Supporting Information

Visible-light-induced intermolecular aminoselenation of alkenes

Gong-Qing Liu,* Chen-Fan Zhou, Yun-Qian Zhang, Wei Yi, Peng-Fei Wang, Ji Liu and Yong Ling*

School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China

E-mail: gqliu@ntu.edu.cn; Lyyy111@sina.com

Content

1. General information	S2
2. Light sources, glassware and setup for irradiations	S2
3. Mechanistic studies	S4
1) UV-Vis Experiments	S4
2) Light-dark cycle experiments.	S4
3) Trapping experiments	S5
4) HRMS experiments	S6
4. General procedure for the aminoselenation	S7
5. Characterization data	S7
6. ORTEP drawing	S26
7. References	S29
8. Copies of NMR spectra	S30

1. General information

Solvents and reagents

Reagents were used as received without further purification unless otherwise indicated. Solvents were dried and distilled prior to use. Petroleum ether used had a boiling point range of $60-90^{\circ}$ C. Diselenides were prepared from the corresponding iodides with elemental selenium according to Braga's report.¹

Chromatography

Chromatographic purification of products was performed as flash column chromatography on silica gel (200–300 meshes). Thin-layer chromatography (TLC) was carried out on silica plates (TLC Silica GF_{254}). Visualization of the compounds was accomplished by projecting UV-light onto the developed plates.

NMR spectra

NMR spectra were recorded on a Bruker Avance- III HD (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz) spectrometer. Chemical shifts are referenced to residual solvent signals (CDCl₃: 7.26 ppm and 77.16 ppm for ¹H NMR and ¹³C NMR respectively) and reported in parts per million (ppm) relative to tetramethylsilane (TMS). Spin–spin coupling constants (*J*) were given in Hz. Multiplicities of NMR signals are abbreviated as follows: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Mass spectra

High resolution mass spectrometry (HRMS) analyses were carried out on a Thermo Fisher Q Exactive Mass Spectrometer.

Melting points

Melting points were determined on glass slides using a WRX-4 digital display microscopic melting point apparatus and were presented uncorrected.

X-ray diffraction experiment

The crystals of **4w**, **4y** and **6d** were obtained by slowly evaporating a mixture of ethyl acetate and *n*-hexane solution at an ambient temperature. The data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero, equipped with an AtlasS2 CCD using Cu K_{α} radiation. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2102240, 2102238 and 2102239 for compounds **4w**, **4y** and **6d**, respectively.

2. Light sources, glassware and setup for irradiations

Light sources

All photoreactions were performed using a 24 W energy-saving household CFL bulb (cool daylight, 6500 K) by Opple. Please refer to the website (https://detail.tmall.com/item.htm?id=36296589905&spm=a1z09.2.0.0.289f2e8dLvLPIS&_u=nkj 7u3r52c7) for more detail. The emission spectra of lamp used in Table 1 were recorded and are

presented in Figure S1.

Figure S1 Emission spectrum of the lamp used. a) Emission spectra of CFL lamp used; b) Emission spectra of blue lamp used; c) Emission spectra of green lamp used. d) Emission spectra of LED strip used

Glassware

All reactions were performed in 25 mL vials made of Synthware. For detailed technical information, the reader is directed to the homepage of Synthware: http://www.xinweier.com/.

Setup for irradiations

All photoreactions were performed with the 24W energy-saving CFL-bulb introduced above. The reaction vessel was placed approximately 1 cm from the light source. A typical reaction setup is shown in Figure S2.

Figure S2 Setup for irradiations with a 24 W CFL

Irradiations with sunlight were performed by placing the reaction vessel outside (September, 2020, Nantong, China, 32 00'95"N) from morning to evening. The samples were kept in a fridge at -18 °C overnight. This procedure was repeated until full consumption of the starting substrate was achieved as judged by TLC. A typical reaction setup is shown in Figure S3.

Figure S3 Setup for irradiations with sunlight

3. Mechanistic studies

1) UV-Vis Experiments

UV-visible absorption spectra were collected on a UV1800PC (Jinghua, China). The samples were prepared 1.80×10^{-4} mol/L in CH₃CN. The spectra obtained were listed as follow (Figure S4). Figure S4a reveals that absorption maxima of diphenyl diselenide (**2a**) are located around 330 nm, with corresponding absorption band extending to visible light region, while styrene (**1a**) and saccharin (**3a**) has no absorb to UV-visible light. Figure S4b-e show that 1:1 molar ratio double-component samples and the combination of all reaction components do not lead to the appearance of new absorption maxima. These results ruled out the formation of possible photoactive intermediates/EDA complexes.

Figure S4 UV/vis spectra of all reaction components and a combination thereof

2) Light-dark cycle experiments.

The reaction was performed under nitrogen atmosphere using styrene (0.20 mmol), Ph_2Se_2 (0.20 mmol), saccharin (0.20 mmol) and 2.0 mL CH₃CN. The reaction was alternatingly irradiated with a 24 W compact fluorescent lamp and kept in the dark for 1 hour intervals. Aliquots were taken at the start and after each interval, the solvent was removed with a rotary evaporator and diluted with CDCl₃ and subjected to ¹H NMR measurements. The reaction yield was determined by ¹H NMR

spectroscopy using 1,3,5-trimethoxybenzene as internal standard. The changes in yield observed during the dark phases fall within the margin of error and are thus negligible (Figure S5).

