SUPPLEMENTARY INFORMATION

Dongseong Kang^{*a*,1}, Jaewon Byun^{*a*,1}, and Jeehoon Han^{*a*,*b*,*}

^{*a*} School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea ^{*b*} School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, *Verse*

Korea

^{*} Corresponding author: Tel.: +82 63 270 4039; fax: +82 63 270 2306. E-mail address: jhhan@jbnu.ac.kr †Electronic supplementary information (ESI) available.

¹ These authors contributed equally to this work.

S.1 Formic acid (FA) production strategies

S.1.1 Conventional FA production strategy

This process consumes fossil-based CO, and produces FA by the hydrolysis of methyl formate obtained from CO ^{1,2}. The hydrolysis of methyl formate consists of the following reaction steps:

Methanol is carbonylated by CO at 80 °C and 45 bar (Eq. 1).

$$\rm CO + CH_3OH \leftrightarrow \rm HCOOCH_3$$

In the conversion of methyl formate and water, the methyl formate is converted by only about 30% (Eq. 2).

(Eq. 1)

(Eq. 3)

$$H_2O + HCOOCH_3 \leftrightarrow HCOOH + CH_3OH$$
 (Eq. 2)

The overall equation of the conventional process is as follows (Eq. 3) and does not require the supply of CO₂.

$CO + H_2O \leftrightarrow HCOOH$

Fig. S1. System boundary of conventional FA production strategy; HCOOCH₃ (Methyl formate), CH₃ONa (Sodium methoxide), SA (Secondary amide).

S.1.2 Catalytic CO₂-based FA (cCtF) production strategy

The cCtF process requires triethylamine (NEt₃), 1-n-butylimidazole (BIZ), H_2 and CO_2 to produce FA using the AUROlite (Au/TiO₂) catalyst ^{3, 4}. The net reaction equation is to produce FA through hydrogenation of CO₂ (Eq. 4).

$$CO_2 + H_2 \leftrightarrow HCOOH$$
 (Eq. 4)

The FA adduct (HCOOH-NEt₃) can be obtained by NEt₃ that reacts with FA at 40 °C and 180 bar (Eq. 5).

$$CO_2 + H_2 + NEt_3 \leftrightarrow HCOOH-NEt_3$$
 (Eq. 5)

In next reaction step, the amine and FA are separated by an amine-shift reaction in which BIZ is added to the amine FA adduct (Eq. 6).

$$HCOOH-NEt_3 + BIZ \leftrightarrow NEt_3 + HCOOH-BIZ$$
(Eq. 6)

The BIZ and FA are separated by distillation, and 1-n-butylimidazole is reused to remove NEt₃, and the FA is produced (Eq. 7).

(Eq. 7)

Fig. S2. System boundary of catalytic CO₂-based FA (cCtF) production strategy; Net₃ (Triethylamine), BIZ (1-Butylimidazole).

S.1.3 Electrocatalytic CO₂-based FA (eCtF) production strategy

The eCtF process is based on reactor design by three compartments cell (TCC), including a recirculation regime ⁵. The characteristic of this study is that the no other chemicals are required as additional electrolytes. CO_2 reacts with water at the cathode compartment and is reduced formate (HCOO⁻) and hydroxide (OH⁻) (Eq. 8).

$$CO_2 + H_2O + 2e^- \leftrightarrow HCOO^- + OH^-$$
 (Eq. 8)

Simultaneously, oxygen gas (O_2) and protons (H^+) are formed by oxidation of water at the anode compartment (Eq. 9).

$$2H_2O \leftrightarrow O_2 + 4H^+ + 4e^- \tag{Eq. 9}$$

Both the formate and hydroxide ions meet at the center flow compartment of the protons produced at the anode compartment to product formic acid and water (Eqs. 10 and 11).

 $H^+ + OH^- \leftrightarrow H_2O$ (Eq. 10) $H^+ + HCOO^- \leftrightarrow HCOOH$ (Eq. 11)

Fig. S3. System boundary of electrocatalytic CO₂-based FA (eCtF) production strategy.

Cathode	CO ₂ flow rate: 20 mL/min						
Anode	Anolyte: Deionized water						
	DI water input flow rate: 0.03 mL/min						
Center flow compartment	Faradaic efficiency: 32%						
	FA concentration: 19.5~20.4%						
Anion membrane	Dioxide Materials Sustainion [™] X37 imidazolium-based anion membrane						
Cation membrane	DuPont Nafion® 212						
Cell active membrane	5 am ²						
geometric area	Jem-						
Cell operating temperature	Ambient, 20-25 °C						
Cell current density	140 mA cm ⁻²						

Table S1.	Details of three-con	mpartment cell	for eCtF strategy.

