Supporting Information

Cobalt-Molybdenum synergistic catalysis for hydrogenolysis of

terephthalate-based polyesters

Pengyu Wu, Guoping Lu, Chun Cai*

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China. E-mail: c.cai@njust.edu.cn.

Table of contents:

1.	General information	S2			
2.	ICP-MS results of prepared catalysts	S2			
3.	SEM images	S2			
4.	NH ₃ -TPD profiles	S3			
5.	XPS survey spectra	S3			
6.	Raman spectra	S3			
7.	Porous nature of CoMo@NC	S4			
8.	Rection tube and samples	S4			
9.	GC spectra	S5			
10.	Time-course monitoring	S5			
11.	Deuterium labeling experimen	S6			
12.	Characterization of the recycled catalyst	S6			
Ref	Reference				

1. General Information

All chemical reagents are obtained from commercial suppliers and used without further purification. ¹H NMR spectra are recorded on an AVANCE III Bruker spectrometer operating at 500 MHz. Some products were analyzed by gas chromatography-mass spectroscopy (GC-MS) with a Thermo Scientific Trace 1300 GC/MS instrument equipped with TR-5MS columns.

2. ICP-MS results of prepared catalysts

Catalyst	Element	Metal Content (mg/kg)	Molar Ratio (Co/Mo)
	Со	43023.5	
CoMo@NC	Мо	20265.4	3.45
	Zn	209.4	
C. ONC	Со	45578.1	
Cowne	Zn	144.8	-
	Мо	25944.8	
Mo@NC	Zn	276.9	-
	Со	42691.8	
CoMo@NC ^a	Мо	20657.3	3.30
	Zn	218.6	

Table S1. ICP-MS analysis of prepared catalysts

^a CoMo@NC after 6 runs.

3. SEM images

Fig. S1 SEM images of (a) Mo@ZIF-CoZn, (b) CoMo@NC.

4. NH₃-TPD profiles

Fig. S2 NH₃-TPD profiles of CoMo@NC, Mo@NC and Co@NC.

5. XPS survey spectra

Fig. S3 XPS survey spectra of CoMo@NC.

6. Raman spectra

Fig. S4 Raman spectra of CoMo@NC.

7. Porous nature of CoMo@NC

Fig. S5 (a) N_2 adsorption/desorption isotherms of CoMo@NC, (b) the corresponding pore size distributions.

8. Rection tube and samples

Fig. S6 Reaction tube after the hydrogenolysis of PET.

Fig. S7 $^1\mathrm{H}$ NMR spectrum of reaction product with d_6-DMSO as the solvent.

Fig. S8 (a) PET bottle, (b) PET pieces, (c) PP bottle, (d) PP pieces.

9. GC spectra

Fig. S9 GC spectra of the gas phase product of the reaction (Table 1, entry 2).

10. Time-course monitoring

Fig. S10 Time-course monitoring of the reaction. Reaction conditions: 100 mg PET, 1 atm H2 (balloon), 260 °C, 30 mg CoMo@NC. Isolated yields of PTA. After isolating sublimated PTA, DMSO was added to dissolute and detect any other

product remained in the tube.

11. Deuterium labeling experiment

The model molecule deuterated d_4 -1,2-ethanediol dibenzoate (**4-d**₄) was synthesized according to a reported procedure for 1,2-ethanediol dibenzoate [1], in the procedure, d_6 -ethylene glycol was used instead of ethylene glycol.

Fig. S11 ¹H NMR spectrum of 4-d₄, CDCl₃ was used as the solvent.

Fig. S12 ¹H NMR spectrum of 1,2-ethanediol dibenzoate sample, CDCl₃ was used as the solvent.

Fig. S13 ¹H NMR spectrum of product of scheme 2a, CDCl₃ was used as the solvent.

Fig. S14 $^1\mathrm{H}$ NMR spectrum of product of scheme 2b, CDCl3 was used as the solvent.

Fig. S15 ¹H NMR spectrum of benzoic acid sample, CDCl₃ was used as the solvent.

12. Characterization of the recycled catalyst

Fig. S16 XPS spectra of the (a) Co 2p region, (b) Mo 3d region of recycled CoMo@NC.

Fig. S17 TEM image of CoMo@NC after (a) first cycle, (b) sixth cycle.

Reference

[1] M.K. Grachev, A.A. Charaev, G.I. Kurochkina, T.A. Batalova, N.O. Soboleva, L.K. Vasyanina, E.E. Nifant'ev, Russ. J. Gen. Chem. 81 (2011) 2129-2135. https://doi.org/10.1134/S1070363211100161.