Supporting Information

## Recyclable Metal-Free Catalytic System for the Cationic Ring-Opening Polymerization of Glycidol under Ambient Conditions

Si Eun Kim,<sup>1,2</sup> Hyun Ji Yang,<sup>1</sup> Soonyoung Choi,<sup>1</sup> Eunbyul Hwang,<sup>1</sup> Minseong Kim<sup>3,4</sup> Hyun-Jong Paik,<sup>2</sup> Ji-Eun Jeong,<sup>1</sup> Young Il Park,<sup>1</sup> Jin Chul Kim,<sup>1</sup>\* Byeong-Su Kim,<sup>3</sup>\* and Sang-Ho Lee<sup>1</sup>\*

<sup>1</sup>Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea

<sup>2</sup>Department of Polymer Science and Engineering, Pusan National University, Busan, 46241,

Republic of Korea

<sup>3</sup>Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea

<sup>4</sup>Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan

44919, Republic of Korea

Correspondence and requests for materials should be addressed to

S.-H.L. (e-mail: slee@krict.re.kr), B.-S.K. (e-mail: bskim19@yonsei.ac.kr). J.C.K. (e-mail: jckim81@krict.re.kr)

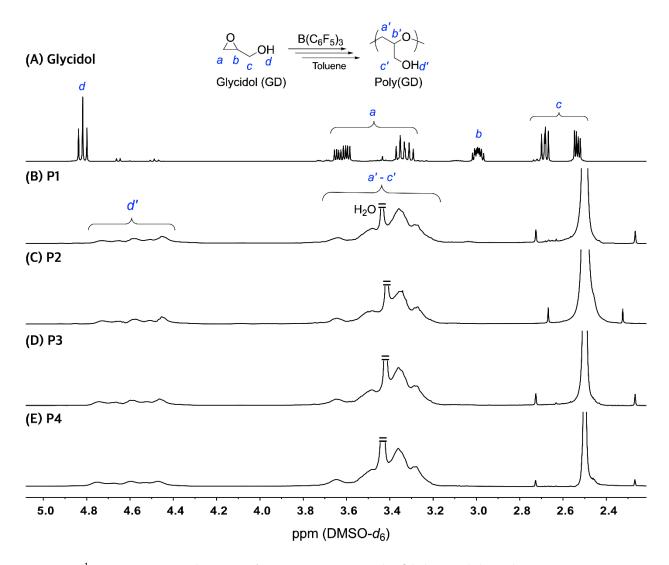



Figure S1. <sup>1</sup>H NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) GD, (B) P1 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 1 mM in toluene), (C) P2 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 3 mM in toluene), (D) P3 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), and (E) P4 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 10 mM in toluene).

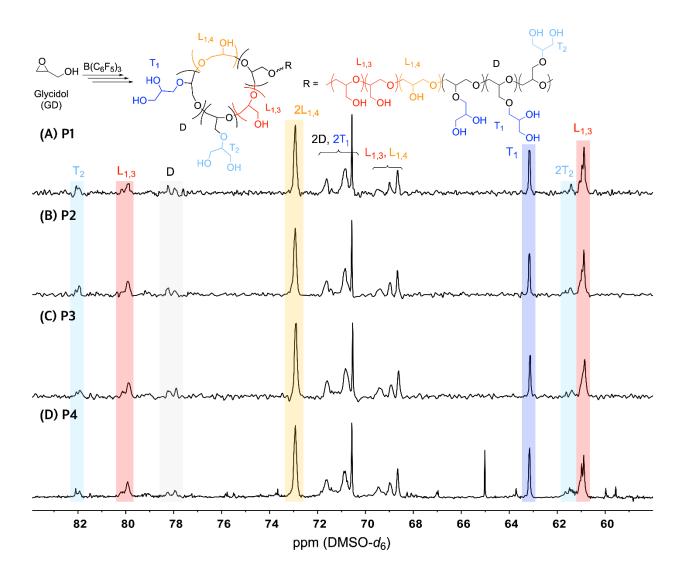



Figure S2. Inverse-gated <sup>13</sup>C NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P1 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 1 mM in toluene), (B) P2 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 3 mM in toluene), (C) P3 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), and (D) P4 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 10 mM in toluene).

