Choosing the Right Strategy: Cryogrinding vs Ball Milling – Comparing Apples to Apples

Julia L. Shamshina^{a,*}, Robin S. Stein^b, and Noureddine Abidi^a

Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA 79409

McGill University, Department of Chemistry, Montreal, QC H3A0B8, Canada

Supplementary Information (SI)

- Table S1. Chemical composition ranges of grade 440 stainless steels, %
- Table S2. Chitin dissolution in [C₂mim][OAc] ionic liquid

Table S3. List of chitin FTIR peaks

Figures S1 and S2. FE-SEM images for cryoground chitin

Figures S3 – S6. ATR FT-IR spectra for cryoground chitin

- **Table S4**. CrI from the height ratio between the maximum intensity (arbitrary units) of the diffraction (110) at 2 Θ 19.2° and intensity of the amorphous diffraction at 2 Θ 12.6°
- **Table S5**. CrI from the height ratio between the maximum intensity (arbitrary units) of the diffraction (110) at 2 Θ 19.2° and a baseline height at 2 Θ 16.0°
- Figures S7 S11. pXRD diffractograms for cryoground chitin
- Table S6. pXRD diffractograms for cryoground chitin: peak fitting parameters and CrI values

Table S7. Crystallite size (110)

Table S8. Crystallite size (020)

- **Figures S12 S16**. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied)
- **Table S9**. The intensity of the peaks MB1 (1383 cm-1), MB2 (1327 cm-1), and RB (1163 cm-1) and %DA for C0 C24.
- Figures S17 S21. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectra
- **Figure S22**. Flow curves for 1 wt% chitin solutions in ionic liquid 1-ethyl-3-methylimidazolium acetate [C₂mim][OAc]: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.
- Figure S23. TGA curves for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.
- Figure S24. DTG curves for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.
- Figures S25 S29. DTG curves and peak fitting for cryoground chitin: C0.

Table S1. Chemical composition ranges of grade 440 stainless steels, %

Grade	С	Mn	Si	Р	S	Cr	Mo	Ni
440 C	0.95 - 1.20	0 - 1	0 - 1	0-0.04	0-0.03	16 - 18	0 - 0.75	0

Table S2. Chitin dissolution in [C₂mim][OAc] ionic liquid.

# Cycles	IL, g	Chitin, g	Conc., wt%ª
0	9.904	0.094	1.01
3	9.908	0.093	1.01
6	9.907	0.095	1.03
12	9.902	0.096	1.01
24	9.914	0.096	1.01

The concentration (wt%) was calculated as a ratio between amount of dry chitin to the total amount of solution (i.e., sum of chitin mass and the

$$=\frac{m_{chitin}}{m_{chitin}+m_{IL}}\times 100\%$$

IL mass), according to formula: (wt%)

$$=\frac{1}{m_{chitin}+m_{IL}}\times 100$$

Table S3. List of chitin FTIR peaks

	Cardenas <i>et al.</i> ^{<i>i</i>}	Kaya <i>et al</i> ."	Akpan <i>et al.ⁱⁱⁱ</i>
<i>O</i> — <i>H</i> stretch	3448	3433	3449
N—H (as.) stretch	3268	3260	3263
N—H (sym.) stretch	3102	3104	3103
$C - H (CH_3, asym.)$ stretch	2965		
$C - H (CH_3, sym.)$ stretch	2880	2875	2853
$C - H (CH_2, asym.)$ stretch	2929	2940	2926
C=O stretch (amide I), $C(O)$ HN	1656	1652	1653
$C=O$ stretch (amide I), $RCH_2OHC(O)HN$	1627	1620	1620
C - N stretch (amide II) + $N - H$ bend	1556	1552	1563
CH_3/CH_2 bending	1424, 1376	1420, 1375	1378
N—H (amide III) bending	1314	1307	1309
<i>C</i> — <i>O</i> — <i>C</i> (asymmetric bridging, ring) stretch	1155	1154	
<i>C—O</i> (asymmetric in plane ring) stretch	1111	1112	
C3—OH stretch	1069	1067	1077
C6—OH stretch	1032	1027	1027
CH ₃ wagging	948	951	

Figure S1. Hitachi S-4700 images of cryoground chitin. Magnification: 500, Accelerating Voltage: 2000, Emission Current: 9000, Working Distance: 12000, Lens Mode: Normal.

