Supplementary Information

Metal-Free Electrochemical [3+2] Heteroannulation of Anilines with Pyridines Enabled by Dual C-H Radical Aminations

Mu-Jia Luo,^a Xuan-Hui Ouyang,^a Yan-Ping Zhu,^{*b} Yang Li,^{*a} and Jin-Heng Li^{*abcd}

^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

^d School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China.

List of Contents

- (A) Typical Experimental Procedure
- (B) Analytical data
- (C) Spectra (NMR Spectra)
- (D) The X-ray Single-Crystal Diffraction Analysis of 3wg
- (E) Reference

^a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. E-mail: <u>ihi@hnu.edu.cn E-mail: liyang1989@hnu.edu.cn.</u>

^b School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, China. E-mail: <u>chemzyp@foxmail.com</u>.

(A) Typical Experimental Procedure

(a) General

The ¹H and ¹³C NMR spectra were recorded in CDCl₃ solvent on a NMR spectrometer using TMS as internal standard. HRMS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points are uncorrected. The instrument for electrolysis is DC power source (PM3005B) (made in China). Cyclic voltammograms were obtained on a CHI 605E potentiostat. The anode electrode is graphite rod ($\Phi 6 \text{ mm} \times 80 \text{ mm}$) and cathode electrode is platinum electrodes ($1.0 \times 1.0 \text{ cm}^2$).

(b) General procedures for electrochemical [3+2] heteroannulation of anilines (1) with pyridines (2)

To an undivided single-necked bottle (10 mL) were added **1a** (0.3 mmol), **2a** (0.6 mmol), "Bu₄NClO₄ (1.0 equiv) and MeCN (6 mL). The bottle was equipped with platinum electrodes $(1.0 \times 1.0 \text{ cm}^2)$ as cathode and graphite rod electrode as anode under air or argon. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA at 40 °C for 3 h until complete consumption of **1a** as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the solution was extracted with EtOAc (3×10 mL). The combined organic layer was dried with Na₂SO₄, filtered and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **3aa**.

(c) Experimental devices

The electrochemical effectiveness is equivalent with our prepared electrochemical reaction device or the IKA ElectroSyn 2.0 electrochemical reaction device.

(a) Self-prepared electrochemical reaction devices

(b) IKA ElectroSyn 2.0 electrochemical reaction devices

(d) Cyclic voltammogram analysis

Figure S1. Cyclic voltammogram curves (0-2.5 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. **1a** (0.05 M), "Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

Figure S2. Cyclic voltammogram curves (-2.5-0 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. **2a** (0.1 M), *n*Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

Scanning range: 0 - 2.5 V (4-Cyanopyridine is electron deficient aromatics, no oxidative peak in 0-2.5 V).

Figure S3. Cyclic voltammogram curves (-2.5-0 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. **2a / 4-Methylpridine** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

Figure S4. Cyclic voltammogram curves (0 – 2.5 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. (1) ${}^{n}Bu_{4}NCIO_{4}$ (0.1 M) and MeCN (6 mL); (2) **1a** (0.05 M), ${}^{n}Bu_{4}NCIO_{4}$ (0.1 M) and MeCN (6 mL); (3) **2a** (0.1 M), ${}^{n}Bu_{4}NCIO_{4}$ (0.1 M) and MeCN (6 mL); (4) **1a** (0.05 M), **2a** (0.1 M), ${}^{n}Bu_{4}NCIO_{4}$ (0.1 M) and MeCN (6 mL).

Figure S5. Cyclic voltammogram curves (0 – 2.5 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

Figure S6. Cyclic voltammogram curves (-2.5 – 0 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. (black curve) ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (red curve) **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL); (blue curve) **1a** (0.05 M), **2a** (0.1 M), ^{*n*}Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

Figure S7. Cyclic voltammogram curves (-2.5 – 0 V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. **1a** (0.05 M), **2a** (0.1 M), "Bu₄NClO₄ (0.1 M) and MeCN (6 mL).

(e) UV spectrum and fluorescence spectrum

Figure S8. UV-vis absorption spectra and fluorescence emission spectra of compound 3aa in MeCN.

Figure S9. Fluoresence emission spectra of compound **3aa** in the presence of different metal ions Ag⁺, Ba²⁺, Co²⁺, Cr²⁺, Cu²⁺, Fe³⁺, Hg²⁺, Ni²⁺ and Zn²⁺ in CH₃CN/H₂O(100:1). λ_{ex} = 390 nm, [**3aa**] = 2.5 × 10⁻⁴ M, [Mⁿ⁺] = 1 × 10⁻³ M.

(B) Analytical data

8-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3aa):

82% yield; Yellow solid, m.p. 246.3-247.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 6.5 Hz, 1H), 8.07 (s, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.28-7.26 (m, 2H), 6.92 (d, J =

6.0 Hz, 1H), 3.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 145.1, 140.2, 129.0, 125.6, 125.0, 121.8, 118.2, 117.4, 110.4, 109.7, 92.6, 56.0; LRMS (EI, 70 eV) *m/z* (%): 223 (M⁺, 68), 208 (100), 180 (15), 103 (21); HRMS *m/z* (ESI) calcd for C₁₃H₁₀N₃O [M+H]⁺ 224.0818, found 224.0824.

8-Methoxy-1-methylbenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ab):

85% yield; Yellow solid; m.p. 194.3-196.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.89 (m, 2H), 7.55 (s, 1H), 7.27 (s, 1H), 6.59 (s, 1H), 3.94 (s, 3H), 3.03 (s, 3H); ¹³C NMR

(125 MHz, CDCl₃) δ 156.2, 146.5, 140.5, 139.8, 130.1, 122.2, 121.1, 117.4, 116.4, 110.6, 109.5, 97.9, 56.0, 21.1; LRMS (EI, 70 eV) *m/z* (%): 237 (M⁺, 71), 222 (100), 194 (21), 90 (8); HRMS *m/z* (ESI) calcd for C₁₄H₁₂N₃O [M+H]⁺ 238.0975, found 238.0982.

8-Methoxy-2-methylbenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ac):

80% yield; Yellow solid; m.p. 198.2-199.4 °C; ¹H NMR
(500 MHz, CDCl₃) δ 8.23 (d, J = 7.0 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 7.24-7.21 (m, 2H), 6.84 (d, J = 7.0 Hz, 1H),

3.94 (s, 3H), 2.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 146.0, 139.5, 136.1, 129.5, 122.9, 121.6, 117.6, 116.8, 109.8, 108.8, 92.6, 55.9, 16.3; LRMS (EI, 70 eV) *m*/*z* (%): 237 (M⁺, 65), 222 (100), 194 (17), 117 (7); HRMS *m*/*z* (ESI) calcd for C₁₄H₁₂N₃O [M+H]⁺ 238.0975, found 238.0988.