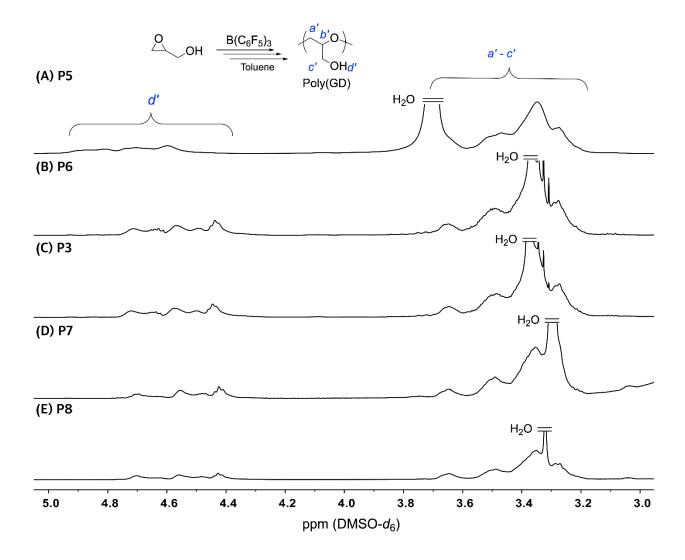



Figure S3. <sup>1</sup>H NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P5 ([GD]<sub>0</sub> = 500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (B) P6 ([GD]<sub>0</sub> = 1000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (C) P3 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (D) P7 ([GD]<sub>0</sub> = 5000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), and (E) P8 ([GD]<sub>0</sub> = 10000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene).

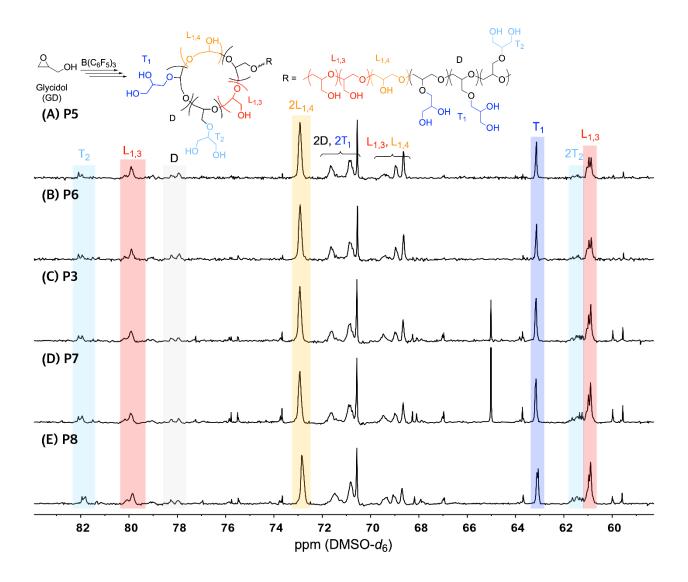
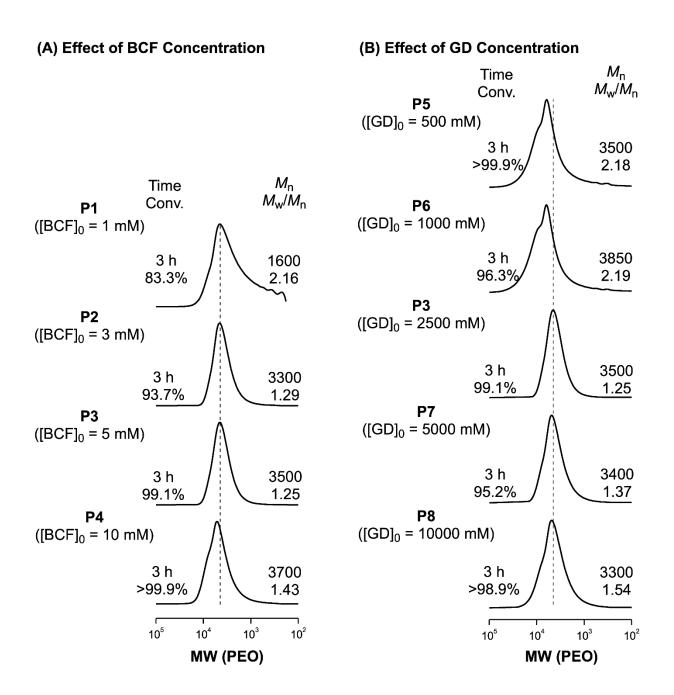