S.2 FA production simulation

S.2.1 cCtF production strategy

Fig. S4. Process flow diagram of eCtF production strategy.

Table S2. Detailed stream data of eCtF	production strategy	(part 1).
--	---------------------	-----------

Unit	F-H2	F-H2+	F-CO2	F-CO2+	MU- NET3	M-NET3	M- NET3+	M- NET3++	GAS- RCVR	F-MIX	F-MIXC	RXT	S1	RXT-H2	RXT-H2-	FA+ NET3	MU-BIZ	BIZ- RVR+	PG3
Mass Flow (kg/hr)	201.6	201.6	4401.0	4401.0	41.0	4286.4	4286.4	4286.4	2277.9	11166.8	11166.8	11166.8	11166.8	9890.3	9890.3	8865.9	25.0	26287.1	26.3
FA									44.9	44.9	44.9	4548.9	4548.9	4538.7	4538.7	4503.6		1343.5	1.3
BIZ																	25.0	24943.6	25.0
NET3					41.0	4257.1	4257.1	4257.1	118.0	4375.0	4375.0	4375.0	4375.0	4349.6	4349.6	4255.9			
CO2			4401.0	4401.0		29.3	29.3	29.3	1692.5	6122.7	6122.7	1816.0	1816.0	991.1	991.1	106.5			
H2	201.6	201.6							422.5	624.1	624.1	426.8	426.8	10.9	10.9				

Unit	TERNARY	TERNARY+	BIZ+FA	NET3	NET3+	PG2	PURGE2	NET3 RCR-	B+F+	BIZ+FA-	S9	BIZ	BIZ- RCVR	PG3	PURGE3	FA1	FA2	FA
Mass Flow (kg/hr)	35178.0	35178.0	30815.6	4362.4	4362.4	117.1	117.1	4245.4	30815.6	30815.6	30815.6	26313.4	26313.4	26.3	26.3	4502.2	4502.2	4502.2
FA	5847.1	5847.1	5847.1						5847.1	5847.1	5847.1	1344.8	1344.8	1.3	1.3	4502.2	4502.2	4502.2
BIZ	24968.6	24968.6	24968.6						24968.6	24968.6	24968.6	24968.6	24968.6	25.0	25.0			
NET3	4255.9	4255.9		4255.9	4255.9	39.9	39.9	4216.1										
CO2	106.5	106.5		106.5	106.5	77.2	77.2	29.3										
H2																		

 Table S3. Detailed stream data of eCtF production strategy (part 2).

S.2.2 eCtF production strategy

Fig. S5. Process flow diagram of eCtF production strategy.

Unit	FEED	R-H2O	SEP	02	REAC	MIX-1	MIX-2	REC	REC-1	REC-2	FA
Mass Flow (kg/hr)	13492.6	1093.2	1762.4	669.2	13457.1	4571.2	4571.2	11532.1	2646.1	2646.1	1925.1
FA	1937.9				2040.0	3718.8	3718.8	403.8	2082.5	2082.5	1636.3
H2O	8000.0	1093.2	1093.2		7960.0	852.4	852.4	7671.2	563.6	563.6	288.8
CO2	3554.7				3457.1			3457.1			
02			669.2	669.2							

S.3 Life cycle inventory (LCI)

Table S2 shows the details of life cycle inventory database for LCA. Each component indicates Name (Characteristic) / [Country] / Production method / Allocation. This study assumed that the input CO_2 was originate from a natural gas power plant source employing an amine-based CO_2 capture process, and details of inventory data for CO_2 capture is shown in Table S3.

		Input / material Input / utility						Ou	Output H_2O O_2 byproduct FA (kg)111WaterOxygen1			
Process	H ₂	CO ₂	СО	H ₂ O	Electricity	Heat	CO ₂ emission	H ₂ O	O ₂ byproduct	FA (kg)		
Conventional	-	-	Carbon monoxide / [RoW] / production APOS, U	-			Carbon dioxide	-	-	1		
cCtF	Hydrogen, liquid / [RoW] / chlor-alkali electrolysis, membrane cell APOS, S	CO2 capture	-	-	Electricity, high voltage / [KR] / electricity production, natural gas, conventional power plant	Heat, district or industrial, natural gas / [KR] / heat and power co- generation, natural gas, combined cycle power plant,	Carbon dioxide	-	-	1		
eCtF	-	CO2 capture	-	Water, deionised, from tap water, at user / [RoW] / production APOS, U	APO5, 5	400MW electrical APOS, S	-	Water	Oxygen	1		