Figure S5 Light-dark cycle experiments

3) Trapping experiments

To explore the reaction mechanism, a radical trapping experiment was conducted in this case. We conducted the aforementioned reaction with styrene **1a** (0.20 mmol), Ph₂Se₂ **2a** (0.20 mmol), saccharin **3a** (0.20 mmol) and 2 equivalent amount of TEMPO under the standard reaction conditions. The desired product **3a** was obtained in 58% yield. Very importantly, a trace amount of TEMPO adducts **9** was detected from reaction mixture by ESI-MS. The detection of HRMS for **9** $C_{15}H_{23}NOSe$ (M+H)⁺: calculated 314.1018, found 314.1032 suggests the formation of phenylseleno radical in the transformation. The HRMS spectrum of **9** was pasted here for information (Figure S6).

Figure S6 HRMS spectra of 9

4) HRMS experiments

A solution of styrene **1a** (0.20 mmol), Ph_2Se_2 **2a** (0.20 mmol), saccharin **3a** (0.20 mmol) and 2 mL of CH₃CN was placed in flame-dried Schlenk flask. The resulting mixture was irradiated with 24W CFL for 5 h. The reaction mixture was diluted with EtOAc and the crude material was examined by ESI-MS. The detection of HRMS for $C_{20}H_{18}Se_2$ (M+H)⁺: caclulated 418.9812, found 418.9812 suggests the formation of compound **10** as the key intermediate in this transformation (Figure S7).

Figure S7 HRMS spectra of 10

4. General procedure for the aminoselenation

Saccharin (0.20 mmol, 1 equiv.) and diselenide (0.20 mmol, 1 equiv.) were added to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the flask and backfilling with argon three times. Then, alkene (0.20 mmol, 1.00 equiv.) and 2 mL of degassed CH_3CN were added by syringe. The reaction mixture was irradiated with a 24W household compact fluorescent lamp from a distance of 1 cm for 20 h. After completion of the reaction, the solvent was removed with a rotary evaporator. The pure product was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

5. Characterization data

2-(1-Phenyl-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4a). Compound 4a was prepared according to the general procedure and isolated as a yellow solid (73 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 85-87 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.0 Hz, 1H), 7.76 – 7.65 (m, 3H), 7.50 – 7.45 (m, 4H), 7.29 – 7.22 (m, 3H), 7.17 – 7.14 (m, 3H), 5.30 (t, *J* = 8.1 Hz, 1H), 4.00 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.73 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 136.3, 135.6, 133.7, 133.2, 132.7, 128.1, 128.0, 127.7, 127.55, 127.52, 126.6, 126.0, 124.1, 119.7, 56.8, 28.0. The data are in accordance with the literature.²

2-(2-(Phenylselanyl)-1-(*p***-tolyl)ethyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide** (4b). Compound 4b was prepared according to the general procedure and isolated as a yellow solid (78 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 84-85 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.1 Hz, 1H), 7.79 – 7.62 (m, 3H), 7.48 – 7.46 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.17 – 7.15 (m, 3H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.29 (t, *J* = 8.1 Hz, 1H), 3.97 (dd, *J* = 12.8, 8.1 Hz, 1H), 3.74 (dd, *J* = 12.8, 8.1 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 137.6, 136.4, 133.6, 133.2, 132.6, 132.5, 128.2, 128.1, 128.0, 127.5, 126.5, 126.1, 124.1, 119.7, 56.5, 28.0, 20.2. The data are in accordance with the literature.²

2-(1-(4-Methoxyphenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide 1,1-dioxide** (4c). Compound 4c was prepared according to the general procedure and isolated as a white solid (77 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate = 7/1); mp = 92-93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.8 (d, *J* = 6.8 Hz, 1H), 7.77 – 7.64 (m, 3H), 7.49

-7.39 (m, 4H), 7.18 -7.14 (m, 3H), 6.78 (d, J = 8.8 Hz, 2H), 5.28 (t, J = 8.1 Hz, 1H), 3.95 (dd, J = 12.8, 8.1 Hz, 1H), 3.74 (dd, J = 12.8, 8.1 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 157.6, 136.4, 133.7, 133.2, 132.6, 129.0, 128.1, 128.0, 127.5, 126.5, 126.1, 124.1, 119.7, 112.8, 56.3, 54.2, 28.1. The data are in accordance with the literature.²

2-(1-(4-(*tert***-Butyl)phenyl)-2-(phenylselanyl)ethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (4d)**. Compound **4d** was prepared according to the general procedure and isolated as a white solid (87 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1); mp = 58-60 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 7.1 Hz, 1H), 7.79 – 7.65 (m, 3H), 7.48 – 7.46 (m, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.18 – 7.15 (m, 3H), 5.29 (t, *J* = 8.0 Hz, 1H), 4.03 (dd, *J* = 12.9, 8.0 Hz, 1H), 3.71 (dd, *J* = 12.9, 8.0 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 150.6, 136.3, 133.6, 133.2, 132.75, 132.67, 128.1, 127.2, 126.5, 126.2, 124.5, 124.1, 119.7, 56.6, 33.6, 30.2, 28.1. The data are in accordance with the literature.²

