Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

A Stand-Alone Cobalt bis(dicarbollide) Photoredox Catalyst Epoxidates Alkenes in Water at Extremely Low Catalyst Load

Isabel Guerrero, a,b Clara Viñas, a Isabel Romero, b* Francesc Teixidora*

^aInstitut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.

^bDepartament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/ M. Aurèlia Campmany, 69, E-17003 Girona, Spain.

TABLE OF CONTENT

Table S1. Photooxidation tests performed with Na[1] complex. Conditions: Na[1] (0.02 mM), alkene (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Table S2. Photooxidation of epoxides performed with Na[1] complex. Conditions: Na[1] (0.02 mM), epoxide (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Table S3. Photooxidation tests performed with Na[1] and [Ru(bpy)₃]²⁺ complexes. Conditions: Na[1] or [Ru(bpy)₃]²⁺ (0.02 mM), substrate (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. Ratio 1:1000:1300. After 30 min of reaction. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Figure S1. Plot of conversion as a function of time for the photoredox catalysis of styrene. Conditions: Na[3,3'-Co(1,2-C₂B₉H₁₁)₂] (0.02 mM), styrene (20 mM), Na₂S₂O₈ (26 mM), 5 mL of water (0.4 μ M in K₂CO₃ solution at pH=7), light irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Figure S2. Plot of TON of styrene as a function of pH. Conditions: $Na[3,3'-Co(1,2-C_2B_9H_{11})_2]$ (0.02 mM), styrene (20 mM), $Na_2S_2O_8$ (26 mM), 5 mL of water, light irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Figure S3. HPLC/ESI-MS resulting of the photooxidation of methyl oleate by Na[1] in water.

Table S1. Photooxidation tests performed with Na[1] complex. Conditions: Na[1] (0.02 mM), alkene (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Entry	substrate	Conv.%	Yield(selec.)%	1	Yield.(selec.)%			
1		78 ^[a]	•	37(47) ^[a] 27(34) ^[b]	НО ОН	23(29) ^[a] 35(44) ^[b]	Other products	18(23) ^{[a]1}
1		96 ^[c]		25(26) ^[c]		50(52) ^{[c}		18(23) ^{[b]1} 21(22) ^{[c]1}
2		91 ^[b] ≥99 ^[c]	0	47(47) ^[b] 38(42) ^[c]	ОН	53(58) ^[b] 53(53) ^[c]		
3		85 ^[b] 91 ^[c]		44(52) ^[b] 20(22) ^[c]	НО	41(48) ^[b] 71(78) ^[c]		
4		66 ^[b] 95 ^[c]		39(44) ^[b] 29(41) ^[c]	ОН	37(56) ^[b] 56(59) ^[c]		
5		92 ^[b] ≥99 ^[c]			/2, cis/trans](82 ^{1)[b]} /17, cis/trans](33 ¹) ^[c]	но он		19) ^[b] 57) ^[c]
6		97 ^[b] ≥99 ^[c]		70(72) ^[b] 37(37) ^[c]	0	8(8) ^[b]	Other products	19 ² (19) ^[b] 57 ² (57) ^[c]
7	√ 5	81 ^[b] ≥99 ^[c]	5	58(72) ^[b] 16(16) ^[c]	ОН	9(11) ^[b] 44(44) ^[c]	Other products	14 ³ (17) ^[b] 39 ³ (39) ^[c]

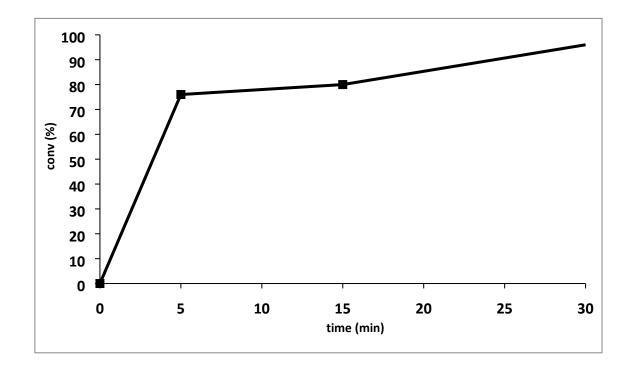
Ratio 1:1000:1300: [a] 5 min of reaction [b] 15 min of reaction. [c] 30 min of reaction. [d] 60 min of reaction. ¹selectivity with respect the overall epoxide produced.²yield with diol and benzoic acid from vinyl produced. ³octanal and octanoic produced.