2,8-Dimethoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ad):

86% yield; Light yellow solid; m.p. 244.3-245.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 5.5 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.26-7.09 (m, 2H), 6.72 (d, *J* = 5.0 Hz, 1H), 4.66 (s, 3H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 153.8, 140.7, 138.8, 129.2, 121.7, 118.6, 117.7, 116.0, 110.0, 94.6, 92.5, 61.7, 55.9; LRMS (EI, 70 eV) *m/z* (%): 253 (M⁺, 100), 224 (60), 198 (28), 103 (15); HRMS *m/z* (ESI) calcd for C₁₄H₁₂N₃O₂ [M+H]⁺ 254.0924, found 254.0931.

10-Methoxybenzo[4,5]imidazo[1,2-*a*]quinoline-5-carbonitrile (3ae):

73% yield; Light yellow solid; m.p. 254.8-255.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 7.5 Hz, 1H), 8.07 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 1H),

7.87 (t, J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.28 (s, 1H), 4.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 144.8, 140.2, 135.3, 131.5, 131.0, 127.5, 126.2, 125.2, 122.1, 120.20, 116.0, 115.5, 115.1, 111.8, 97.9, 56.2; LRMS (EI, 70 eV) m/z (%): 273 (M⁺, 73), 258 (100), 230 (31), 153 (13); HRMS m/z (ESI) calcd for C₁₇H₁₂N₃O [M+H]⁺ 274.0975, found 274.0979.

Methyl 8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3af):

85% yield; Light yellow solid; m.p. 123.4-124.7 °C;
¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 8.32 (d, J = 7.0 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.34 (d, J =

7.0 Hz, 1H), 7.25 (s, 1H), 7.22 (d, J = 9.0 Hz, 1H), 3.99 (s, 3H), 3.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 156.4, 146.6, 140.3, 129.0, 128.9, 124.3, 121.4, 121.2, 117.3, 109.0, 92.7, 56.0, 52.7; LRMS (EI, 70 eV) m/z (%): 256 (M⁺, 72), 241

(100), 213 (13), 182 (9); HRMS m/z (ESI) calcd for C₁₄H₁₃N₂O₃ [M+H]⁺ 257.0921, found 257.0928.

Ethyl 8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3ag):

 $\begin{array}{l} & 78\% \text{ yield; Light yellow solid; m.p. 125.6-126.4 °C;} \\ & \mathsf{MeO} \\$

Allyl 8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3ah):

MeO N, O N,

7.35-7.34 (m, 1H), 7.24 (d, J = 2.5 Hz, 1H), 7.22-7.20 (m, 1H), 6.11-6.03 (m, 1H), 5.48-5.44 (m, 1H), 5.36-5.33 (m, 1H), 4.88 (d, J = 5.5 Hz, 2H), 3.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 156.4, 146.5, 140.2, 131.7, 128.9, 128.8, 124.2, 121.3, 121.2, 118.7, 117.3, 108.9, 92.6, 66.2, 55.9; LRMS (EI, 70 eV) m/z (%): 282 (M⁺, 100), 267 (91), 227 (55), 182 (15); HRMS m/z (ESI) calcd for C₁₆H₁₅N₂O₃ [M+H]⁺ 283.1077, found 283.1084.

1-(8-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridin-3-yl)ethanone (3ai):

MeO N O O

7.23 (d, J = 9.0 Hz, 1H), 3.95 (s, 3H), 2.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.0, 156.6, 146.6, 140.4, 135.5, 129.0, 124.5, 121.3, 120.6, 117.4, 107.5, 92.7, 565.9, 26.1; LRMS (EI, 70 eV) m/z (%): 240 (M⁺, 62), 225 (100); HRMS m/z (ESI) calcd for C₁₄H₁₃N₂O₂ [M+H]⁺ 241.0972, found 241.0977.

8-Methoxy-3-tosylbenzo[4,5]imidazo[1,2-*a*]pyridine (3aj):

3H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 7.0 Hz, 2H), 7.17 (d, J = 7.0 Hz, 1H), 3.94 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 145.1, 140.7, 140.4, 137.2, 130.2, 128.6, 128.1, 127.5, 125.6, 121.6, 119.3, 117.8, 106.4, 92.7, 56.0, 21.6; HRMS *m/z* (ESI) calcd for C₁₉H₁₇N₂O₃S [M+H]⁺ 353.0954, found 353.0962.

8-Methoxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-*a*]pyridine (3ak):

 $\begin{array}{c} 58\% \text{ yield; Light yellow solid; m.p. 127.6-128.4 °C; }^{1}\text{H}\\ \text{MeO} \\ \\ \text{CF}_{3} \\ \text{NMR (500 MHz, CDCl_{3}) } \delta 8.44 (d, J = 7.0 \text{ Hz}, 1\text{H}), 7.97 \\ (s, 1\text{H}), 7.89 (d, J = 9.0 \text{ Hz}, 1\text{H}), 7.30 (s, 1\text{H}), 7.24 (d, J = 2.0 \text{ Hz}, 1\text{H}), 6.96 (d, J = 7.0 \text{ Hz}, 1\text{H}), 3.96 (s, 3\text{H}); \\ ^{13}\text{C NMR (125 MHz, CDCl_{3}) } \delta \\ \end{array}$

156.5, 146.4, 139.9, 129.4 (d, J = 33.75 Hz), 128.8, 125.6, 121.4, 117.3, 116.5, 116.4, 105.7 (q, J = 2.75 Hz) 92.8, 56.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -64.2; LRMS (EI, 70 eV) m/z (%): 266 (M⁺, 65), 251 (100), 223 (27), 146 (12); HRMS m/z (ESI) calcd for C₁₃H₁₀F₃N₂O [M+H]⁺ 267.0740, found 267.0748.