2-(1-(4-Fluorophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4e). Compound 4e was prepared according to the general procedure and isolated as a yellow solid (72 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 7/1); mp = 86-88 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 7.1 Hz, 1H), 7.80 – 7.63 (m, 3H), 7.54 – 7.39 (m, 4H), 7.17 – 7.15 (m, 3H), 6.95 – 6.91 (m, 2H), 5.27 (t, *J* = 8.1 Hz, 1H), 3.94 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.72 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 161.7 (d, *J*_{C-F} = 248.1 Hz), 157.6, 136.3, 133.8, 133.3, 132.7, 131.4(d, *J*_{C-F} = 3.3 Hz), 129.6 (d, *J*_{C-F} = 8.3 Hz), 128.2, 127.7, 126.7, 126.0, 124.1, 119.8, 114.4 (d, *J*_{C-F} = 21.6 Hz), 56.1, 27.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -112.6. The data are in accordance with the literature.²

2-(1-(4-Chlorophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4f). Compound 4f was prepared according to the general procedure and isolated as a yellow solid (72 mg, 75% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 93-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.3 Hz, 1H), 7.81 – 7.64 (m, 3H), 7.50 – 7.36 (m, 4H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 6.6 Hz, 3H), 5.24 (dd, *J* = 14.6, 6.5 Hz, 1H), 3.93 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.72 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 136.3, 134.0, 133.8, 133.7, 133.3, 132.8, 129.1, 128.2, 127.71, 127.66, 126.7, 126.0, 124.2, 119.8, 56.1, 27.7. The data are in accordance with the literature.²

2-(1-(4-Bromophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4g). Compound 4g was prepared according to the general procedure and isolated as a yellow solid (81 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 11/1); mp = 93-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.1 Hz, 1H), 7.77 – 7.66 (m, 3H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.39 – 7.32 (m, 4H), 7.18 – 7.12 (m, 3H), 5.22 (t, *J* = 8.1 Hz, 1H), 3.92 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.71 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 136.2, 134.5, 133.8, 133.3, 132.8, 130.6, 129.4, 128.2, 127.6, 126.7, 125.9, 124.2, 121.9, 119.8, 56.1, 27.6. The data are in accordance with the literature.²

4-(1-(1,1-Dioxido-3-oxobenzo[*d*]**isothiazol-2**(*3H*)**-yl**)**-2-(phenylselanyl)ethyl)phenyl** acetate (**4h**). Compound **4h** was prepared according to the general procedure and isolated as a yellow solid (83 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 4/1); mp = $42-44 \ ^{\circ}C.^{1}H$ NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 7.1 Hz, 1H), 7.79 – 7.62 (m, 3H), 7.57 – 7.40 (m, 4H), 7.20 – 7.10 (m, 3H), 6.98 (d, *J* = 8.6 Hz, 2H), 5.26 (t, *J* = 8.0 Hz, 1H), 4.01 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.68 (dd, *J* = 12.9, 8.1 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.2, 157.7, 149.7, 136.2, 133.8, 133.3, 132.8, 128.8, 128.2, 127.8, 126.7, 126.0, 124.1, 120.6, 119.8, 56.2, 27.9, 20.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₁₉NNaO₅SSe 524.0041; Found 524.0029.

4-(1-(1,1-Dioxido-3-oxobenzo[*d*]**isothiazol-2**(*3H*)-**yl**)-**2-(phenylselanyl)ethyl)phenyl benzoate** (**4i**). Compound **4i** was prepared according to the general procedure and isolated as a yellow solid (100 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1); mp = 60-62 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.12 – 8.08 (m, 2H), 7.90 (d, *J* = 7.0 Hz, 1H), 7.82 – 7.67 (m, 3H), 7.58 – 7.53 (m, 3H), 7.50 – 7.47 (m, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.19 – 7.16 (m, 3H), 7.13 (d, *J* = 8.6 Hz, 2H), 5.31 (t, *J* = 8.1 Hz, 1H), 4.03 (dd, *J* = 13.0, 8.0 Hz, 1H), 3.73 (dd, *J* = 13.0, 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 157.7, 150.0, 136.3, 133.8, 133.3, 133.2, 132.8, 132.7, 129.2, 128.9, 128.4, 128.2, 127.8, 127.6, 126.7, 126.1, 124.2, 120.8, 119.8, 56.3, 28.0. HRMS (ESI): m/z [M+H]⁺ Calcd for C₂₈H₂₂NO₅SSe 564.0378; Found 564.0375.

2-(1-([1,1'-Biphenyl]-4-yl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4j). Compound 4j was prepared according to the general procedure and isolated as a yellow solid

(93 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 7/1); mp = 48-50 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.1 Hz, 1H), 7.74 (d, *J* = 7.1 Hz, 1H), 7.70 – 7.60 (m, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.49 – 7.43 (m, 6H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.16 – 7.11 (m, 3H), 5.33 (t, *J* = 8.1 Hz, 1H), 4.01 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.77 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 140.5, 139.4, 136.3, 134.6, 133.7, 133.2, 132.7, 128.1, 127.98, 127.92, 127.7, 126.6, 126.4, 126.2, 126.05, 126.02, 124.1, 119.7, 56.5, 28.0. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₇H₂₁NNaO₃SSe 542.0300; Found 542.0294.

2-(1-(4-(Chloromethyl)phenyl)-2-(phenylselanyl)ethyl) benzo[d] isothiazol-3(2H)-one and a standard s

1,1-dioxide (**4k**). Compound **4k** was prepared according to the general procedure and isolated as an oil (72 mg, 73% yield) after flash chromatography (petroleum ether/ethyl acetate = 6/1). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.1 Hz, 1H), 7.79 – 7.65 (m, 3H), 7.49 – 7.44 (m, 4H), 7.27 (d, *J* = 8.2 Hz, 2H), 7.17 – 7.15 (m, 3H), 5.29 (t, *J* = 8.1 Hz, 1H), 4.46 (s, 2H), 3.97 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.72 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 136.9, 136.3, 135.8, 133.8, 133.3, 132.8, 128.2, 128.0, 127.8, 127.7, 126.7, 126.0, 124.1, 119.8, 56.4, 44.6, 27.8. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₈CINNaO₃SSe 513.9753; Found 513.9745.