Table S2. Photooxidation of epoxides performed with Na[1] complex. Conditions: Na[1] (0.02 mM), epoxide (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Ente		ıv.%	nuo duot		
Entry	y substrate	Na[1]	[Ru(bpy) ₃] ²⁺	product	
Entry	substrate	Conv.%	Product	Vield(selec.)%	
1		95	10 он		
1		85 ^[a]		70(82) ^[a]	
1	5 7	≥99 ^[b]	OH OH	60 ∕(60)[Þ]	
2		≥99	3		
2 3		90 ^[a] ≥99 ^[c] ≥99 ^[b]	НО ОН	67(74) ^[b] o 8Ø(80) ^[c]	
3		70 ^[b] ≥99 ^[c]	OH	70(≥99) ^[b] ≥99(≥99) ^[c]	

Ratio 1:1000:1300: [a] 15 min of reaction [b] 30 min of reaction. Yield and selectivity with respect the overall diol produced.

Table	S3.
performed	with
complexes	



<1

Photooxidation tests Na[1] and $[Ru(bpy)_3]^{2+}$

Conditions: Na[1] or [Ru(bpy)₃]²⁺ (0.02 mM), substrate (20 mM), Na₂S₂O₈ (26 mM), 5 mL of a 0.4 μ M in K₂CO₃ solution at pH=7. Ratio 1:1000:1300. After 30 min of reaction. UV irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Figure S1. Plot of conversion as a function of time for the photoredox catalysis of styrene. Conditions: Na[3,3'-Co(1,2-C₂B₉H₁₁)₂] (0.02 mM), styrene (20 mM), Na₂S₂O₈ (26 mM), 5 mL of water (0.4 μ M in K₂CO₃ solution at pH=7), light irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

Figure S2. Plot of TON of styrene as a function of pH. Conditions: $Na[3,3'-Co(1,2-C_2B_9H_{11})_2]$ (0.02 mM), styrene (20 mM), $Na_2S_2O_8$ (26 mM), 5 mL of water, light irradiation (2.2 W, λ 300 nm, 12 lamps in the walls of a box)

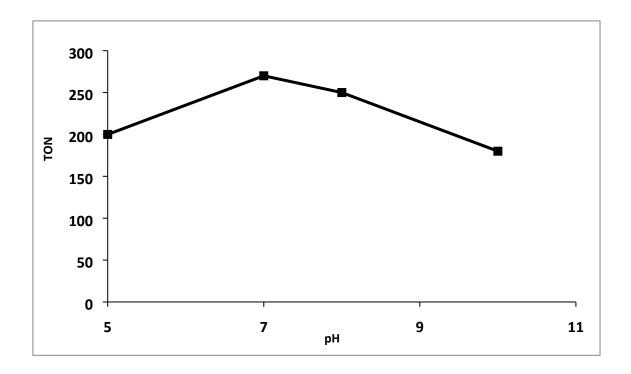
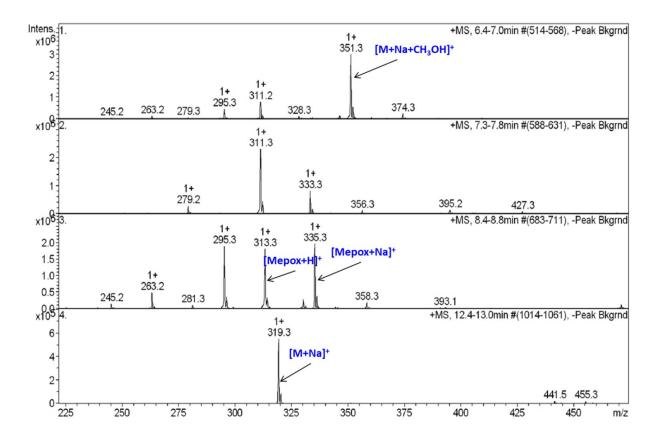



Figure S3. HPLC/ESI-MS resulting of the photooxidation of methyl oleate by Na[1] in water.

