SEMI-AROMATIC BIO-BASED POLYESTERS DERIVED FROM LIGNIN AND CYCLIC CARBONATES

DeMichael Winfield,^a John Ring,^a Jessica Horn,^b Evan M. White,^b Jason Locklin^{a,b,c*}

^aDepartment of Chemistry, University of Georgia, Athens, GA 30602, USA

^bNew Materials Institute, University of Georgia, Athens, GA 30602, USA

^cCollege of Engineering, University of Georgia, Athens, GA 30602, USA

*Corresponding Author. Email: jlocklin@uga.edu

Supporting Information

Table of Contents

Monomer Preparation	2
NMR Spectra	5
Green Metrics	29
DSC Thermograms	33
Tensile Testing	34
Composting	35

Monomer Preparation

100 g (601 mmol) of phloretic acid were dissolved into 150 mL of methanol. A catalytic amount of sulfuric acid was added, and the reaction was heated to reflux for 6 hours. Upon cooling, the reaction was concentrated and taken up in ethyl acetate and washed with saturated sodium bicarbonate followed by brine. The organic layer was dried over magnesium sulfate and filtered. Removal of solvent yielded 108.44 g of product as a white solid in quantitative yield. ¹H NMR (300 MHz, cdcl₃) δ 7.07 (d 2H), 6.76 (d 2H), 4.99 (s -OH) 3.67 (s 3H), 2.91 (t, 2H) 2.63 (t, 2H)

M1 60.0 g (333 mmol) of methyl 3-(4-hydroxyphenyl)propanoate, 2.30 g (16.65 mmol) of potassium carbonate, and 29.33 g (366 mmol) of ethylene carbonate were added into a 3-neck round bottom flask equipped with a N₂ inlet and gas relief valve. The flask was backfilled with N₂ three times and then heated to 160°C and stirred for 1 hour. The mixture was then allowed to cool bellow 100 °C. 270 mL of 2M NaOH were added, and a reflux condenser was equipped to the round bottom flask. The heterogeneous mixture was allowed to reflux overnight. Once the mixture became homogenous, it was then cooled in an ice bath and acidified. The resultant solid was collected by vacuum filtration and washed with excess water. 67.2 g of white solid were obtained in a 96% yield and used without further purification. ¹H NMR (300 MHz, dmso) δ 7.13 (d 2H), 6.84 (d 2H), 4.86 (t -OH), 3.95, 3.93 (t 2H), 3.71 (t 2H) 3.66, 2.77 (t 2H), 2.45 (m 2H). ¹³C NMR (75 MHz, dmso) δ 173.79, 156.99, 132.70, 129.17, 114.28, 69.41, 59.58, 35.61, 29.51.

M2 3-(4-(2-hydroxypropoxy)phenyl)propanoic acid was synthesized in the same manner with propylene carbonate in 83% yield. ¹H NMR (300 MHz, cdcl₃) δ 7.11 (d 2H), 6.86 (d 2H), 4.20 (m 1H), 3.93 (m 1H), 3.77 (m 1H), 2.91 (t 2H), 2.65 (t 2H), 1.29 (d 3H). ¹³C NMR (75 MHz, cdcl₃) δ 178.82, 157.31, 133.01, 129.51, 114.87, 73.50, 66.55, 36.03, 29.96, 18.89.

M3 83 g (500 mmol) of phloretic acid, 50 g (1.25 mol) of NaOH, and 22.5 g (150 mmol) of NaI were dissolved in 500 mL of water. After all solids were dissolved, 63 mL (750 mmol) of 3-Chloro-1-propanol were added slowly by addition funnel to avoid exotherming. After addition the solution was allowed to reflux for 12 hours. After reflux, the solution was distilled to approximately half volume, then cooled in an ice bath. The solution was acidified, and the resultant solids were collected by vacuum filtration. After washing with cold ethanol and water, 48.23 g of crude product containing monomer and dimers were obtained in 50% yield. The product was used without purification. ¹H NMR (300 MHz, cdcl₃) δ 7.11 (m 2H), 6.83 (m 2H), 4.24 (t 1H), 4.11 (t 1H), 3.87 (t 1H), 2.91 (m 2H), 2.65 (m 2H), 2.04 (m 2H). ¹³C NMR (75 MHz, cdcl₃) δ 178.28, 173.20, 157.48, 132.77, 129.46, 114.76, 65.98, 64.46, 61.53, 60.73, 36.31, 35.99, 32.11, 30.29, 29.99, 28.84.