8-(Hexyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ia):

81% yield; Light yellow solid; m.p. 175.5-176.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 6.0 Hz, 1H), 8.03 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 6.0 Hz, 2H), 6.88 (d, J = 7.0 Hz, 1H), 4.09-4.06 (m, 2H), 1.94-1.80 (m, 2H), 1.51 (d, J = 6.0 Hz, 2H), 1.39-1.37 (m, 4H), 0.93 (t, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 144.9, 140.0, 128.9, 125.5, 124.8, 121.6, 118.5, 117.4, 110.2, 109.5, 93.1, 68.9, 31.5, 29.1, 25.7, 22.5, 14.0; LRMS (EI, 70 eV) m/z (%): 293 (M⁺, 26), 209 (100), 180 (11), 103 (5); HRMS m/z (ESI) calcd for C₁₈H₂₀N₃O [M+H]⁺ 294.1601, found 294.1609.

8-(Cyclopropylmethoxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ja):

78% yield; Light yellow solid; m.p. 209.8-210.4 °C; N 1H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 7.0 Hz, 1H), 8.02 (s, 1H), 7.87 (d, *J* = 9.0 Hz, 1H), 7.28 (d, *J* = 12.0 Hz, 1H), 7.23 (s, 1H), 6.87 (d, *J* = 7.0 Hz, 1H), 3.92 (d, *J* = 7.0 Hz, 2H), 1.45-1.30 (m, 1H), 0.79-0.61 (m, 2H), 0.44-0.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 144.9, 140.0, 128.8, 125.5, 124.7, 121.5, 118.5, 117.3, 110.2, 109.4, 93.4, 73.6, 10.1, 3.2; LRMS (EI, 70 eV) *m*/*z* (%): 263 (M⁺, 40), 209 (100), 180 (22), 103 (15); HRMS *m*/*z* (ESI) calcd for C₁₆H₁₄N₃O [M+H]⁺ 264.1131, found 264.1139.

8-(Benzyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ka):

86% yield; Light yellow solid; m.p. 213.5-215.0 °C; N = 1 NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 7.0 Hz, 1H), 8.04 (s, 1H), 7.91 (d, J = 9.5 Hz, 1H), 7.49 (d, J = 7.0 Hz, 2H), 7.42 (t, J = 7.0 Hz, 2H), 7.39-7.30 (m, 3H), 6.89 (d, J = 6.5 Hz, 1H), 5.19 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 145.1, 140.3, 136.3, 128.8, 128.7, 128.2, 127.5, 125.6, 124.9, 121.8, 118.6, 117.4, 110.5, 109.6, 94.0, 70.9; LRMS (EI, 70 eV) m/z (%): 299 (M⁺, 25), 208 (62), 180 (11), 91 (100); HRMS m/z (ESI) calcd for C₁₉H₁₄N₃O [M+H]⁺ 300.1131, found 300.1143.

8-(Allyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3la):

83% yield; Light yellow solid; m.p. 201.9-203.0 °C;
¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 7.0 Hz,
1H), 8.05 (s, 1H), 7.90 (d, J = 9.5 Hz, 1H), 7.29 (d, J

= 7.5 Hz, 2H), 6.90 (d, J = 7.0 Hz, 1H), 6.15-6.09 (m, 1H), 5.49 (d, J = 17.0 Hz, 1H), 5.36 (d, J = 10.5 Hz, 1H), 4.67 (d, J = 5.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 145.1, 140.2, 132.7, 128.8, 125.6, 124.9, 121.7, 118.5, 118.1, 117.4, 110.4, 109.6, 93.8, 69.7; LRMS (EI, 70 eV) m/z (%): 249 (M⁺, 100), 235 (88), 206 (44), 103 (33); HRMS m/z (ESI) calcd for C₁₅H₁₂N₃O [M+H]⁺ 250.0975, found 250.0988.

8-Phenoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ma):

72% yield; Light yellow solid; m.p. 252.3-254.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 7.0 Hz, 1H), 8.09 (s, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H),

7.43-7.34 (m, 3H), 7.17 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.92-6.90 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.3, 154.1, 145.8, 141.6, 130.0, 128.9, 126.0, 125.0, 123.8, 122.0, 120.4, 119.0, 117.2, 111.4, 109.8, 99.9; LRMS (EI, 70 eV) m/z (%): 285 (M⁺, 100), 208 (61), 180 (18), 103 (12); HRMS m/z (ESI) calcd for C₁₈H₁₂N₃O [M+H]⁺ 286.0975, found 286.0980.

8-(Methylthio)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3na):

64% yield; Light yellow solid; m.p. 234.1-235.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, J = 7.0 Hz, 1H), 8.09 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.76 (s, 1H), 7.55 (d, J =

7.0 Hz, 1H), 6.96 (d, J = 7.0 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 143.5, 134.3, 129.1, 127.3, 126.0, 124.9, 121.1, 117.2, 111.6, 110.0, 108.4,

17.1; LRMS (EI, 70 eV) *m/z* (%): 239 (M⁺, 80), 224 (100), 180 (18), 103 (11); HRMS *m/z* (ESI) calcd for C₁₃H₁₀N₃S [M+H]⁺ 240.0590, found 240.0597.

8-Isopropylbenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (30a):

51% yield; Light yellow solid; m.p. 188.4-189.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, *J* = 6.5 Hz, 1H), 8.09 (s, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.76 (s, 1H), 7.53 (d, *J* = 8.0

Hz, 1H), 6.95 (d, J = 6.5 Hz, 1H), 3.26-3.11 (m, 1H), 1.38 (d, J = 6.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 145.1, 143.9, 128.7, 126.8, 126.0, 124.8, 120.6, 117.3, 111.3, 109.6, 107.5, 34.6, 24.4; LRMS (EI, 70 eV) m/z (%): 235 (M⁺, 36), 220 (100), 193 (8), 110 (5); HRMS m/z (ESI) calcd for C₁₅H₁₄N₃ [M+H]⁺ 236.1182, found 236.1195.

7-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3pa):

51% yield; Light yellow solid; m.p. 192.3-192.7 °C; ¹H MeO ((N (N NMR (500 MHz, CDCl₃) δ 8.47 (d, J = 7.0 Hz, 1H), 8.05 (s, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.37 (s, 1H), 7.13 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 7.0 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 146.9, 146.2, 125.7, 123.8, 123.3, 117.3, 115.2, 111.4, 111.1, 110.0, 101.0, 55.8; LRMS (EI, 70 eV) m/z(%): 223 (M⁺, 100), 194(30), 180 (61), 103 (8); HRMS m/z (ESI) calcd for C₁₃H₁₀N₃O [M+H]⁺ 224.0818, found 224.0831.