Figure S2. Hitachi S-4700 images of cryoground chitin. Magnification: 3000, Accelerating Voltage: 2000, Emission Current: 8500, Working Distance: 12000, Lens Mode: Normal.

Figure S3. ATR FT-IR spectra for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), full spectra in the range 4000 – 600 cm⁻¹.

Figure S4. ATR FT-IR spectra for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), O—H stretching region 3600 – 3800 cm⁻¹.

Figure S5. ATR FT-IR spectra for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), vibration modes of amide I in the region 1660 –1620 cm⁻¹. Shown is expanded region 1800 – 1400 cm⁻¹.

Figure S6. ATR FT-IR spectra for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), in the region 1200 –800 cm⁻¹.

	I_{110} Intensity at $2\theta = 19.2^{\circ}$	I_{am} (Method 1): Intensity at $2\theta = 12.6^{\circ}$	CrI
C0	1.0000	0.0870	91.3
C3	1.0000	0.0870	91.3
C6	1.0000	0.1260	87.4
C12	1.0000	0.1180	88.2
C24	1.0000	0.2260	77.4

Table S4. CrI from the height ratio between the maximum intensity (arbitrary units) of the diffraction (110) at 2Θ 19.2° and intensity of the amorphous diffraction at 2Θ 12.6°

Table S5. CrI from the height ratio between the maximum intensity (arbitrary units) of the diffraction (110) at 2Θ 19.2° and a baseline height at 2Θ 16.0°

	I_{110} Intensity at $2\theta = 19.2^{\circ}$	I_{am} (Method 2): Intensity at $2\theta = 16^{\circ}$	CrI
C0	1.0000	0.0098	99.0
C3	1.0000	0.0180	98.2
C6	1.0000	0.0200	98.0
C12	1.0000	0.0360	96.4
C24	1.0000	0.1750	82.5

Figure S7. pXRD diffractogram for cryoground chitin: C0.

Figure S8. pXRD diffractogram for cryoground chitin: C3.