In a 3-neck round bottom flask, 72.3 g (372 mmol) of ferulic acid and 7.92 g (74.47 mmol) of 10% Pd/C were added. The round bottom was equipped with a N₂ inlet, reflux condenser, and addition funnel, then backfilled with N₂ three times. 370 mL of acetic acid was added under positive N₂ pressure, and the solution was heated until ferulic acid dissolved. 90.5 ml of limonene was then added dropwise by addition funnel, followed by reflux until the reaction was complete by TLC. The mixture was cooled to room temperature and filtered through a celite. After removal of solvent, the crude solid was taken up in methyl ethyl ketone and extracted with 1 M NaOH. The aqueous layer was cooled in an ice bath and acidified. The resultant white precipitate was collected by vacuum filtration and washed with water. 59.22 g, 95% yield. ¹H NMR (300 MHz, cdcl₃) δ 6.83 (d 1H), 6.72 (s 1H), 6.69 (s 1H), 3.87 (s 3H), 2.90 (t 3H), 2.65 (t 3H).

3-(4-hydroxy-3,5-dimethoxyphenyl)propanoic acid was synthesized in the same manner in 83% yield. ¹H NMR (300 MHz, dmso) δ 8.05 (s 2H), 3.72 (s 6H), 2.72 (t 2H), 2.47 (m 2H).

Methyl 3-(4-hydroxy-3-methoxyphenyl)propanoate was synthesized by the esterification described above in quantitative yield. ¹H NMR (300 MHz, cdcl₃) δ 6.82 (d 1H), 6.70 (s 1H), 6.68 (s 1H), 3.87 (s 3H), 3.67 (s 3H), 2.88 (t 2H), 2.61 (t 2H).

Methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)propanoate was synthesized by the esterification described above in quantitative yield. ¹H NMR (300 MHz, cdcl₃) δ 6.42 (s 2H), 3.87 (S 6H), 3.68 (s 3H), 2.91 (t 2H), 2.61 (t 2H).

M4 3-(4-(2-hydroxyethoxy)-3-methoxyphenyl)propanoic acid was synthesized by the alkylation described above in 92% yield. ¹H NMR (500 MHz, cdcl₃) δ 6.86 (d 2H), 6.75 (s 1H), 6.73 (s 1H), 4.11 (t 2H), 3.91 (t 2H), 3.83 (s 3H), 2.91 (t 2H), 2.67 (t 2H). ¹³C NMR (75 MHz, cdcl₃) δ 178.50, 149.98, 146.69, 134.42, 120.63, 115.42, 112.35, 71.77, 61.42, 55.98, 35.96, 30.50.

M5 3-(4-(2-hydroxyethoxy)-3,5-dimethoxyphenyl)propanoic acid was synthesized by the alkylation described above in 94% yield. ¹H NMR (500 MHz, cdcl₃) δ 6.44 (s 2H), 4.12 (t 2H), 3.85 (s 6H), 3.70 (t 2H), 2.93 (t 2H), 2.70 (t 2H). ¹³C NMR (75 MHz, cdcl₃) δ 178.17, 153.38, 136.67, 134.82, 105.39, 75.37, 61.53, 56.27, 35.83, 31.26.

Monomer	Total yield (%)
M1	96
M2	83
M3	50
M4	87
M5	78

NMR Spectra

Figure S 1¹H NMR spectrum of methyl 3-(4-hydroxyphenyl)propanoate

Figure S 2 ¹H NMR spectrum of 4-(2-hydroxyethoxy)phenylpropanoic acid

Figure S 3 ¹³C NMR spectrum of 4-(2-hydroxyethoxy)phenylpropanoic acid

Figure S 4 ¹H NMR spectrum of 3-(4-(2-hydroxypropoxy)phenyl)propanoic acid

Figure S 5 ¹³C NMR spectrum of 3-(4-(2-hydroxypropoxy)phenyl)propanoic acid

Figure S 6 ¹H NMR spectrum of 4-(3-hydroxypropoxy)phenylpropanoic acid

Figure S 7 ¹³C NMR spectrum of 4-(3-hydroxypropoxy)phenylpropanoic acid

Figure S 8 ¹H NMR spectrum of 3-(4-hydroxy-3-methoxyphenyl)propionic Acid

Figure S 9 ¹H NMR spectrum of methyl 3-(4-hydroxy-3-methoxyphenyl)propanoate

Figure S 10 ¹H NMR spectrum of 3-(4-(2-hydroxyethoxy)-3-methoxyphenyl)propanoic acid