2-(1-(4-Nitrophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4l). Compound 4l was prepared according to the general procedure and isolated as an oil (71 mg, 73% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, *J* = 8.8 Hz, 2H), 7.90 (d, *J* = 7.0 Hz, 1H), 7.84 – 7.70 (m, 3H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.48 – 7.37 (m, 2H), 7.32 – 7.09 (m, 3H), 5.32 (t, *J* = 8.1 Hz, 1H), 3.94 (dd, *J* = 13.0, 7.5 Hz, 1H), 3.76 (dd, *J* = 13.0, 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 146.8, 142.5, 136.1, 134.0, 133.5, 132.9, 128.7, 128.3, 127.2, 127.0, 125.7, 124.3, 122.7, 119.9, 55.8, 27.2. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₆N₂NaO₅SSe 510.9837; Found 510.9846.

2-(2-(Phenyl selanyl)-1-(4-(trifluoromethyl)phenyl)ethyl) benzo[d] isothiazol-3(2H)-one (d) and (d)

1,1-dioxide (**4m**). Compound **4m** was prepared according to the general procedure and isolated as an oil (93 mg, 91% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.90 – 7.81 (m, 1H), 7.80 – 7.62 (m, 3H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.44 – 7.34 (m, 2H), 7.23 – 7.06 (m, 3H), 5.29 (t, *J* = 8.1 Hz, 1H), 3.94 (dd, *J* = 13.0, 7.9 Hz, 1H), 3.73 (dd, *J* = 13.0, 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 139.5, 136.1, 133.9, 133.3, 132.8, 129.6 (q, *J*_{C-F} = 32.5 Hz), 128.2, 128.0, 127.5, 126.8, 125.8, 124.4 (q, *J*_{C-F} = 3.8 Hz), 124.2, 120.1 (q, *J*_{C-F} = 271.0 Hz), 119.8, 56.23, 27.45. ¹⁹F NMR (376

MHz, CDCl₃): δ -62.6. HRMS (ESI): m/z [M+H]⁺ Calcd for C₂₂H₁₇F₃NO₃SSe 512.0041; Found 512.0066.

4-(1-(1,1-Dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-2-(phenylselanyl)ethyl)benzaldehyde

(**4n**). Compound **4n** was prepared according to the general procedure and isolated as an oil (67 mg, 71% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.80 – 7.68 (m, 5H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.51 – 7.38 (m, 2H), 7.27 – 7.11 (m, 3H), 5.32 (t, *J* = 8.1 Hz, 1H), 3.97 (dd, *J* = 13.0, 7.9 Hz, 1H), 3.74 (dd, *J* = 13.0, 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 158.7, 143.1, 137.2, 136.3, 135.0, 134.5, 133.9, 129.9, 129.34, 129.30, 128.5, 127.9, 126.9, 125.3, 120.9, 57.3, 28.5. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₇NNaO₄SSe 493.9936; Found 493.9950.

4-(1-(1,1-Dioxido-3-oxobenzo[*d*]isothiazol-2(3*H*)-yl)-2-(phenylselanyl)ethyl)benzoic acid (4o). Compound **4o** was prepared according to the general procedure and isolated as an oil (67 mg, 69% yield) after flash chromatography (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.11 (brs, 1H), 8.29 (d, *J* = 7.7 Hz, 1H), 8.16 – 7.91 (m, 5H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.43 – 7.20 (m, 3H), 5.46 (d, *J* = 8.9 Hz, 1H), 4.07 (dd, *J* = 12.9, 9.0 Hz, 1H), 3.92 (dd, *J* = 12.9, 7.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.3, 158.9, 142.1, 136.8, 136.5, 135.8, 132.8, 131.2, 129.9, 129.7, 129.3, 128.7, 127.7, 126.3, 125.7, 121.9, 56.4, 28.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₇NNaO₅SSe 509.9885; Found 509.9893.

2-(1-(2-Chlorophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4p). Compound 4p was prepared according to the general procedure and isolated as an oil (78 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 8.10 – 7.91 (m, 1H), 7.81 – 7.72 (m, 3H), 7.70 – 7.63 (m, 1H), 7.60 – 7.43 (m, 2H), 7.37 – 7.25 (m, 1H), 7.26 – 7.03 (m, 5H), 5.91 (t, *J* = 8.0 Hz, 1H), 3.91 (dd, *J* = 13.0, 8.4 Hz, 1H), 3.66 (dd, *J* = 13.0, 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 136.5, 133.8, 133.3, 133.2, 133.0, 132.7, 129.0, 128.8, 128.2, 128.1, 127.7, 126.7, 126.1, 125.8, 124.3, 119.6, 53.0, 28.0. The data are in accordance with the literature.²

2-(1-(3-Bromophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4q). Compound 4q was prepared according to the general procedure and isolated as a white solid (79

mg, 76% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 128-130 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.1 Hz, 1H), 7.79 – 7.68 (m, 3H), 7.63 – 7.62 (m, 1H), 7.47 – 7.45 (m, 2H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.18 – 7.16 (m, 3H) 7.12 (t, *J* = 7.9 Hz, 1H), 5.22 (t, *J* = 8.1 Hz, 1H), 3.95 (dd, *J* = 13.0, 8.1 Hz, 1H), 3.68 (dd, *J* = 13.0, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 137.9, 136.2, 133.8, 133.3, 132.9, 130.9, 130.6, 129.0, 128.2, 127.6, 126.8, 126.2, 125.9, 124.2, 121.6, 119.8, 56.2, 27.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₆BrNNaO₃SSe 543.9092; Found 543.9083.

