Exploring the synergetic effects of the major components of biomass additives in the

pyrolysis of polylactic acid

Ce Sun¹, Xiaojian Chen¹, Dingyuan Zheng¹, Wenrui Yao¹, Haiyan Tan¹, Yanhua Zhang^{*1}, Song Liu^{*2}

¹Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University,

Ministry of Education, Harbin 150040, China

² College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry

University, Harbin 150040, China

* Co-corresponding author: Yanhua Zhang: zhangyanhua@nefu.edu.cn;

Song Liu: carlosliusong@nefu.edu.cn

S1. Materials and methods

S1.1 Raman spectrometer

The molecular structure of the pyrolysis char was determined by a DXR2xi Raman microscopic imaging spectrometer (Thermo Fisher Scientific Co., Ltd) with 532 nm excitation wavelength at 6.8 mW power at 120 Hz. The spectrum range was from 500-4000 cm⁻¹ with 900 scans per sample.

S1.2 X-ray photoelectron spectroscopy (XPS)

The element of the pyrolysis char was investigated by (Thermo Fisher Scientific Co., Ltd). Monochromatic Al K α radiation (1486.6 eV) with resolution of Ag 3d 0.8 eV was used to make analysis.

S1.3 Pyrolysis experiments

A sample of 1g was added to the quartz tube of the pyrolysis furnace, and the temperature was raised from room temperature to 500°C at a heating rate of 10°C/min. The volatile substances generated by the reaction were passed into the formaldehyde collection tube for condensation and collection

S1.4 Kinetic analysis

 Table S1. Differential and integral equations for different solid-state reaction

 mechanisms during decomposition processes.

Symbol	Reaction	$f(\alpha) = (1/k)(d\alpha/dt)$	$g(\alpha) = kt$
	mechanisms		

Reaction			
order			
F1	First-order	$1 - \alpha$	$-ln^{(n)}(1-\alpha)$
F1.5	1.5th-order	$(1-\alpha)^{3/2}$	$2[(1-\alpha)^{-1/2}-1]$
F2	Second-order	$(1-\alpha)^2$	$2(1-\alpha)^{-1}-1$
F3	Third-order	$(1-\alpha)^3$	$[(1-\alpha)^{-2}-1]/2$
F4	Fourth-order	$(1-\alpha)^4$	$[(1-\alpha)^{-3}-1]/3$
A2	Avrami-Erofeev	$2(1-\alpha)[-ln^{10}(1-\alpha)]^1$	$[-ln^{(0)}(1-\alpha)]^{1/2}$
A3	Avrami-Erofeev	$3(1-\alpha)[-ln^{[\alpha]}(1-\alpha)]^2$	$[-ln^{(0)}(1-\alpha)]^{1/3}$
A4	Avrami-Erofeev	$4(1-\alpha)[-ln[n](1-\alpha)]^3$	$[-ln^{(n)}(1-\alpha)]^{1/4}$
Contracting			
geometry			
R2	Contracting	$2(1-\alpha)^{1/2}$	$1-(1-\alpha)^{1/2}$
	cylinder		
R3	Contracting	$3(1-\alpha)^{3/2}$	$1-(1-\alpha)^{1/3}$
	sphere		
Diffusional			
D1	One-dimensional	$1/2\alpha$	α^2
	diffusion		
D2	Two-dimensional	$[-ln^{m}(1-\alpha)]^{-1}$	$(1-\alpha)\ln(1-\alpha) + \alpha$
	diffusion		
	(Valensi)		

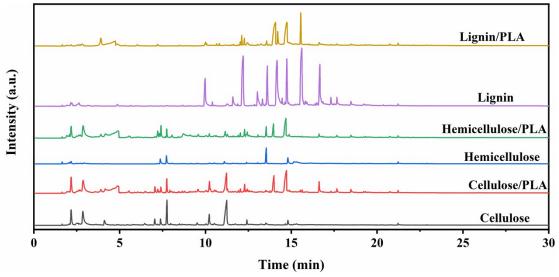


Fig. S1 The Ion map of pyrolysis products using Py-GC/MS

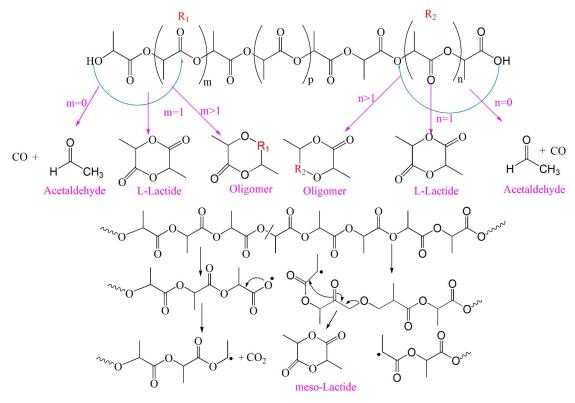


Fig. S2 Decomposition mechanism diagram of polylactic acid.