6-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3qa):

43% yield; Light yellow solid; m.p. 184.3-185.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.15 (d, *J* = 7.0 Hz, 1H), 8.07 (s, 1H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 6.91

(d, J = 7.0 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 4.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.2, 147.0, 145.7, 130.1, 127.1, 123.5, 117.3, 112.9, 111.7, 109.5, 103.1,

100.0, 56.0; LRMS (EI, 70 eV) *m/z* (%): 223 (M⁺, 100), 194 (15), 180 (76), 126 (7); HRMS *m/z* (ESI) calcd for C₁₃H₁₀N₃O [M+H]⁺ 224.0818, found 224.0825.

N-(3-Cyano-8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridin-6-yl)-*N*-(4-methoxyphen yl)-4-methylbenzenesulfonamide (3ra):

32% yield; Light yellow solid; m.p. 257.0-258.6
°C; ¹H NMR (500 MHz, CD₂Cl₂) δ 8.29 (d, J = 7.0 Hz, 1H), 7.98 (s, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 9.0 Hz, 2H), 7.26-7.13 (m, 4H),

6.82 (d, J = 7.0 Hz, 1H), 6.70 (d, J = 9.0 Hz, 2H), 3.82 (s, 3H), 3.65 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 159.2, 156.6, 145.3, 143.9, 138.5, 137.5, 133.7, 133.4, 130.7, 130.4, 129.4, 128.2, 126.0, 125.2, 118.6, 117.3, 114.1, 111.1, 110.0, 93.3, 56.2, 55.4, 21.4; HRMS *m*/*z* (ESI) calcd for C₂₇H₂₃N₄O₄S [M+H]⁺ 499.1435, found 499.1443.

8-Methoxy-6-methylbenzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile (3sa):

77% yield; Light yellow solid; m.p. 222.8-223.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 7.0 Hz, 1H), 8.06 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.89-6.87 (m, 1H), 3.93

(s, 3H), 2.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 144.3, 139.9, 132.1, 128.4, 125.5, 124.8, 117.9, 117.5, 109.8, 109.5, 89.8, 55.8, 17.0; LRMS (EI, 70 eV) *m/z* (%): 237 (M⁺, 70), 222 (100), 194 (20), 103 (13); HRMS *m/z* (ESI) calcd for C₁₄H₁₂N₃O [M+H]⁺ 238.0975, found 238.0981.

8-Methoxy-7-methylbenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ta):

85% yield; Light yellow solid; m.p. 235.6-236.3 °C; ¹H
NMR (500 MHz, DMSO) δ 9.16 (d, J = 7.0 Hz, 1H), 8.36
(s, 1H), 7.92 (s, 1H), 7.69 (s, 1H), 7.22 (d, J = 6.5 Hz, 1H),

3.95 (s, 3H), 2.35 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ 155.3, 144.7, 139.6, 128.1 (2C), 128.0, 124.6, 120.8, 118.4, 109.7, 109.6, 93.3, 56.4, 17.7; LRMS (EI, 70 eV) *m/z* (%): 237 (M⁺, 65), 222 (100), 194 (24), 103 (14); HRMS *m/z* (ESI) calcd for C₁₄H₁₂N₃O [M+H]⁺ 238.0975, found 238.0983.

Ethyl 7-chloro-8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3ug):

57% yield; Light yellow solid; m.p. 184.7-186.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 8.37 (d, J = 7.0 Hz, 1H), 8.02 (s, 1H), 7.42 (d, J = 7.0 Hz, 1H),

7.33 (s, 1H), 4.46 (q, J = 7.0 Hz, 2H), 4.05 (s, 3H), 1.45 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 151.7, 139.7, 129.9, 129.7, 126.4, 124.2, 123.5, 121.6, 121.0, 109.6, 92.9, 56.8, 14.3; LRMS (EI, 70 eV) m/z (%): 304 (M⁺, 100), 289 (77), 261 (93), 233 (16); HRMS m/z (ESI) calcd for C₁₅H₁₄ClN₂O₃ [M+H]⁺ 305.0687, found 305.0697.

Ethyl 7-bromo-8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3vg):

7.29 (s, 1H), 4.45 (q, J = 7.0 Hz, 2H), 4.03 (s, 3H), 1.45 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 152.3, 150.6, 140.4, 130.0, 128.0, 124.8, 124.2, 121.0, 112.4, 109.5, 92.6, 61.9, 56.9, 14.3; LRMS (EI, 70 eV) m/z (%): 350 (M²⁺, 100), 348 (M⁺, 100), 333 (65), 305 (80), 153 (17); HRMS m/z (ESI) calcd for C₁₅H₁₄BrN₂O₃ [M+H]⁺ 349.0182, found 349.0188.

Ethyl 7-fluoro-8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3wg):

= 7.0 Hz, 1H), 7.64 (d, *J* = 11.0 Hz, 1H), 7.38 (d, *J* = 7.0 Hz, 1H), 7.32 (d, *J* = 7.0 Hz, 1H), 4.45 (q, *J* = 7.0 Hz, 2H), 4.02 (s, 3H), 1.45 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 152.8 (d, *J* = 245.25 Hz), 147.1, 145.8 (d, *J* = 14.13 Hz), 139.0 (d, *J* = 12.0 Hz), 129.3, 124.3, 124.0, 120.5, 109.5, 106.4 (d, *J* = 21.13 Hz), 93.8 (d, *J* = 2.38 Hz), 61.8, 56.7, 14.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -132.4; LRMS (EI, 70 eV) m/z (%): 288 (M⁺, 93), 273 (66), 245 (100), 200 (12); HRMS m/z (ESI) calcd for C₁₅H₁₄FN₂O₃ [M+H]⁺ 289.0983, found 289.0986.

2,3-Dihydrobenzofuro[5',6':4,5]imidazo[1,2-*a*]pyridine-7-carbonitrile (3xa):

79% yield; Light yellow solid; m.p. 236.4-238.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 7.0 Hz, 1H), 8.02 (s, 1H), 7.77 (s, 1H), 7.20 (s, 1H), 6.89 (d, *J* = 7.0 Hz, 1H),

4.73 (t, J = 8.5 Hz, 2H), 3.44 (t, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 144.9, 140.9, 130.1, 128.4, 125.4, 124.7, 117.6, 116.5, 109.7, 109.6, 89.9, 29.9; LRMS (EI, 70 eV) m/z (%): 235 (M⁺, 100), 206 (39), 103 (18); HRMS m/z (ESI) calcd for C₁₄H₁₀N₃O [M+H]⁺ 236.0818, found 236.0825.