2-(1-(2,4-Dimethylphenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (**4r**). Compound **4r** was prepared according to the general procedure and isolated as an oil (76 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.83 (m, 1H), 7.73 – 7.64 (m, 3H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.22 – 7.09 (m, 3H), 6.97 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 5.64 (t, *J* = 8.0 Hz, 1H), 3.91 (dd, *J* = 12.8, 7.8 Hz, 1H), 3.68 (dd, *J* = 12.8, 8.1 Hz, 1H), 2.21 (s, 3H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 138.7, 137.8, 137.0, 134.8, 134.2, 133.7, 131.6, 131.0, 129.3, 129.2, 127.9, 127.6, 127.1, 126.9, 125.2, 120.6, 53.9, 29.9, 21.2, 19.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₃SSe 494.0300; Found 494.0310.

2-(1-(Perfluorophenyl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4s). Compound 4s was prepared according to the general procedure and isolated as an oil (66 mg, 62% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.2 Hz, 1H), 7.84 – 7.69 (m, 3H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.26 – 7.17 (m, 3H), 5.79 (dd, *J* = 9.9, 7.0 Hz, 1H), 3.86 (dd, *J* = 12.9, 7.8 Hz, 1H), 3.83 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 146.2 (m), 143.7 (m), 141.9 (m), 136.4, 134.1, 133.5, 133.0, 128.3, 127.2, 126.4, 125.4, 124.5, 119.7, 108.6 (m), 46.8, 26.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -137.7, -152.2, -161.4. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₂F₅NNaO₃SSe 555.9515; Found 555.9529.

2-(1-(Naphthalen-2-yl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4t). Compound 4t was prepared according to the general procedure and isolated as a yellow solid (82 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 9/1); mp = 91-93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.86 (d, *J* = 7.2 Hz, 1H), 7.76 – 7.58 (m, 7H), 7.47 (d, *J* = 7.1 Hz, 2H), 7.38 – 7.35 (m, 2H), 7.17 – 7.15 (m, 3H), 5.48 (t, *J* = 8.1 Hz, 1H), 4.07 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.85 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 136.3, 133.7, 133.2, 132.9, 132.7, 132.2, 131.9, 128.1, 128.0, 127.3, 127.2, 127.0, 126.6, 126.5, 126.0,

125.5, 125.3, 124.9, 124.1, 119.7, 56.9, 28.0. HRMS (ESI): $m/z [M+Na]^+$ Calcd for $C_{25}H_{19}NNaO_3SSe 516.0143$; Found 516.0147.

anti-2-(2-(Phenylselanyl)-2,3-dihydro-1H-inden-1-yl)benzo[d]isothiazol-3(2H)-one

1,1-dioxide (**4u**). Compound **4u** was prepared according to the general procedure and isolated as a yellow solid (65 mg, 72% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 119-121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.4 Hz, 1H), 7.84 – 7.70 (m, 3H), 7.62 – 7.59 (m, 2H), 7.24 – 7.14 (m, 6H), 7.13 – 7.09 (m, 1H), 5.65 (d, *J* = 7.0 Hz, 1H), 4.57 (dd, *J* = 15.1, 7.3 Hz, 1H), 3.62 (dd, *J* = 16.4, 8.1 Hz, 1H), 3.01 (dd, *J* = 16.4, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 141.0, 136.6, 136.0, 135.0, 133.8, 133.2, 128.1, 128.0, 127.2, 126.20, 126.17, 126.1, 124.2, 123.6, 123.4, 119.8, 62.5, 41.4, 37.8. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₇NNaO₃SSe 477.9987; Found 477.9987.

anti-2-(2-(Phenylselanyl)-1,2,3,4-tetrahydronaphthalen-1-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4v). Compound 4v was prepared according to the general procedure and isolated as a yellow solid (69 mg, 74% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 169-171 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.1 Hz, 1H), 7.85 – 7.70 (m, 3H), 7.60 – 7.57 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.19 – 7.16 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 1H), 7.07 – 7.02 (m, 2H), 5.48 (d, *J* = 9.4 Hz, 1H), 4.32 – 4.26 (m, 1H), 3.06 – 2.92 (m, 1H), 2.82 (dt, *J* = 16.9, 4.6 Hz, 1H), 2.48 – 2.41 (m, 1H), 1.95 – 1.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 136.6, 136.2, 135.0, 133.8, 133.2, 130.9, 127.93, 127.90, 127.1, 126.9, 126.1, 125.9, 125.4, 124.3, 119.8, 56.6, 40.7, 29.4, 28.5. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₁₉NNaO₃SSe 492.0143; Found 492.0144.