Figure S9. pXRD diffractogram for cryoground chitin: C6

Figure S10. pXRD diffractogram for cryoground chitin: C12

Figure S11. pXRD diffractogram for cryoground chitin: C24

	Sample	(C O	(23		C 6	(212	C	24
Peak Number and Position	Parameter	Value	Standard Error								
Peak 1,	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
9.2 °	xc	9.2238	0.0043	9.1736	0.0053	9.1773	0.0069	9.2147	0.0062	9.0567	0.0115
	W	0.9383	0.0088	0.9908	0.0107	1.1659	0.0142	1.0333	0.0128	1.0873	0.0261
	Area	0.6892	0.0058	0.7855	0.0076	0.7768	0.0086	0.5425	0.0061	0.4984	0.0132
	sigma	0.4691	0.0044	0.4954	0.0054	0.5829	0.0071	0.5166	0.0064	0.5437	0.0131
	FWHM	1.1047	0.0103	1.1666	0.0126	1.3727	0.0167	1.2166	0.0150	1.2802	0.0308
	Height	0.5861	0.0047	0.6326	0.0058	0.5316	0.0055	0.4189	0.0044	0.3657	0.0070
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	12.6857	0.0273	12.6588	0.0372	12.6376	0.0310	12.6603	0.0240	12.1402	0.1775
Dool 2	W	0.6305	0.0553	0.6622	0.0753	0.8012	0.0631	0.7088	0.0487	7.9139	0.3508
126°	Area	0.0599	0.0047	0.0606	0.0061	0.0988	0.0070	0.0800	0.0049	1.3668	0.0546
12.0	sigma	0.3153	0.0276	0.3311	0.0376	0.4006	0.0316	0.3544	0.0244	3.9570	0.1754
	FWHM	0.7424	0.0651	0.7797	0.0886	0.9434	0.0743	0.8345	0.0574	9.3179	0.4130
	Height	0.0759	0.0057	0.0730	0.0071	0.0984	0.0066	0.0901	0.0053	0.1378	0.0032
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	19.2084	0.0045	19.1682	0.0059	19.1604	0.0074	19.1701	0.0059	19.0532	0.0102
Pool 3	W	0.8159	0.0120	0.8283	0.0160	0.8267	0.0214	0.8249	0.0172	0.8162	0.0315
102°	Area	0.6380	0.0149	0.6362	0.0197	0.4924	0.0205	0.4561	0.0151	0.3974	0.0260
17.2	sigma	0.4080	0.0060	0.4141	0.0080	0.4134	0.0107	0.4124	0.0086	0.4081	0.0158
	FWHM	0.9607	0.0141	0.9752	0.0188	0.9734	0.0252	0.9712	0.0202	0.9610	0.0371
	Height	0.6239	0.0083	0.6128	0.0108	0.4752	0.0112	0.4411	0.0082	0.3885	0.0143
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	19.7970	0.0199	19.7673	0.0253	19.7702	0.0276	19.7579	0.0213	19.6217	0.0536
Peak 4	W	2.6149	0.0360	2.6327	0.0460	2.9364	0.0566	3.0979	0.0463	3.2488	0.1336
198°	Area	1.1608	0.0169	1.2283	0.0219	1.5987	0.0211	1.7067	0.0157	1.8665	0.0591
17.0	sigma	1.3074	0.0180	1.3163	0.0230	1.4682	0.0283	1.5490	0.0232	1.6244	0.0668
	FWHM	3.0788	0.0424	3.0997	0.0541	3.4574	0.0666	3.6475	0.0545	3.8251	0.1573
	Height	0.3542	0.0074	0.3723	0.0098	0.4344	0.0100	0.4396	0.0073	0.4584	0.0114

 Table S6. pXRD diffractogram for cryoground chitin: peak fitting parameters and CrI values