Ethyl-[1,3]dioxolo[4'',5'':4',5']benzo[1',2':4,5]imidazo[1,2-*a*]pyridine-7-carboxyla te (3yg):

69% yield; Light yellow solid; m.p. 178.6-179.8 °C; ¹H
^{it} NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 8.28 (d, J = 7.0 Hz, 1H), 7.40 (d, J = 7.0 Hz, 1H), 7.33 (s, 1H), 7.27 (s, 1H), 7.27 (s, 1H), 7.27 (s, 1H), 7.28 (s, 1H), 7.27 (s, 1H)

1H), 6.10 (s, 2H), 4.44 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 148.2, 146.6, 145.5, 141.4, 128.3, 123.6, 123.2, 120.3, 109.5, 101.8, 100.0, 90.3, 61.7, 14.3; LRMS (EI, 70 eV) m/z (%): 284 (M⁺, 100), 256 (91), 198 (13), 123 (16); HRMS m/z (ESI) calcd for C₁₅H₁₃N₂O₄ [M+H]⁺ 285.0870, found 285.0883.

Ethyl 1-methyl-1*H*-pyrido[1',2':1,2]imidazo[4,5-*f*]indole-7-carboxylate (3zg):

74% yield; Light yellow solid; m.p. 189.4-190.8 °C; ¹H
^t NMR (500 MHz, CDCl₃) δ 8.67 (d, J = 7.0 Hz, 1H),
8.51 (s, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.58 (d, J = 9.0

Hz, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.26 (s, 1H), 6.94 (d, J = 2.5 Hz, 1H), 4.46 (q, J = 7.0 Hz, 2H), 3.97 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.4, 144.8, 140.7, 133.0, 128.4, 127.5, 125.3, 121.5, 120.4, 114.2, 113.1, 110.3, 109.4, 97.3, 61.6, 33.7, 14.3; LRMS (EI, 70 eV) m/z (%): 293 (M⁺, 89), 265 (100), 220 (15), 110 (15); HRMS m/z (ESI) calcd for C₁₇H₁₆N₃O₂ [M+H]⁺ 294.1237, found 294.1244.

Benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile (3aaa)^[1]:

31% yield; Light yellow solid; m.p. 234.6-235.9 °C; ¹H NMR $N \rightarrow N$ (500 MHz, CDCl₃) δ 8.55 (d, J = 7.0 Hz, 1H), 8.11 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.6, 145.2, 128.5, 127.0, 126.3, 124.7, 123.3, 120.9, 117.1, 112.0, 110.8, 109.8; LRMS (EI, 70 eV) m/z (%): 193 (M⁺, 100), 166 (6), 139 (7), 96 (10); HRMS m/z (ESI) calcd for C₁₂H₈N₃ [M+H]⁺ 194.0731, found 194.0744.

3-((3-Cyanobenzo[4,5]imidazo[1,2-*a*]pyridin-8-yl)oxy)propyl-2-(4-isobutylphenyl)propanoate (3aba):

69% yield; Light yellow solid; m.p. 167.7-169.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J

= 7.0 Hz, 1H), 8.05 (s, 1H), 7.88 (d, *J* = 9.5 Hz, 1H), 7.22-7.15 (m, 4H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 7.0 Hz, 1H), 4.42- 4.25 (m, 2H), 4.03-4.00 (m, 2H), 3.71 (q,

J = 7.0 Hz, 1H), 2.33 (d, J = 7.0 Hz, 2H), 2.17-2.13 (m, 2H), 1.78-1.72 (m, 1H), 1.49 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 6.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 156.0, 145.0, 140.4, 140.1, 137.7, 129.2, 128.8, 127.0, 125.6, 124.9, 121.6, 118.2, 117.3, 110.4, 109.6, 93.5, 65.1, 61.2, 45.1, 44.9, 30.1, 28.5, 22.2, 18.4; HRMS m/z (ESI) calcd for C₂₈H₃₀N₃O₃ [M+H]⁺ 456.2282, found 456.2289.

(S)-3-((3-cyanobenzo[4,5]imidazo[1,2-*a*]pyridin-8-yl)oxy)propyl-2-(6-methoxyna phthalen-2-yl)propanoate (3aca):

74% yield; Light yellow solid; m.p. 187.3-189.0 °C; ¹H NMR (500 MHz,

CDCl₃) δ 8.07 (d, J = 7.0 Hz, 1H), 8.04 (s, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.59 (s, 1H), 7.53-7.51 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 9.0 Hz, 1H), 6.86-6.84 (m, 3H), 4.49-4.39 (m, 1H), 4.29-4.24 (m, 1H), 3.91-3.75 (m, 6H), 2.21-2.06 (m, 2H), 1.56 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 157.3, 155.9, 144.9, 140.0, 135.7, 133.4, 128.9, 128.6, 127.0, 125.9, 125.7, 125.4, 124.6, 121.4, 118.7, 118.2, 117.4, 110.2, 109.4, 105.2, 93.0, 64.6, 61.0, 55.1, 45.4, 28.3, 18.2; HRMS m/z (ESI) calcd for C₂₉H₂₆N₃O₄ [M+H]⁺ 480.1918, found 480.1926.

8-(3-(((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl) oxy)propoxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ada):

78% yield; Light yellow solid; m.p. 166.4-167.8 °C; ¹H NMR (500 MHz, CDCl₃) δ
8.39 (d, J = 7.0 Hz, 1H), 8.05 (s, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.33 (s, 1H), 7.29 (s, 1H), 6.89 (d, J = 7.0 Hz, 1H), 4.38 (t, J = 6.0 Hz, 2H), 3.89 (t, J = 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 3.89 (t, J = 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 3.89 (t, J = 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 3.89 (t, J = 6.0 Hz, 2H), 3.80 (t, J = 6.0 Hz), 3.80 (t, J

J = 6.5 Hz, 2H), 2.40-2.28 (m, 2H), 2.15 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.79-1.75 (m, 2H), 1.59-1.49 (m, 3H), 1.42-1.21 (m, 14H), 1.16-1.12 (m, 4H), 1.08-1.01 (m, 3H), 0.87-0.83 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 147.9, 147.8, 145.0, 140.1, 128.9, 127.6, 125.7, 125.6, 124.8, 122.9, 121.7, 118.5, 117.5, 117.4, 110.3, 109.5, 93.2, 74.8, 68.6, 65.3, 40.0, 39.3, 37.4 (2C) 37.3, 37.2, 32.7, 32.6, 31.2, 30.0, 27.9, 24.7, 24.37, 23.8, 22.7, 22.6, 21.0, 20.6, 19.7, 19.6, 12.6, 11.7; HRMS *m*/*z* (ESI) calcd for C₄₄H₆₂N₃O₃ [M+H]⁺ 680.4786, found 680.4795.