Figure S4. Inverse-gated <sup>13</sup>C NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P5 ([GD]<sub>0</sub> = 500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (B) P6 ([GD]<sub>0</sub> = 1000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (C) P3 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), (D) P7 ([GD]<sub>0</sub> = 5000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene), and (E) P8 ([GD]<sub>0</sub> = 10000 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene).



**Figure S5.** SEC curves of BC-PGDs obtained via the metal-free CROP of GD for studying the effects of the polymerization parameters: (A) BCF concentration ( $[GD]_0 = 2500 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 1, 3, 5, \text{ or } 10 \text{ mM}$  in toluene at -40 °C) and (B) GD concentration ( $[GD]_0 = 500, 1000, 2500, 5000, \text{ or } 10,000 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene at -40 °C).

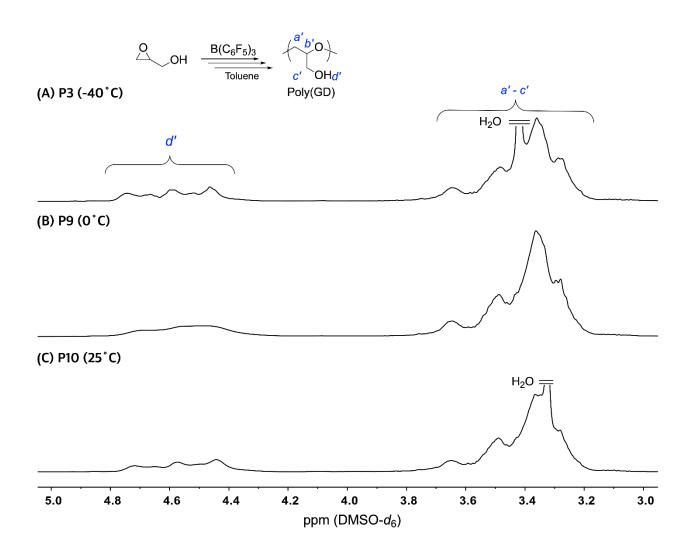
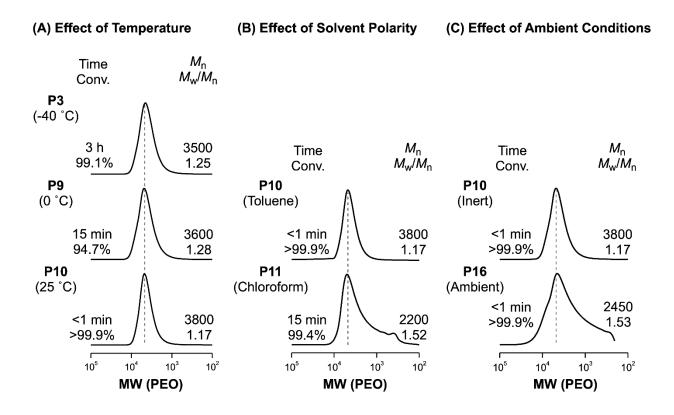




Figure S6. <sup>1</sup>H NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P3 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene at -40 °C), (B) P9 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene at 0 °C), and (C) P10 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene at 25 °C).



**Figure S7.** SEC curves of BC-PGDs obtained via the metal-free CROP of GD for studying the effects of the polymerization parameters: (A) reaction temperatures ( $[GD]_0 = 2500 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene at -40, 0, 25 °C), (B) solvent polarity ( $[GD]_0 = 2500 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene or chloroform at 25 °C), and (C) ambient conditions ( $[GD]_0 = 2500 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene at 25 °C under inert atmosphere using purified GD and toluene or under ambient conditions using unpurified GD and toluene).