	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	23.2891	0.0291	23.2499	0.0378	23.0811	0.0478	23.0838	0.0386	23.3848	0.0945
Deck 5	W	0.9570	0.0595	1.0492	0.0773	1.2102	0.1102	1.2213	0.0899	2.1404	0.2181
Peak 5,	Area	0.1120	0.0066	0.1299	0.0092	0.1575	0.0199	0.1501	0.0159	0.3934	0.0532
23.2	sigma	0.4785	0.0298	0.5246	0.0386	0.6051	0.0551	0.6107	0.0450	1.0702	0.1091
	FWHM	1.1268	0.0701	1.2353	0.0910	1.4249	0.1298	1.4380	0.1058	2.5202	0.2568
	Height	0.0934	0.0047	0.0988	0.0057	0.1038	0.0074	0.0981	0.0058	0.1466	0.0082
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	26.2997	0.0187	26.2783	0.0274	26.2965	0.0146	26.3000	0.0090	26.1480	0.0373
Dools 6	W	0.7702	0.0380	0.9157	0.0552	0.6145	0.0344	0.5997	0.0214	1.2856	0.0814
1 Cak 0,	Area	0.1249	0.0056	0.1518	0.0088	0.1471	0.0097	0.1719	0.0073	0.3650	0.0300
20.5	sigma	0.3851	0.0190	0.4579	0.0276	0.3073	0.0172	0.2998	0.0107	0.6428	0.0407
	FWHM	0.9068	0.0447	1.0782	0.0650	0.7236	0.0405	0.7060	0.0252	1.5137	0.0959
	Height	0.1294	0.0052	0.1323	0.0061	0.1909	0.0085	0.2288	0.0065	0.2265	0.0083
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	28.7122	0.1097	28.6117	0.1241	26.4519	0.1077	26.4200	0.0667	28.2721	0.1413
Deals 7	W	1.7663	0.2402	1.7940	0.2786	3.9046	0.2652	3.8164	0.1661	1.8342	0.2622
reak /,	Area	0.0731	0.0086	0.0910	0.0120	0.4721	0.0256	0.5553	0.0190	0.1835	0.0259
20.7	sigma	0.8832	0.1201	0.8970	0.1393	1.9523	0.1326	1.9082	0.0831	0.9171	0.1311
	FWHM	2.0797	0.2828	2.1122	0.3280	4.5974	0.3123	4.4934	0.1956	2.1596	0.3087
	Height	0.0330	0.0035	0.0405	0.0045	0.0965	0.0052	0.1161	0.0040	0.0798	0.0053
	y0	0.0060	0.0007	0.0115	0.0009	0.0070	0.0010	0.0078	0.0008	0.0137	0.0012
	xc	39.0734	0.0659	39.0323	0.0911	39.0376	0.0754	39.2034	0.0524	39.0869	0.0000
Dools Q	W	1.5214	0.1356	1.4153	0.1871	1.3421	0.1551	1.8713	0.1092	0.0010	0.0000
1 Cak 0,	Area	0.0931	0.0076	0.0773	0.0093	0.0881	0.0093	0.1572	0.0085	0.0088	0.0000
37.03	sigma	0.7607	0.0678	0.7077	0.0936	0.6711	0.0775	0.9356	0.0546	0.0005	0.0000
	FWHM	1.7913	0.1597	1.6664	0.2203	1.5802	0.1826	2.2033	0.1285	0.0012	0.0000
	Height	0.0488	0.0037	0.0436	0.0049	0.0524	0.0052	0.0670	0.0033	6.9413	0.0000
Area un	nder peaks	4.1117		4.3890		5.4302		5.5266		6.9462	
Cryst. P	Peaks Area	2.7848		2.9924		3.2713		3.1074		3.5206	
%	o CrI	67.7280		68.1794		60.2417		56.2264		50.6835	

Cycles	2 0 , °	θ,°	θ, radians	cos O	FWHM, °	FWHM, radians	Size, nm
0	19.20	9.60	0.1676	0.9860	0.9607	0.0168	84.77
3	19.20	9.60	0.1676	0.9860	0.9752	0.0170	83.51
6	19.20	9.60	0.1676	0.9860	0.9734	0.0170	83.66
12	19.20	9.60	0.1676	0.9860	0.9712	0.0170	83.85
24	19.20	9.60	0.1676	0.9860	0.961	0.0168	84.74

 Table S7. Crystallite size (110)

Table S8. Crystallite size (020)

Cycles	2 0 , °	θ,°	θ, radians	cos O	FWHM, °	FWHM, radians	Size, nm
0	9.24	4.62	0.0806	0.9968	1.1047	0.0193	72.92
3	9.24	4.62	0.0806	0.9968	1.1666	0.0204	69.05
6	9.24	4.62	0.0806	0.9968	1.3696	0.0239	58.82
12	9.24	4.62	0.0806	0.9968	1.2166	0.0212	66.21
24	9.24	4.62	0.0806	0.9968	1.2802	0.0223	62.92

Figure S12. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied) for C0, 5 spectra.

Figure S13. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied) for C3, 5 spectra.

Figure S14. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied) for C6, 5 spectra.

Figure S15. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied) for C12, 5 spectra.

Figure S16. The first derivative of the digitally filtered FT-IRs (a 17-point Savitzky-Golay digital filter applied) for C24, 5 spectra.