Ethyl-8-(3-(((8S,9R,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahy dro-6*H*-cyclopenta[a]phenanthren-3-yl)oxy)propoxy)benzo[4,5]imidazo[1,2-*a*]py ridine-3-carboxylate (3aeg):

63% yield; Light yellow
solid; m.p. 172.3-173.9 °C;
¹H NMR (500 MHz,
CDCl₃) δ 8.38 (s, 1H), 8.28

(d, J = 7.0 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.35 (d, J = 7.0 Hz, 1H), 7.30 (s, 1H), 7.24-7.16 (m, 2H), 6.78-6.72 (m, 1H), 6.68 (s, 1H), 4.44 (q, J = 7.0 Hz, 2H), 4.29 (t, J = 6.0 Hz, 2H), 4.19 (t, J = 6.0 Hz, 2H), 2.94-2.80 (m, 2H), 2.52-2.49 (m, 1H), 2.42-2.31 (m, 3H), 2.28-1.91 (m, 6H), 1.66-1.39 (m, 10H), 0.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 220.8, 164.9, 156.8, 155.6, 146.7, 140.2, 137.8, 132.2, 129.4, 128.8, 126.4, 124.2, 121.3, 121.0, 117.7, 114.4, 112.1, 109.0, 93.6, 65.3, 64.1, 61.7, 50.3, 47.9, 43.9, 38.3, 35.8, 31.5, 29.6, 29.4, 26.5, 25.9, 21.5, 14.2, 13.8; HRMS m/z(ESI) calcd for C₃₅H₃₉N₂O₅ [M+H]⁺ 567.2853, found 567.2864.

N-(5-methoxy-2-(4-methylphenylsulfonamido)phenyl)-*N*-(4-methoxyphenyl)-4-m ethylbenzenesulfonamide (4a):

White solid; m.p. 139. 6-141.4 °C; ¹H NMR (500 MHz, MeO NHZ, NH NH NH NH NH NH NH NHZ, NH NHZ, NH NHZ, NH NHZ, NH NHZ, NH NHZ, NHZ, NH NHZ,

(C) Spectra (NMR Spectra)

8-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3aa):

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

2,8-Dimethoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ad):

¹³C NMR (125 MHz, CDCl₃)

10-Methoxybenzo[4,5]imidazo[1,2-*a*]quinoline-5-carbonitrile (3ae):

Methyl 8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carboxylate (3af):

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

1-(8-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridin-3-yl)ethanone (3ai):

8-Methoxy-3-tosylbenzo[4,5]imidazo[1,2-*a*]pyridine (3aj):

8-(Hexyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ia):

¹³C NMR (125 MHz, CDCl₃)

8-(Cyclopropylmethoxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ja):

8-(Benzyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ka):

¹³C NMR (125 MHz, CDCl₃)

8-(Allyloxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3la):

¹³C NMR (125 MHz, CDCl₃)

8-Phenoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ma):

¹³C NMR (125 MHz, CDCl₃)

8-(Methylthio)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3na):

¹³C NMR (125 MHz, CDCl₃)

8-Isopropylbenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (30a):

¹³C NMR (125 MHz, CDCl₃)

7-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3pa):

¹³C NMR (125 MHz, CDCl₃)

6-Methoxybenzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3qa):

¹³C NMR (125 MHz, CDCl₃)

N-(3-Cyano-8-methoxybenzo[4,5]imidazo[1,2-*a*]pyridin-6-yl)-*N*-(4-methoxyphen

yl)-4-methylbenzenesulfonamide (3ra):

8-Methoxy-6-methylbenzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile (3sa):

¹³C NMR (125 MHz, DMSO)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

2,3-Dihydrobenzofuro[5',6':4,5]imidazo[1,2-*a*]pyridine-7-carbonitrile (3xa):

¹³C NMR (125 MHz, CDCl₃)

Ethyl-[1,3]dioxolo[4'',5'':4',5']benzo[1',2':4,5]imidazo[1,2-*a*]pyridine-7-carboxyla

te (3yg):

¹³C NMR (125 MHz, CDCl₃)

Ethyl 1-methyl-1*H*-pyrido[1',2':1,2]imidazo[4,5-*f*]indole-7-carboxylate (3zg):

¹³C NMR (125 MHz, CDCl₃)

Benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile (3aaa):

¹³C NMR (125 MHz, CDCl₃)

3-((3-Cyanobenzo[4,5]imidazo[1,2-*a*]pyridin-8-yl)oxy)propyl-2-(4-isobutylphenyl

)propanoate (3aba):

¹³C NMR (125 MHz, CDCl₃)

(S)-3-((3-cyanobenzo[4,5]imidazo[1,2-*a*]pyridin-8-yl)oxy)propyl-2-(6-methoxyna

¹³C NMR (125 MHz, CDCl₃)

8-(3-(((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl) oxy)propoxy)benzo[4,5]imidazo[1,2-*a*]pyridine-3-carbonitrile (3ada):

¹³C NMR (125 MHz, CDCl₃)

Ethyl-8-(3-(((8S,9R,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahy dro-6*H*-cyclopenta[a]phenanthren-3-yl)oxy)propoxy)benzo[4,5]imidazo[1,2-*a*]py ridine-3-carboxylate (3aeg):

4 462 4 463 4 448 4 448 4 448 4 448 4 428 4 428 4 191 4 179 2.891 2.872 2.861 --0.000

8.380 8.290 8.276 7.874 7.857

7.201 7.201 6.77 6.737 6.737 6.677

¹³C NMR (125 MHz, CDCl₃)

N-(5-methoxy-2-(4-methylphenylsulfonamido)phenyl)-N-(4-methoxyphenyl)-4-methoxyphenyl)-4-methoxyphenyl)-4-methoxyphenyl)-4-methoxyphenyl-4-methoxyphenyl)-4-methoxyphenyl -4-methoxyphenyl -4-m

ethylbenzenesulfonamide (4a):

(D) The X-ray Single-Crystal Diffraction Analysis of 3wg (CCDC: 2056661)