2-(1-Cyclopropyl-1-phenyl-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (4w). Compound 4w was prepared according to the general procedure and isolated as a yellow solid (64 mg, 66% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). mp = 191-192 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 7.7 Hz, 1H), 7.74 (td, *J* = 7.5, 1.2 Hz, 1H), 7.59 (td, *J* = 7.5, 1.1 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.48 – 7.41 (m, 2H), 7.39 – 7.27 (m, 2H), 7.28 – 7.11 (m, 3H), 7.01 – 6.86 (m, 3H), 4.60 (d, *J* = 12.0 Hz, 1H), 3.87 (d, *J* = 12.0 Hz, 1H), 2.48 – 2.40 (m, 1H), 0.86 – 0.74 (m, 1H), 0.47 – 0.36 (m, 1H), 0.36 – 0.25 (m, 1H), -0.13 – -0.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 136.8, 136.7, 133.1, 132.7, 132.1, 127.8, 127.1, 126.5, 126.2, 125.9, 125.8, 124.5, 123.4, 118.7, 71.2, 36.7, 14.3, 4.6. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₄H₂₁NNaO₃SSe 506.0300; Found 506.0323.

2-(2-Phenyl-1-(phenylselanyl)propan-2-yl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (4x). Compound 4x was prepared according to the general procedure and isolated as an oil (78 mg, 86% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.7 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.69 – 7.60 (m, 2H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.17 (m, 1H), 7.16 – 6.93 (m, 3H), 4.54 (d, *J* = 12.1 Hz, 1H), 3.87 (d, *J* = 12.1 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 143.8, 137.8, 134.7, 134.0, 133.9, 129.5, 128.8, 128.6, 127.6, 127.3, 126.3, 125.5, 124.9, 120.3, 67.9, 37.6, 25.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₉NNaO₃SSe 480.0143; Found 480.0149.

anti-2-(1-Phenyl-2-(phenylselanyl)propyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4y). Compound 4y was prepared according to the general procedure and isolated as a yellow solid (67 mg, 74% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); mp = 87-88 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.85 (m, 1H), 7.76 – 7.63 (m, 3H), 7.57 – 7.55 (m, 2H), 7.35 – 7.32 (m, 2H), 7.23– 7.20 (m, 4H), 7.17 – 7.13 (m, 2H), 4.96 (d, *J* = 11.7 Hz, 1H), 4.57 (dq, *J* = 13.7, 6.8 Hz, 1H), 1.47 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 136.1, 135.4, 135.3, 133.7, 133.2, 128.6, 127.9, 127.7, 127.27, 127.25, 126.4, 126.0, 124.1, 119.8, 62.3, 36.6, 19.5. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₉NNaO₃SSe 480.0143; Found 480.0138.

2-(2-(Phenylselanyl)-1-(thiophen-2-yl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (4z). Compound 4z was prepared according to the general procedure and isolated as a white solid (75 mg, 84% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1); mp = 85-87 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.2 Hz, 1H), 7.78 – 7.63 (m, 3H), 7.48 (d, *J* = 7.5 Hz, 2H), 7.21 – 7.13 (m, 5H), 6.88 – 6.86 (m, 1H), 5.53 (t, *J* = 8.0 Hz, 1H), 3.99 (dd, *J* = 13.0, 8.0 Hz, 1H), 3.72 (dd, *J* = 13.0, 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.4, 138.1, 136.4, 133.8, 133.2, 132.8, 128.2, 127.7, 127.0, 126.7, 125.9, 125.6, 125.3, 124.2, 119.8, 51.7, 29.4. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₉H₁₅NNaO₃S₂Se 471.9551; Found 471.9544.

2-(1-(4-Methylthiazol-5-yl)-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4aa). Compound 4aa was prepared according to the general procedure and isolated as a yellow solid (74 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 1/1); mp =

109-111 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H), 7.90 (d, J = 6.9 Hz, 1H), 7.79 – 7.68 (m, 3H), 7.45–7.43 (m, 2H), 7.18–7.15 (m, 3H), 5.54 (t, J = 7.9 Hz, 1H), 3.86 (dd, J = 13.0, 7.9 Hz, 1H), 3.62 (dd, J = 13.0, 7.9 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 151.8, 151.5, 136.2, 134.0, 133.4, 132.9, 128.3, 127.1, 126.9, 126.4, 125.8, 124.2, 119.9, 49.2, 30.5, 14.4. HRMS (ESI): m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂O₃S₂Se 464.9840; Found 464.9829.

$$0$$
 SePh
 $-C_2H_5$
 0 $-C_2H_5$

2-(4-(Phenylselanyl)hexan-3-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4ab). Compound 4ab was prepared according to the general procedure and isolated as an oil (51 mg, 61% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 8.04 – 7.97 (m, 1H), 7.95 – 7.76 (m, 3H), 7.64 – 7.53 (m, 2H), 7.33 – 7.18 (m, 3H), 4.45 – 4.08 (m, 1H), 3.90 (td, *J* = 8.5, 3.4 Hz, 1H), 2.37 – 2.25 (m, 1H), 2.08 – 1.92 (m, 2H), 1.76 – 1.58 (m, 1H), 1.10 (t, *J* = 7.3 Hz, 3H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 137.3, 134.9, 134.7, 134.2, 129.4, 129.0, 127.6, 127.0, 125.2, 120.7, 60.6, 51.3, 25.0, 22.4, 11.6, 11.6. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₉H₂₁NNaO₃SSe 446.0300; Found 446.0303.