Sample	Trial	MB ₁ at 1383 cm ⁻¹	MB ₂ at 1327 cm- ¹	RB at 1163 cm ⁻¹	DA, %ª	STD.
	Rep. 1	87.14	65.08	84.11	84.25	87.14
	Rep. 2	85.20	65.08	84.23	82.62	85.20
C0	Rep. 3	84.23	64.78	82.78	83.64	84.23
0	Rep. 4	83.20	63.26	81.20	83.87	83.20
	Rep. 5	75.57	61.20	81.20	76.26	75.57
	Average				82.13	2.98
	Rep. 1	87.22	66.91	88.09	80.42	
	Rep. 2	86.28	66.10	87.47	79.94	
C2	Rep. 3	85.78	65.85	87.47	79.40	
0.5	Rep. 4	85.78	65.85	87.47	79.39	
	Rep. 5	84.84	65.16	86.78	79.08	
	Average				79.65	0.48
	Rep. 1	91.93	70.24	89.64	84.22	
	Rep. 2	90.08	68.69	88.30	83.50	
C6	Rep. 3	87.27	66.69	86.60	82.21	
0	Rep. 4	87.28	66.32	86.08	82.86	
	Rep. 5	85.64	65.28	85.57	81.33	
	Average				82.82	1.00
	Rep. 1	94.08	73.31	91.05	86.08	
	Rep. 2	93.30	72.78	91.53	84.56	
C12	Rep. 3	92.64	72.26	90.48	85.06	
012	Rep. 4	92.64	71.80	90.41	84.83	
	Rep. 5	91.26	70.03	89.30	84.03	
	Average				84.91	0.68
	Rep. 1	95.83	74.64	95.73	82.41	
	Rep. 2	93.30	74.14	92.13	84.74	
C24	Rep. 3	95.20	73.52	91.44	86.50	
0.24	Rep. 4	94.70	73.14	91.37	85.98	
	Rep. 5	93.57	72.58	91.37	84.80	
	Average				84.89	1.41

Table S9. The intensity of the peaks MB_1 (1383 cm⁻¹), MB_2 (1327 cm⁻¹), and RB (1163 cm⁻¹) and %DA for C0 – C24.

$$\frac{(MB1 + MB2)}{RB} - 0.487\%$$
^a Calculated using the equation: %DA= 0.0157

Figure S15. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C0.

Figure S16. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C3.

igure S17. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C6.

Figure S18. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C12.

igure \$19. Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C24.

Table S10. %DA calculated from Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP MAS NMR) spectrum for C24

Sample	With Baselin	With Baseline Correction				
	Integral Ratio	%DA				
C0	5.37	0.93				
C3	5.72	0.87				
C6	5.85	0.85				
C12	6.61	0.76				
C24	8.19	0.61				

Figure S20. Flow curves for 1 wt% chitin solutions in ionic liquid 1-ethyl-3-methylimidazolium acetate [C₂mim][OAc]: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.

Figure S21. TGA curves for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.

Figure S22. DTG curves for cryoground chitin: C0 (blue), C3 (red), C6 (pink), C12 (green), and C24 (mustard), baseline corrected and normalized.

Figure S23. DTG curve and peak fitting for cryoground chitin: C0.

Figure S24. DTG curve and peak fitting for cryoground chitin: C3.

Figure S25. DTG curve and peak fitting for cryoground chitin: C6.

Figure S26. DTG curve and peak fitting for cryoground chitin: C12.

Figure S27. DTG curve and peak fitting for cryoground chitin: C24.

REFERENCES

G. Cárdenas, G. Cabrera, E. Taboada, S. P. Miranda, J. Applied Polym. Sci., 2004, 1876 – 1885.

M. Kaya, M. Mujtaba, H. Ehrlich, A. M. Salaberria, T. Baran, C. T. Amemiya, R. Galli, L. Akyuzh, I. Sargin, J. Labidi, *Carbohydr. Polym.*, 2017, **176**, 177 – 186.

I. Akpan, O. P. Gbenebor, S. O. Adeosun, Int. J. Biol. Macromol., 2018, 106, 1080 – 1088.