The thermal ellipsoid plot of 3wg with 30% displacement ellipsoids

A		
C15 H13 F N2 O3		
288.27		
296(2) K		
0.71073 Å		
Monoclinic		
P21/c		
a = 12.35(3) Å	α= 90°.	
b = 13.16(3) Å	β=93.00(3)°.	
c = 8.567(18) Å	$\gamma = 90^{\circ}$.	
1390(5) Å ³		
4		
1.377 Mg/m ³		
0.106 mm ⁻¹		
600		
0.160 x 0.150 x 0.140 mm ³		
2.263 to 25.494°.		
-14<=h<=14, -15<=k<=15, -10<=l<=9		
7959		
2498 [R(int) = 0.2033]		
96.7 %		
Semi-empirical from equivalents		
Full-matrix least-squares on F ²		
2498 / 0 / 192		
1.160		
R1 = 0.1215, $wR2 = 0.1976$		
	A C15 H13 F N2 O3 288.27 296(2) K 0.71073 Å Monoclinic P21/c a = 12.35(3) Å b = 13.16(3) Å c = 8.567(18) Å 1390(5) Å ³ 4 1.377 Mg/m ³ 0.106 mm ⁻¹ 600 0.160 x 0.150 x 0.140 mm ³ 2.263 to 25.494°. -14<=h<=14, -15<=k<=15, -10 7959 2498 [R(int) = 0.2033] 96.7 % Semi-empirical from equivaler Full-matrix least-squares on F ² 2498 / 0 / 192 1.160 R1 = 0.1215, wR2 = 0.1976	

Table S1. Crystal data and structure refinement for A.

R indices (all data)R1 = 0.2881, wR2 = 0.2314Extinction coefficientn/aLargest diff. peak and hole0.286 and -0.273 e.Å $^{-3}$

	X	у	Z	U(eq)
F(1)	9486(3)	1731(3)	-2730(4)	64(1)
N(2)	6038(4)	2337(4)	930(5)	32(1)
N(1)	6452(5)	686(4)	384(6)	47(2)
O(1)	9100(4)	3629(4)	-2096(5)	57(1)
C(6)	6934(5)	2368(5)	10(7)	34(2)
C(8)	5452(5)	3098(5)	1597(7)	37(2)
C(9)	5780(5)	1294(5)	1138(7)	38(2)
C(7)	7537(5)	3187(5)	-561(6)	37(2)
O(2)	3146(4)	665(4)	4072(5)	70(2)
C(13)	3383(6)	1536(6)	3700(8)	49(2)
O(3)	2794(4)	2346(3)	4115(5)	50(1)
C(12)	4593(5)	2882(5)	2480(7)	37(2)
C(3)	8618(5)	1912(5)	-1804(7)	41(2)
C(10)	4890(5)	1069(5)	2049(7)	47(2)
C(4)	8052(6)	1119(5)	-1260(7)	51(2)
C(2)	8398(5)	2955(5)	-1447(7)	40(2)
C(11)	4299(5)	1831(5)	2730(7)	39(2)
C(15)	1380(6)	3214(6)	5396(8)	71(2)
C(14)	1853(6)	2179(6)	5039(8)	61(2)
C(5)	7170(5)	1340(5)	-308(7)	38(2)
C(1)	8876(6)	4689(5)	-1855(8)	74(3)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for A. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(3)	1.388(7)
N(2)-C(8)	1.377(7)
N(2)-C(6)	1.391(7)
N(2)-C(9)	1.423(8)
N(1)-C(9)	1.342(7)
N(1)-C(5)	1.390(7)
O(1)-C(2)	1.378(7)
O(1)-C(1)	1.438(8)
C(6)-C(7)	1.413(8)
C(6)-C(5)	1.413(8)
C(8)-C(12)	1.364(8)
C(8)-H(8)	0.9300
C(9)-C(10)	1.413(8)
C(7)-C(2)	1.374(8)
C(7)-H(7)	0.9300
O(2)-C(13)	1.230(8)
C(13)-O(3)	1.348(8)
C(13)-C(11)	1.490(9)
O(3)-C(14)	1.457(7)
C(12)-C(11)	1.449(8)
C(12)-H(12)	0.9300
C(3)-C(4)	1.352(8)
C(3)-C(2)	1.435(9)
C(10)-C(11)	1.386(8)
C(10)-H(10)	0.9300
C(4)-C(5)	1.425(8)
C(4)-H(4)	0.9300
C(15)-C(14)	1.519(9)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600

Table S3. Bond lengths [Å] and angles [°] for A.

C(8)-N(2)-C(6)	131.7(5)
C(8)-N(2)-C(9)	121.5(5)
C(6)-N(2)-C(9)	106.8(5)
C(9)-N(1)-C(5)	105.1(5)
C(2)-O(1)-C(1)	115.9(5)
N(2)-C(6)-C(7)	131.8(6)
N(2)-C(6)-C(5)	105.1(6)
C(7)-C(6)-C(5)	123.1(6)
C(12)-C(8)-N(2)	121.3(6)
C(12)-C(8)-H(8)	119.3
N(2)-C(8)-H(8)	119.3
N(1)-C(9)-C(10)	131.3(6)
N(1)-C(9)-N(2)	111.5(6)
C(10)-C(9)-N(2)	117.2(6)
C(2)-C(7)-C(6)	117.3(6)
C(2)-C(7)-H(7)	121.3
C(6)-C(7)-H(7)	121.3
O(2)-C(13)-O(3)	121.9(7)
O(2)-C(13)-C(11)	125.8(7)
O(3)-C(13)-C(11)	112.2(6)
C(13)-O(3)-C(14)	118.8(6)
C(8)-C(12)-C(11)	119.2(6)
C(8)-C(12)-H(12)	120.4
C(11)-C(12)-H(12)	120.4
C(4)-C(3)-F(1)	119.6(6)
C(4)-C(3)-C(2)	124.0(7)
F(1)-C(3)-C(2)	116.5(6)
C(11)-C(10)-C(9)	121.5(6)
C(11)-C(10)-H(10)	119.2
C(9)-C(10)-H(10)	119.2
C(3)-C(4)-C(5)	117.6(6)
C(3)-C(4)-H(4)	121.2
C(5)-C(4)-H(4)	121.2
C(7)-C(2)-O(1)	127.0(6)
C(7)-C(2)-C(3)	119.4(6)
O(1)-C(2)-C(3)	113.6(6)
C(10)-C(11)-C(12)	119.2(6)

