2019, 7, 17580–17586.
- 34. T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu, J. Chu, C. Yan, C. Wu, Y. Yan, W. He, J. Xiong, Y. Li, C. Yan, J. B. Goodenough and X. Duan, *Joule*, 2018, 2, 2091–2104.
- 35. Z. Zhang, S. Yi, Y. Wei, H. Bian, R. Wang and Y. Min, *Polymers*, 2019, 11, 1946.
- 36. H. Zhang, D. Jia, Z. Yang, F. Yu, Y. Su, D. Wang and Q. Shen, *Carbon*, 2017, **122**, 547–555.
- 37. G. Zhang, Y. Yao, T. Zhao, M. Wang and R. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 16521–16530.
- 38. L. Tao, Z. Xu, C. Kuai, X. Zheng, C. E. Wall, C. Jiang, A. R. Esker, Z. Zheng and F. Lin, *Energy Storage Mater.*, 2020, 24, 129–137.
- 39. M.-J. Uddin, P. K. Alaboina, L. Zhang and S.-J. Cho, *Mater. Sci. Eng. B-Adv.*, 2017, 223, 84–90.
- 40. M. Zhao, J. Wang, C. Chong, X. Yu, L. Wang and Z. Shi, *RSC Adv.*, 2015, **5**, 101115–101120.
- 41. J. Liu, R. Xu, C. Yan, H. Yuan, J.-F. Ding, Y. Xiao, T.-Q. Yuan and J.-Q. Huang, *Energy Storage Mater.*, 2020, **30**, 27–33.

- 42. S. Wang, L. Zhang, A. Wang, X. Liu, J. Chen, Z. Wang, Q. Zeng, H.-h. Zhou, X. Jiang and L. Zhang, ACS Sustain. Chem. Eng., 2018, 6, 14460–14469.
- 43. S.-D. Gong, Y. Huang, H.-J. Cao, Y.-H. Lin, Y. Li, S.-H. Tang, M.-S. Wang and X. Li, J. Power Sources, 2016, **307**, 624–633.
- 44. D. Jeong, J. Shim, H. Shin and J. C. Lee, *ChemSusChem*, 2020, **13**, 2642–2649.