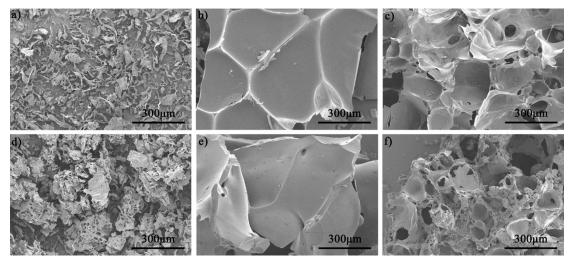


Fig. S3 The SEM of biochar (a) cellulose, (b) hemicellulose, (c) lignin, (d) cellulose/PLA, (e) hemicellulose/PLA, (f) lignin/PLA after pyrolysis

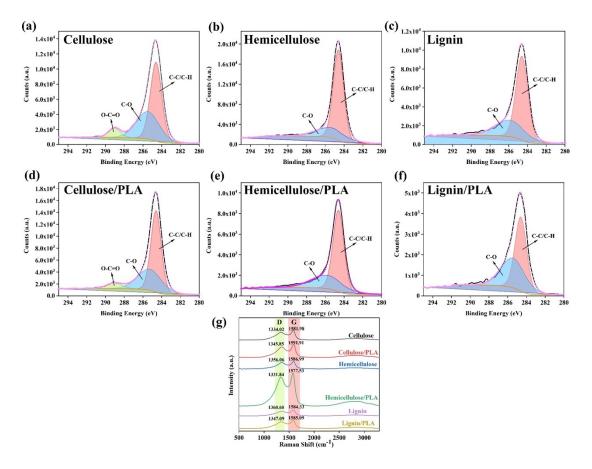


Fig. S4 The XPS analysis of (a) cellulose, (b) hemicellulose, (c) lignin, (d) cellulose/PLA, (e) hemicellulose/PLA, (f) lignin/PLA biochar after co-pyrolysis, (g) Raman spectrometer of biochar after co-pyrolysis

 Table S2 Parameters for biochar after co-pyrolysis by XPS and Roman using peak

 area

	I_D/I_G	С	0	C-C	C-O	C=O
Cellulose	2.82	86.09	13.91	54.90	38.44	6.65
cellulose/PLA	2.72	90.01	9.99	58.65	35.55	5.80
Hemicellulose	2.56	94.85	5.15	75.45	24.55	-
hemicellulose/PLA	2.84	90.5	9.50	67.83	32.17	-
Lignin	2.86	93.86	6.14	67.52	32.48	-
lignin/PLA	3.06	91.18	8.82	54.65	45.35	-

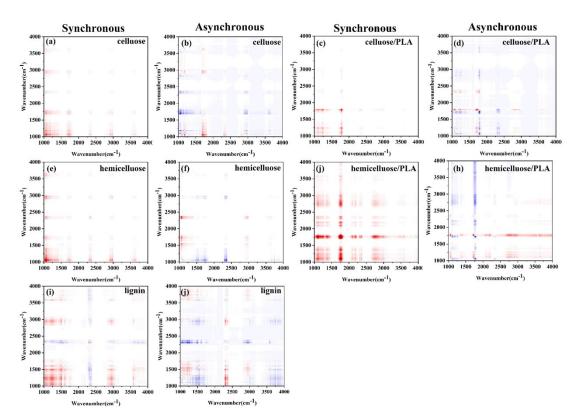


Fig. S5 The synchronous map of (a) cellulose, (c) cellulose/PLA, (e) hemicellulose, (j) hemicellulose/PLA (i) lignin; and the asynchronous map of (b) cellulose, (d) cellulose/PLA, (f) hemicellulose, (g) hemicellulose/PLA (h) lignin.

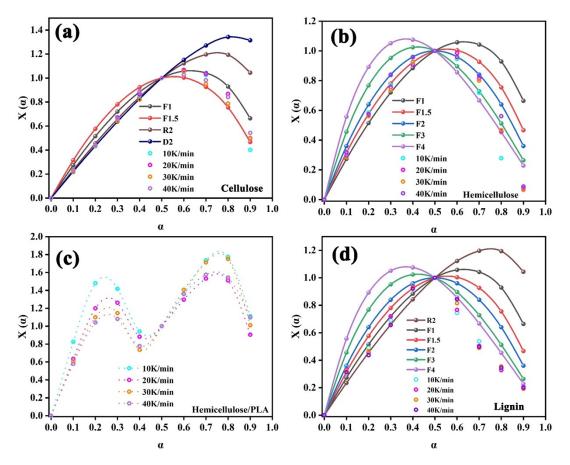


Fig. S6 The fitting curves of Criado method. (a) cellulose, (b) hemicellulose, (c) lignin, (d) hemicellulose/PLA