Figure S 11 ¹³C NMR spectrum of 3-(4-(2-hydroxyethoxy)-3-methoxyphenyl)propanoic acid

Figure S 12 ¹H NMR spectrum of 3-(4-hydroxy-3,5-dimethoxyphenyl)propanoic acid

Figure S 13 ¹H NMR spectrum of methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)propanoate

Figure S 14 ¹H NMR spectrum of 3-(4-(2-hydroxyethoxy)-3,5-dimethoxyphenyl)propanoic acid

Figure S 15 ¹³C NMR spectrum of 3-(4-(2-hydroxyethoxy)-3,5-dimethoxyphenyl)propanoic acid

Figure S 16 ¹H NMR spectrum of polyethylene phloretate

Figure S 17 ¹³C NMR spectrum of polyethylene phloretate

Figure S 18 ¹H NMR spectrum of polyisopropyl phloretate (PiPP)

Figure S 19 ¹³C NMR spectrum of polyisopropyl phloretate (PiPP)

Figure S 20 ¹H NMR spectrum of polypropylene phloretate (PPP)

Figure S 21 ¹³C NMR spectrum of polypropylene phloretate (PPP)

Figure S 22 ¹H NMR spectrum of polyethylene dihydroferulate

Figure S 23 ¹³C NMR spectrum of polyethylene dihydroferulate

Figure S 24 ¹H NMR spectrum for polyethylene dihydrosinapate

Figure S 25 ¹³C NMR spectrum of polyethylene dihydrosinapate

Green Metrics

The E-Factor for the synthesis of 4-(2-hydroxyethoxy)phenylpropanoic acid by ethylene carbonate and 1-chloroethanol is present below.

$$E - Factor = \frac{Mass of Inputs - Mass of Products (g)}{Mass of Products (g)}$$
(Equation

S1)

Table S 1 Alky	vlation via c	vclic carbonate	over two steps	s. Sulfuric acid	assumed to be	negligible
	yiation via c	yene cui sonate		5. Sumarie dela	ussumed to be	

Product	Input	Input Weight	Product	E Factor	Process E
	Material	(g)	Weight (g)		Factor
PA Methyl	Phloretic acid	50.00	53.61	0	0.97
Ester	MeOH	118.80			
	Sulfuric Acid				
EP monomer	PA Methyl	53.61	50.25	0.97	
	Ester				

Ethylene	22.10
carbonate	
Potassium	1.65
Carbonate	
NaOH	21.60
H2O	270.00

Table S 2 Alkylation via halo alcohol

Halo alcohol	Phloretic acid	166.00	132.45	2.26
route				
EP Monomer	NaOH	100.00		
	Nal	45.00		
	2chloro ethanol	120.77		
	H20	1000.00		

The general rubric for Eco-Scale for both routes is shown below.

EcoScale = 100 – *Penalty Points* (Equation S2)

Excellent: 75-100 Acceptable: 50-74 Inadequate: 0-49

Table S 3 Eco-Scale Rubric

1. Yield	Penalty
	Points
(100-%yield)/2	.5-50
2. Price (for 10 mmol product)	
<\$10	0
\$10-\$50	3
>\$50	5
3. Safety (sum all that apply)	
N- dangerous for environment	5
T- toxic	5
F- flammable	5
E- explosive	10
F+ extremely flammable	10
T+ extremely toxic	10
4. Set up (sum all that apply)	
common	0

Controlled addition	1
Unconventional activation	2
Pressure equipment >1atm	3
additional special glassware	1
inert atmospere	1
glove box	3
5. Temp/Time (sum all that apply)	
rt<1hr	0
rt<24hr	1
heat <1hr	2
heat>1hr	3
cool to 0C	4
Cool < 0C	5
6. Workup/purification (sum all	
6. Workup/purification (sum all that apply)	
6. Workup/purification (sum all that apply) none	0
6. Workup/purification (sum all that apply) none Cool to rt	0
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent	0 0 0
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration	0 0 0 0
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C	0 0 0 0 0
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration	0 0 0 0 0 1
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration removal of solvent bp>150C	0 0 0 0 0 1 2
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration removal of solvent bp>150C solid phase extraction	0 0 0 0 0 1 2 2
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration removal of solvent bp>150C solid phase extraction distillation	0 0 0 0 1 2 2 3
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration removal of solvent bp>150C solid phase extraction distillation sublimation	0 0 0 0 0 1 2 2 3 3 3
6. Workup/purification (sum all that apply) none Cool to rt Adding solvent simple filtration removal of solvent bp <150C Crystallization/filtration removal of solvent bp>150C solid phase extraction distillation sublimation liquid-liquid extraction	0 0 0 0 1 2 2 3 3 3 3