O OSePh

anti-2-(2-(Phenylselanyl)cyclohexyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4ac). Compound 4ac was prepared according to the general procedure and isolated as an oil (45 mg, 53% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.5 Hz, 1H), 7.84 – 7.67 (m, 3H), 7.55 – 7.37 (m, 2H), 7.20 – 7.02 (m, 3H), 4.53 – 3.85 (m, 2H), 2.35 – 2.04 (m, 3H), 1.83 – 1.78 (m, 1H), 1.68 – 1.61 (m, 1H), 1.48 – 1.22 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 136.2, 135.0, 133.5, 133.1, 127.6, 126.7, 126.6, 126.2, 124.1, 119.6, 57.6, 33.8, 30.8, 25.5, 24.7. The data are in accordance with the literature.²

anti-2-(2-(Phenylselanyl)cyclooctyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4ad). Compound 4ad was prepared according to the general procedure and isolated as an oil (51 mg, 57% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1); ¹H NMR (400 MHz, CDCl₃): δ 7.93 – 7.87 (m, 2H), 7.84 – 7.75 (m, 2H), 7.51 (d, *J* = 7.1 Hz, 2H), 7.12 – 7.10 (m, 3H), 4.60 – 4.50 (m, 1H), 4.45 (d, *J* = 8.1 Hz, 1H), 2.45 – 2.39 (m, 1H), 2.34 – 2.22 (m, 1H), 2.20 – 2.08 (m, 1H), 1.98 – 1.61 (m, 7H), 1.54 (d, *J* = 11.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 136.2, 134.0, 133.5, 133.0, 128.3, 127.7, 126.4, 124.0, 119.7, 58.2, 45.6, 32.0, 28.5, 26.4, 24.9, 24.3, 24.2. The data are in accordance with the literature.²

2-(1-(Phenylselanyl)decan-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (4ae). Compound **4ae** was prepared according to the general procedure and isolated as an oil (39 mg, 41% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.1 Hz, 1H), 7.96 – 7.71 (m, 3H), 7.70 – 7.61 (m, 2H), 7.40 – 7.17 (m, 3H), 4.12 –

3.89 (m, 2H), 3.81 – 3.64 (m, 1H), 1.87 – 1.72 (m, 1H), 1.70 – 1.64 (m, 1H), 1.59 – 1.40 (m, 2H), 1.35 – 1.21 (m, 10H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 137.6, 134.9, 134.8, 134.3, 129.2, 127.8, 127.7, 127.2, 125.3, 121.0, 44.5, 42.3, 32.1, 31.8, 29.4, 29.3, 29.2, 27.5, 22.6, 14.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₂₉NNaO₃SSe 502.0926; Found 502.0943.

2-(1-((8*R***,9***S***,13***S***,14***S***)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6***H***-cyclopenta [***a***]phenanthren-3-yl)-2-(phenylselanyl)ethyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (4af). Compound 4af was prepared according to the general procedure and isolated as an oil (100 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 2/1). [\alpha]_{25}^{\text{D}} =26.1, c=0.37 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): \delta 7.90 (d,** *J* **= 7.1 Hz, 1H), 7.80 – 7.69 (m, 3H), 7.50 – 7.45 (m, 2H), 7.28 (d,** *J* **= 8.4 Hz, 1H), 7.19 – 7.16 (m, 5H), 5.27 (td,** *J* **= 8.1, 2.6 Hz, 1H), 4.02–3.99 (m, 1H), 3.75–3.69 (m, 1H), 2.86 – 2.76 (m, 2H), 2.42 (dd,** *J* **= 18.8, 8.6 Hz, 1H), 2.32 (d,** *J* **= 12.6 Hz, 1H), 2.19 (dd,** *J* **= 13.6, 7.1 Hz, 1H), 2.05 (dd,** *J* **= 18.7, 8.9 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.61 – 1.30 (m, 7H), 0.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 220.1, 157.7, 139.3, 136.4, 135.7, 133.7, 133.2, 132.70, 132.69, 128.1, 126.5, 126.2, 124.85, 124.82, 124.52, 124.47, 124.1, 119.7, 56.6, 49.5, 46.9, 43.3, 36.9, 34.8, 30.5, 28.4, 28.1, 25.4, 24.5, 20.6, 12.8. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₃₃H₃₃NNaO₄SSe 642.1188; Found 642.1178.**

2 - (1 - (2 - 0xo - 2H - chromen - 7 - yl) - 2 - (phenyl selanyl) ethyl) benzo[d] isothiazol - 3(2H) - one (phenyl selanyl) ethyl (phenyl selanyl selanyl) ethyl (phenyl selanyl ethyl (phenyl selanyl selan

1,1-dioxide (**4ag**). Compound **4ag** was prepared according to the general procedure and isolated as an oil (79 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.1 Hz, 1H), 7.83 – 7.70 (m, 3H), 7.58 (d, *J* = 9.5 Hz, 1H), 7.46 – 7.44 (m, 2H), 7.38 – 7.35 (m, 2H), 7.20 – 7.15 (m, 3H), 6.33 (d, *J* = 9.5 Hz, 1H), 5.32 (t, *J* = 8.0 Hz, 1H), 3.94 (dd, *J* = 13.0, 8.1 Hz, 1H), 3.76 (dd, *J* = 13.0, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 157.7, 152.8, 141.8, 139.9, 136.2, 134.0, 133.5, 132.9, 128.3, 127.4, 126.93, 126.86, 125.8, 124.3, 123.7, 119.9, 117.9, 116.18, 116.09, 56.2, 27.5. HRMS (ESI): m/z [M+H]⁺ Calcd for C₂₄H₁₈NO₅SSe 512.0065; Found 512.0076.