C(10)-C(11)-C(13)	118.6(6)
C(12)-C(11)-C(13)	122.3(6)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
O(3)-C(14)-C(15)	107.5(6)
O(3)-C(14)-H(14A)	110.2
C(15)-C(14)-H(14A)	110.2
O(3)-C(14)-H(14B)	110.2
C(15)-C(14)-H(14B)	110.2
H(14A)-C(14)-H(14B)	108.5
N(1)-C(5)-C(6)	111.5(6)
N(1)-C(5)-C(4)	129.9(6)
C(6)-C(5)-C(4)	118.5(6)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	58(3)	65(3)	71(3)	-1(2)	10(2)	14(2)
N(2)	38(4)	25(3)	33(3)	0(3)	-12(3)	0(3)
N(1)	57(4)	36(3)	48(3)	-2(3)	-2(3)	-1(3)
O(1)	56(3)	56(4)	60(3)	2(3)	4(3)	-3(3)
C(6)	34(4)	36(5)	29(4)	-4(3)	-13(3)	-1(4)
C(8)	48(5)	25(4)	37(4)	2(3)	-11(4)	-9(4)
C(9)	43(5)	31(5)	40(4)	2(4)	-9(4)	-2(4)
C(7)	38(4)	38(4)	34(4)	-3(3)	-8(4)	-3(4)
O(2)	89(4)	51(3)	70(4)	1(3)	10(3)	-27(3)
C(13)	57(6)	47(6)	41(4)	-7(4)	-15(4)	-15(5)
O(3)	55(3)	51(3)	46(3)	1(2)	5(3)	-14(3)
C(12)	34(4)	41(5)	35(4)	-3(3)	-13(3)	0(4)
C(3)	44(5)	44(5)	35(4)	5(4)	-8(4)	7(4)
C(10)	58(5)	34(5)	47(4)	4(4)	-8(4)	-3(4)
C(4)	69(6)	36(5)	47(5)	-2(4)	-10(4)	9(4)
C(2)	35(5)	48(5)	36(4)	8(4)	-11(4)	-6(4)
C(11)	42(5)	42(5)	31(4)	-1(4)	-11(4)	-12(4)
C(15)	69(6)	72(6)	73(5)	10(5)	12(4)	11(5)
C(14)	62(5)	76(6)	43(4)	2(4)	3(4)	-20(5)
C(5)	47(5)	32(5)	34(4)	3(3)	-9(4)	-1(4)
C(1)	75(6)	50(6)	96(6)	-1(5)	9(5)	-20(5)

Table S4.Anisotropic displacement parameters (Å²x 10³) for A.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)	
H(8)	5645	3772	1442	45	
H(7)	7357	3858	-346	44	
H(12)	4201	3404	2917	44	
H(10)	4696	394	2196	56	
H(4)	8232	453	-1500	62	
H(15A)	1922	3622	5942	107	
H(15B)	770	3131	6035	107	
H(15C)	1148	3544	4436	107	
H(14A)	2066	1828	6003	73	
H(14B)	1319	1767	4459	73	
H(1A)	8160	4844	-2278	111	
H(1B)	9396	5094	-2370	111	
H(1C)	8921	4835	-755	111	

Table S5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for A.

Table S6. Torsion angles [°] for A.

C(8)-N(2)-C(6)-C(7)	-0.7(10)
C(9)-N(2)-C(6)-C(7)	-179.8(6)
C(8)-N(2)-C(6)-C(5)	179.7(6)
C(9)-N(2)-C(6)-C(5)	0.5(6)
C(6)-N(2)-C(8)-C(12)	-179.5(6)
C(9)-N(2)-C(8)-C(12)	-0.4(8)
C(5)-N(1)-C(9)-C(10)	-179.9(6)
C(5)-N(1)-C(9)-N(2)	0.9(7)
C(8)-N(2)-C(9)-N(1)	179.8(5)
C(6)-N(2)-C(9)-N(1)	-0.9(6)
C(8)-N(2)-C(9)-C(10)	0.5(8)
C(6)-N(2)-C(9)-C(10)	179.8(5)
N(2)-C(6)-C(7)-C(2)	179.5(6)
C(5)-C(6)-C(7)-C(2)	-0.9(8)
O(2)-C(13)-O(3)-C(14)	0.4(9)
C(11)-C(13)-O(3)-C(14)	178.7(5)
N(2)-C(8)-C(12)-C(11)	0.5(8)
N(1)-C(9)-C(10)-C(11)	-179.9(6)
N(2)-C(9)-C(10)-C(11)	-0.8(9)
F(1)-C(3)-C(4)-C(5)	179.7(5)
C(2)-C(3)-C(4)-C(5)	1.6(10)
C(6)-C(7)-C(2)-O(1)	-178.9(5)
C(6)-C(7)-C(2)-C(3)	2.6(8)
C(1)-O(1)-C(2)-C(7)	-2.3(9)
C(1)-O(1)-C(2)-C(3)	176.3(5)
C(4)-C(3)-C(2)-C(7)	-3.1(10)
F(1)-C(3)-C(2)-C(7)	178.7(5)
C(4)-C(3)-C(2)-O(1)	178.2(6)
F(1)-C(3)-C(2)-O(1)	0.0(8)
C(9)-C(10)-C(11)-C(12)	0.9(9)
C(9)-C(10)-C(11)-C(13)	-178.9(6)
C(8)-C(12)-C(11)-C(10)	-0.7(9)
C(8)-C(12)-C(11)-C(13)	179.0(6)
O(2)-C(13)-C(11)-C(10)	6.4(10)
O(3)-C(13)-C(11)-C(10)	-171.8(5)
O(2)-C(13)-C(11)-C(12)	-173.4(6)

O(3)-C(13)-C(11)-C(12)	8.4(8)
C(13)-O(3)-C(14)-C(15)	177.4(6)
C(9)-N(1)-C(5)-C(6)	-0.5(7)
C(9)-N(1)-C(5)-C(4)	-179.6(6)
N(2)-C(6)-C(5)-N(1)	0.0(6)
C(7)-C(6)-C(5)-N(1)	-179.7(5)
N(2)-C(6)-C(5)-C(4)	179.1(5)
C(7)-C(6)-C(5)-C(4)	-0.5(9)
C(3)-C(4)-C(5)-N(1)	179.2(6)
C(3)-C(4)-C(5)-C(6)	0.2(9)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6
C(1)-H(1B)F(1)#1	0.96	2.56	3.394(9)	145.6

Table S7. Hydrogen bonds for A [Å and $^{\circ}$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y+1/2,-z-1/2

(E) Reference

[1] S. Rasheed, D. N. Rao and P. Das, J. Org. Chem., 2015, 80, 9321.