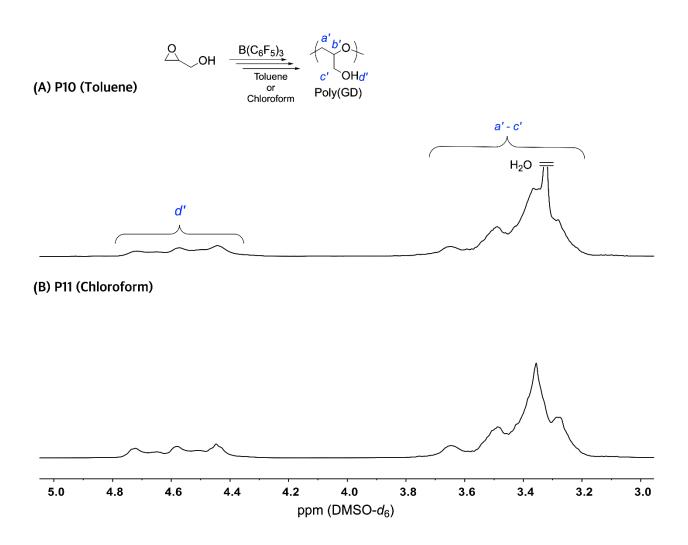



Figure S8. <sup>1</sup>H NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P10 ([GD]<sub>0</sub> = 2500 mM;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene at 25 °C) and (B) P11 ([GD]<sub>0</sub> = 2500 mM;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in chloroform at 25 °C).