Table S5 Life cy	vele inventory	details for FA	production. RoW	(Rest-of-World) KR	(Korea)
Table 55. Life C	yele miventory	uctans for TA	production. Row	(ICol-01- Wolld), ICC	(INDICA)

/CO ₂ 1kg	Input	Output
Electricity (kWh)	0.15	-
Heat (kWh)	0.97	-
CO ₂ (kg)	-	-1.00

Table S6. Life cycle inventory data of amine-based CO₂ capture process

			•		Sou	urces				
Utility	Natural gas	BFG	Biogas	Hard coal	Oil	Wood chips	Photovoltaics	Nuclear	Wind power	Hydro power
Electricity	Electricity, high voltage / [KR] / electricity production, natural gas, conventional power plant APOS, S	Electricity, high voltage / [KR] / treatment of blast furnace gas, in power plant APOS, S	Electricity, high voltage / [KR] / heat and power co- generation, biogas, gas engine APOS, S	Electricity, high voltage / [KR] / electricity production, hard coal APOS, S	Electricity, high voltage / [KR] / electricity production, oil APOS, S	Electricity, high voltage / [KR] / heat and power co- generation, wood chips, 6667 kW, state-of-the- art 2014 APOS, S	Electricity, low voltage / [KR] / electricity production, photovoltaic, 570kWp open ground installation, multi-Si APOS, S	Electricity, high voltage / [KR] / electricity production, nuclear, pressure water reactor APOS, S	Electricity, high voltage / [KR] / electricity production, wind, >3MW turbine, onshore APOS, S	Electricity, high voltage / [KR] / electricity production, hydro, run- of-river APOS, S
Heat	Heat, district or industrial, natural gas / [KR] / heat and power co- generation, natural gas, combined cycle power plant, 400MW electrical APOS, S	Heat, district or industrial, other than natural gas / [KR] / treatment of blast furnace gas, in power plant APOS, S	Heat, central or small- scale, other than natural gas / [KR] / heat and power co- generation, biogas, gas engine APOS, S	Heat, district or industrial, other than natural gas / [KR] / heat and power co- generation, hard coal APOS, S	Heat, district or industrial, other than natural gas / [KR] / heat and power co- generation, oil APOS, S	Heat, district or industrial, other than natural gas / [KR] / heat and power co- generation, wood chips, 6667 kW, state-of-the- art 2014 APOS, S	-	-	-	_

 Table S7. Details of utility sources for case study

			Case 2	2 (Heat)			Case 3 (Electricity)						
	(CC		FD			(CC		FD			
	Conventional	cCtF	eCtF	Conventional	cCtF	eCtF	Conventional	cCtF	eCtF	Conventional	cCtF	eCtF	
natural gas	2.05	0.27	2.00	1.05	0.35	0.98	2.05	0.27	2.00	1.05	0.35	0.98	
BFG	2.43	0.33	2.28	1.01	0.34	0.95	2.07	0.30	2.58	1.04	0.32	0.63	
biogas	1.72	0.21	1.76	0.89	0.32	0.87	1.98	0.16	0.40	1.02	0.30	0.26	
hard coal	3.14	0.45	2.80	1.26	0.38	1.13	2.11	0.36	3.39	1.06	0.35	1.05	
oil	2.98	0.42	2.68	1.38	0.40	1.22	2.10	0.34	3.14	1.07	0.37	1.28	
wood chips	1.60	0.19	1.67	0.88	0.32	0.85	1.96	0.13	-0.01	1.02	0.30	0.21	
photovoltaics							1.97	0.14	0.13	1.02	0.30	0.24	
nuclear							1.96	0.13	-0.12	1.02	0.30	0.18	
wind power							1.96	0.13	-0.11	1.02	0.30	0.18	
hydro power							1.96	0.12	-0.14	1.02	0.29	0.17	

Table S8.	Comparison of CC a	nd FD impacts by	varying utility source	es (Cases 2 and 3)

References

- 1. A. Sternberg, C. M. Jens and A. Bardow, Green Chemistry, 2017, 19, 2244-2259.
- J. Sutter, Life Cycle Inventories of Chemicals. Final Report Ecoinvent Data, 2007, 2. 2.
- M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison and E. Tzimas, international journal 3. of hydrogen energy, 2016, **41**, 16444-16462.
- 4.
- D. Preti, C. Resta, S. Squarcialupi and G. Fachinetti, *Angewandte Chemie*, 2011, 123, 12759-12762.
 H. Yang, J. J. Kaczur, S. D. Sajjad and R. I. Masel, *Journal of CO2 Utilization*, 2017, 20, 208-217. 5.