Table S 4 Alkylation with ethylene carbonate

Parameter	Assessment	Penalty Points
1. Yield	(100-96)/2	2
2. Price		0
PMeEster	\$ 1.80/10 mmol	
Ethylene Carbonate	\$ 0.97/10 mmol	
K2CO3	\$ 0.69/10 mmol	
3. Safety	Toxic (ethylene carbonate)	5
4. Set up	Additional special glassware	2
	Inert atmosphere	
5. Temp/Time	heat>1hr	3
6. Workup	Crystallization/Filtration	1
Total Penalty Points		13

Eco-Scale	100-13	87

Table S 5 Alkylation with 2-chloroethanol

Parameter	Assessment	Penalty Points
1. Yield	(100-63)/2	18.5
2. Price		0
Phloretic Acid	\$ 1.66/10 mmol	
NaOH	\$ 1.00/10 mmol	
Nal	\$ 0.45/10 mmol	
2-chloro ethanol	\$ 1.21/10mmol	
3. Safety	Dangerous for the	20
	environment, flammable,	
	extremely toxic (2-	
	chloroethanol)	
4. Set up	Controlled addition	1
5. Temp/Time	heat>1hr	3
6. Workup	Crystallization/Filtration	4
	Liquid-liquid extraction	
Total Penalty Points		46.5
Eco-Scale	100-46.5	53.5

Figure S 26 Second heating and cooling cycle of PEP

Figure S 27 Second heating and cooling cycle of PPP

Tensile Testing

Rate (mm/min)	Elastic Modulus (MPa)	Tensile Strength (MPa)	Ultimate Elongation (%)
20	3.77	5.40	428.95
50	2.39	2.93	249.80
80	4.76	4.25	273.57

Table S 6 Tensile properties of PiPP tested at different rates

Figure S 28 Stress/Strain curve of PiPP tested at different rates

Composting

The evolved biogas of each sample was calculated daily by the difference of each sample to the average CO_2 contribution from the blank and negative controls as described by Equation 3.

$$Sample_{CO_2} = R_{CO_2} - B_{CO_2}$$
 (Equation S3)

Where $Sample_{CO2}$ is the cumulative CO₂ production (mg) from the sample specimen on the n^{th} day of operation determined from each replicate reactor CO₂ evolution, R_{CO2} (mg). No negative control was used in respirometry experiments. Each replicate $Sample_{CO2}$ is calculated from the average of the CO₂ evolved from the triplicate control blanks, B_{CO2} (mg). The calculated evolved

 CO_2 for each sample was then used to calculate the daily absolute biodegradation (%), according to Equation 4.

Absolute Biodegradation (%) =
$$\frac{Sample_{CO_2}}{m \times c \times 44.01/12.01}$$
 (Equation S4)

Where the sample mass, m (mg) and the percent organic carbon of the sample, c (%), was used to determine the carbon contributions to CO₂ for each sample. The dimensionless value of 44.01/12.01 is used to account for the carbon mass in CO₂ generated from each reactor. Methane concentrations were monitored to ensure aerobic conditions were maintained throughout the experiment.

These datasets were normalized according to the standard normalization Equation 5.

$$y = a + \frac{(y - A)(b - a)}{(B - A)}$$
 (Equation S5)

Where *a* is the minimum value 0, *b* is the maximum value of 1, *A* is the dataset minimum value,0, and *B* is the dataset maximum value for the absolute biodegradation calculations.

Figure S 29 Cumulative CO₂ production of compost without sample (blank), cellulose positive control, and tested samples

Figure S 30 Absolute biodegradation of cellulose triplicates

Figure S 31 Absolute biodegradation of PEP triplicates

Figure S 32 Absolute biodegradation of PEHF

Figure S 33 Absolute biodegradation of PiPP