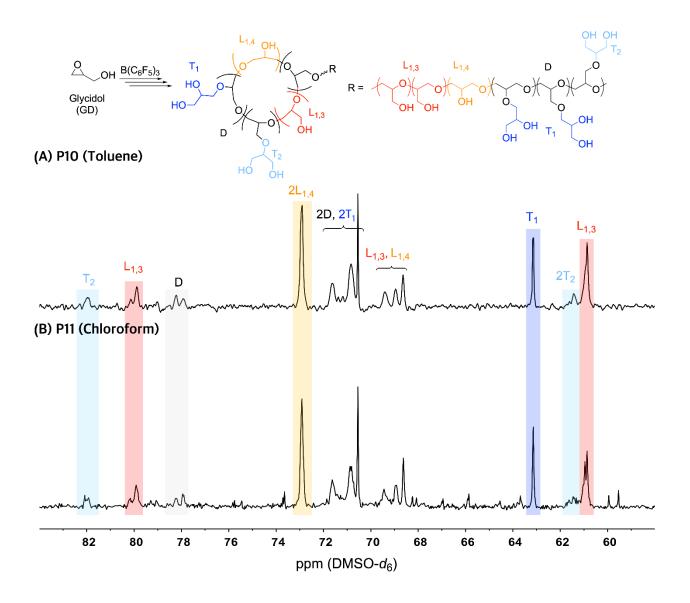
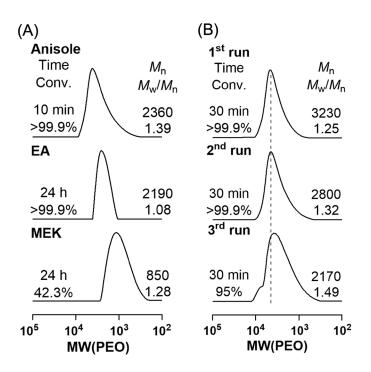
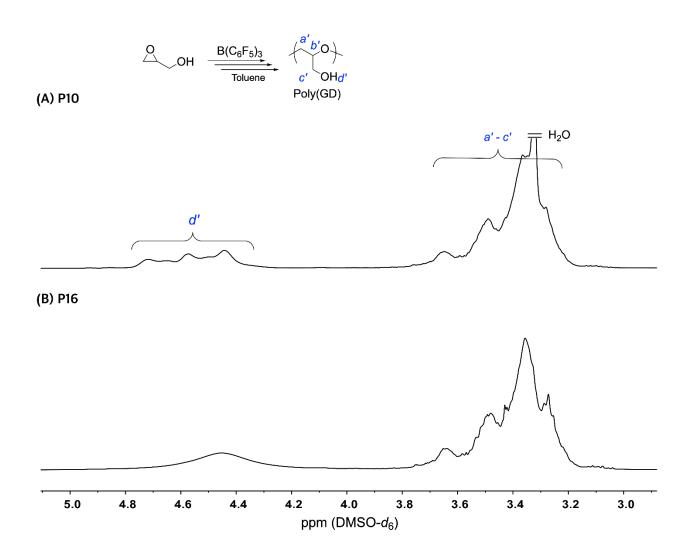
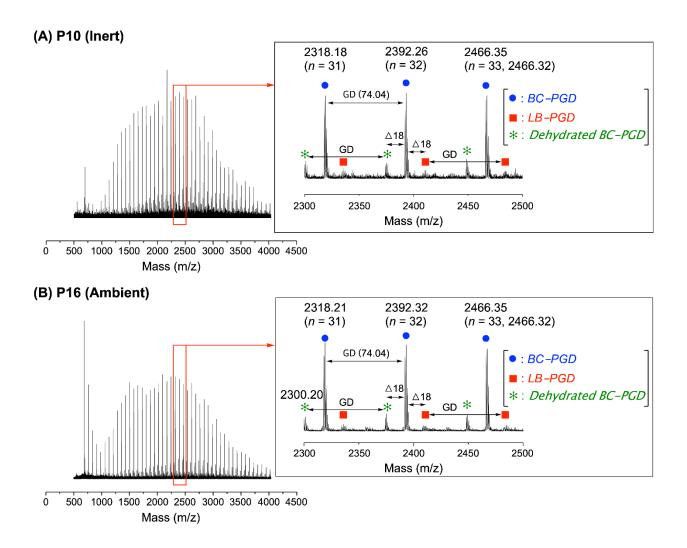
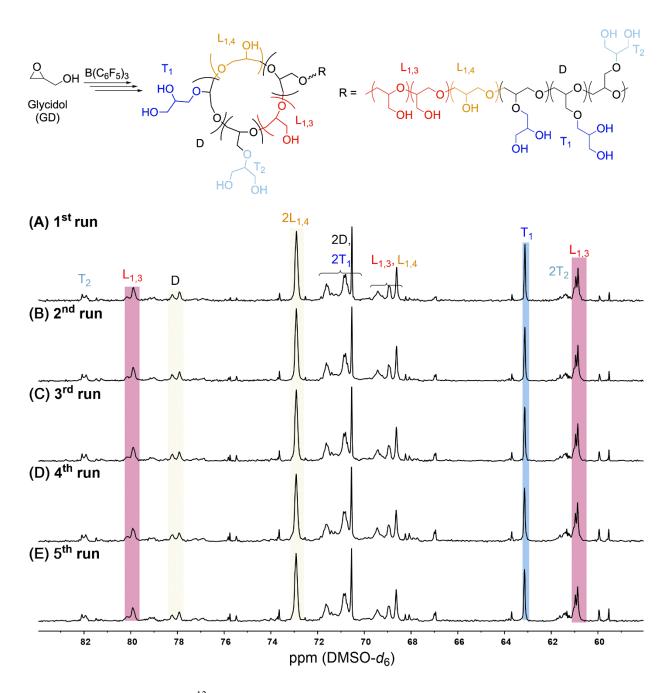
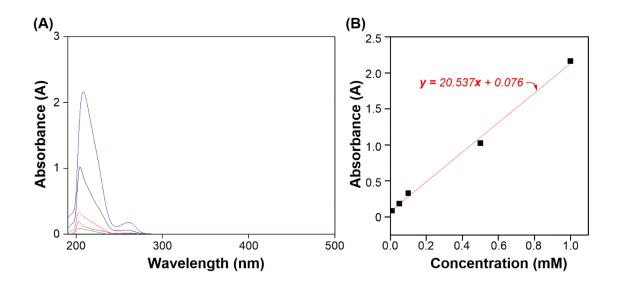



Figure S9. Inverse-gated <sup>13</sup>C NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P10 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene at 25 °C) and (B) P11 ([GD]<sub>0</sub> = 2500 mM; [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in chloroform at 25 °C).

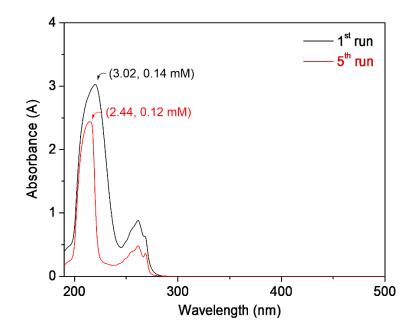






Figure S10. SEC curves of (A) BC-PGDs obtained via the metal-free CROP of GD in green solvents and (B) recyclable polymerization in anisole (1<sup>st</sup> polymerization:  $[GD]_0 = 2500 \text{ mM}$ ;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  at 25 °C; 2<sup>nd</sup>-3<sup>rd</sup> polymerization:  $[GD]_{add} = 2500 \text{ mM}$ ).

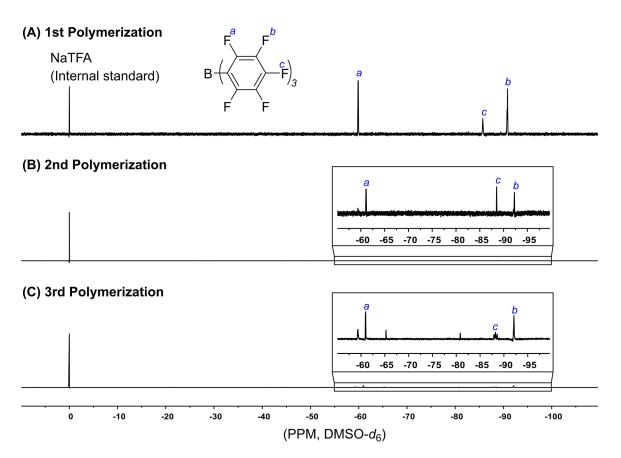



**Figure S11.** <sup>1</sup>H NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of (A) P10 ([GD]<sub>0</sub> = 2500 mM;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene under inert conditions) and (B) P16 ([GD]<sub>0</sub> = 2500 mM;  $[B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene under ambient conditions using unpurified GD and toluene).




**Figure S12.** MALDI-TOF mass spectrum of (A) P10 (prepared under inert conditions with purified GD and solvent) and (B) P16 (prepared under ambient conditions using unpurified GD and solvent).




**Figure S13.** Inverse-gated <sup>13</sup>C NMR spectra (DMSO-*d*<sub>6</sub>, room temperature) of the obtained PGDs from the (A) first, (B) second, and (C) third polymerizations under ambient conditions using unpurified GD and solvent.



**Figure S14.** (A) Absorption spectra of BCF solution from 0.005 mM to 0.1 mM in methanol and (B) the calibration curve depending on the BCF concentration.



**Figure S15.** Absorption spectra of the obtained PGDs from the first and fifth polymerizations (10 mg/mL in methanol).



**Figure S16.** <sup>19</sup>F NMR spectra of PGDs collected from recyclable polymerization (200 mg/mL PGD with 0.29 mM Na-TFA).

| Region                           | Chemical shift<br>(ppm) | P3<br>(-40 °C) | P9<br>(0 °C) | P10<br>(25 °C) | P16<br>(25 °C)° |  |  |  |
|----------------------------------|-------------------------|----------------|--------------|----------------|-----------------|--|--|--|
| L <sub>1,3</sub>                 | 60.6–61.2               | 6.23           | 4.64         | 4.53           | 4.21            |  |  |  |
| 2T <sub>2</sub>                  | 61.2–61.8               | 1.23           | 1.99         | 1.43           | 2.23            |  |  |  |
| $T_1$                            | 63.0–63.3               | 3.33           | 2.51         | 2.35           | 2.32            |  |  |  |
| $L_{1,3}, L_{1,4}$               | 68.5–69.7               | 6.02           | 5.56         | 5.84           | 5.15            |  |  |  |
| 2D, 2T <sub>1</sub>              | 70.4–72.0               | 13.82          | 12.21        | 11.49          | 11.02           |  |  |  |
| 2L <sub>1,4</sub>                | 72.7–73.2               | 10.28          | 6.39         | 5.70           | 5.28            |  |  |  |
| D                                | 77.7–78.9               | 1.64           | 1.64         | 1.88           | 1.41            |  |  |  |
| L <sub>1,3</sub>                 | 79.7–80.4               | 2.72           | 2.73         | 2.21           | 2.11            |  |  |  |
| $T_2$                            | 81.5-82.2               | 1.00           | 1.00         | 1.00           | 1.00            |  |  |  |
| Structure units (%) <sup>d</sup> |                         |                |              |                |                 |  |  |  |
| D units                          |                         | 9              | 12           | 14             | 12              |  |  |  |
| L units                          |                         | 66             | 61           | 59             | 59              |  |  |  |
| $(L_{1,3} units)$                |                         | (36)           | (36)         | (36)           | (36)            |  |  |  |
| $(L_{1,4} units)$                |                         | (30)           | (25)         | (23)           | (23)            |  |  |  |
| T units                          |                         | 25             | 27           | 27             | 29              |  |  |  |
| $(T_1 units)$                    |                         | (18)           | (19)         | (19)           | (20)            |  |  |  |
| (T <sub>2</sub> units)           |                         | (7)            | (8)          | (8)            | (9)             |  |  |  |
| Degree of Branching <sup>e</sup> |                         | 0.34           | 0.39         | 0.41           | 0.41            |  |  |  |

Table S1. Effects of reaction temperature and ambient conditions on the polymer structure.<sup>*a*, *b*</sup>

<sup>*a*</sup>[GD]<sub>0</sub> = 2500 mM, [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 5 mM in toluene. <sup>*b*</sup>Obtained by inverse-gated <sup>13</sup>C NMR. <sup>*c*</sup>The polymerization was performed under ambient conditions using unpurified monomer and solvent. <sup>*d*</sup>The structure units (%) were calculated using the following equation: integration ratio of each structure region/ $(D + T + L) \times 100$ . <sup>*e*</sup>Degree of branching = (D + T)/(D + T + L). **Table S2.** Influence of the recycled polymerization solution in ambient conditions on the polymer structure.<sup>*a, b, c*</sup>

|                                  |                          | 1 <sup>st</sup> run | 2 <sup>nd</sup> run | 3 <sup>rd</sup> run | 4 <sup>th</sup> run | 5 <sup>th</sup> run |
|----------------------------------|--------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Structure units (%) <sup>d</sup> |                          |                     |                     |                     |                     |                     |
| D units                          |                          | 11                  | 10                  | 11                  | 11                  | 11                  |
| L units                          |                          | 61                  | 62                  | 61                  | 62                  | 61                  |
|                                  | (L <sub>1,3</sub> units) | (32)                | (34)                | (32)                | (32)                | (31)                |
|                                  | (L <sub>1,4</sub> units) | (29)                | (28)                | (29)                | (30)                | (30)                |
| T units                          |                          | 28                  | 28                  | 28                  | 27                  | 28                  |
|                                  | $(T_1 units)$            | (23)                | (23)                | (22)                | (22)                | (22)                |
|                                  | (T <sub>2</sub> units)   | (5)                 | (5)                 | (5)                 | (5)                 | (6)                 |
| Degree of Branching <sup>e</sup> |                          | 0.40                | 0.39                | 0.39                | 0.37                | 0.39                |

 $a[GD]_0 = 500 \text{ mM}, [B(C_6F_5)_3]_0 = 5 \text{ mM}$  in toluene. <sup>b</sup>Obtained by inverse-gated <sup>13</sup>C NMR. <sup>c</sup>The polymerization was performed under ambient conditions using the unpurified monomer and solvent. <sup>d</sup>The structure units (%) were calculated using the following equation: integration ratio of each structure region/ $(D + T + L) \times 100$ . <sup>e</sup>Degree of branching (DB) = (D + T)/(D + T + L).