Compound **4ah** was prepared according to the general procedure and isolated as an oil (88 mg, 70% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). $[\alpha]_{25}^{D} = -13.2$, c=0.25 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (dd, J = 15.4, 7.6 Hz, 3H), 7.81 – 7.69 (m, 3H), 7.55 (d, J = 7.4 Hz, 2H), 7.47 – 7.45 (m, 2H), 7.18– 7.16 (m, 2H), 5.32 (td, J = 8.0, 3.4 Hz, 1H), 4.83 (td, J = 10.9, 4.3 Hz, 1H), 4.02 – 3.92 (m, 1H), 3.75 (ddd, J = 12.6, 8.2, 4.1 Hz, 1H), 2.01 (d, J = 11.9 Hz, 1H), 1.89 – 1.82 (m, 1H), 1.64 (d, J = 11.5 Hz, 2H), 1.54– 1.42 (m, 3H), 1.10 – 0.96 (m, 2H), 0.83 (t, J = 7.1 Hz, 6H), 0.69 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 157.7, 140.2, 140.1, 136.3, 133.8, 133.3, 132.8, 130.1, 128.8, 128.2, 127.6, 126.8, 126.0, 124.2, 119.8, 73.9, 56.3, 46.2, 39.9, 33.3, 30.4, 25.4, 22.5, 21.0, 19.8, 15.4. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₃₂H₃₅NNaO₅SSe 648.1293; Found 648.1274.

2-(1-(3-(4-Methoxyphenyl)-4-oxo-*4H***-chromen-7-yl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazo **I-3(***2H***)-one 1,1-dioxide (4ai)**. Compound **4ai** was prepared according to the general procedure and isolated as an oil (99 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.3 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.84 – 7.68 (m, 4H), 7.62 – 7.60 (m, 1H), 7.49 – 7.39 (m, 5H), 7.27 – 7.14 (m, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.37 (t, *J* = 8.0 Hz, 1H), 3.98 (dd, *J* = 13.1, 7.8 Hz, 1H), 3.83 – 3.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 175.0, 158.6, 157.7, 154.9, 151.6, 141.6, 136.2, 134.0, 133.4, 132.9, 129.0, 128.3, 127.4, 126.9, 125.8, 125.8, 124.4, 124.3, 124.1, 123.4, 122.8, 119.9, 117.2, 113.0, 56.1, 54.3, 27.4. HRMS (ESI): m/z [M+H]⁺ Calcd for C₃₁H₂₄NO₆SSe 618.0484; Found 618.0494.

((3aR, 5R, 5aS, 8aS, 8bR) - 2, 2, 7, 7 - Tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4, 5-b:4', 5'-d]pyr an -5-yl) methyl

4-(1-(1,1-dioxido-3-oxobenzo[*d*]isothiazol-2(3*H*)-yl)-2-(phenylselanyl)ethyl)benzoate (4aj). Compound 4aj was prepared according to the general procedure and isolated as an oil (95 mg, 65% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). $[\alpha]_{25}^{D}$ =-11.8, c=0.14 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.89 (d, *J* = 7.0 Hz, 1H), 7.81 – 7.68 (m, 3H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.44 – 7.47 (m, 2H), 7.20 – 7.14 (m, 3H), 5.47 (d, *J* = 5.0 Hz, 1H), 5.31 (t, *J* = 8.1 Hz, 1H), 4.57 (dd, *J* = 7.9, 2.5 Hz, 1H), 4.42 (ddd, *J* = 11.4, 5.1, 1.0 Hz, 1H), 4.34 (ddd, *J* = 11.5, 7.4, 2.2 Hz, 1H), 4.25 (ddd, *J* = 9.7, 6.4, 2.2 Hz, 2H), 4.09 (dd, *J* = 9.2, 3.7 Hz, 1H), 3.97 (dd, *J* = 13.0, 8.1 Hz, 1H), 3.73 (dd, *J* = 13.0, 8.1 Hz, 1H), 1.43 (s, 3H), 1.39 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.8, 157.7, 140.5, 136.3, 133.9, 133.3, 132.8, 129.0, 128.2, 127.6, 126.8, 125.9, 124.2, 119.8, 108.7, 107.8, 95.3, 70.1, 69.7, 69.5, 65.0, 62.9, 59.4, 56.3, 27.6, 25.0, 24.9, 24.0, 23.5. HRMS (ESI): m/z [M+H]⁺ Calcd for C₃₄H₃₆NO₁₀SSe 730.1220; Found 730.1212.

4-(1-(1,1-Dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-2-(phenylselanyl)ethyl)phenyl

5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (**4ak**). Compound **4ak** was prepared according to the general procedure and isolated as a white solid (115 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1); mp = 110-112 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 6.9 Hz, 1H), 7.80 – 7.65 (m, 3H), 7.52 – 7.44 (m, 4H), 7.19 – 7.14 (m, 3H), 6.97 – 6.88 (m, 3H), 6.60 – 6.51 (m, 2H), 5.27 (t, *J* = 8.0 Hz, 1H), 3.99 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.88 (s, 2H), 3.70 (dd, *J* = 12.9, 8.1 Hz, 1H), 2.22 (s, 3H), 2.09 (s, 3H), 1.77 (s, 2H), 1.27 (s, 6H), 1.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 175.0, 157.6, 155.8, 150.1, 136.3, 135.4, 133.7, 133.2, 133.0, 132.8, 129.3, 128.8, 128.2, 127.8, 126.7, 126.0, 124.1, 122.6, 120.5, 119.7, 110.9, 66.7, 56.2, 41.4, 36.1, 27.9, 24.2, 24.1, 24.0, 14.8. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₃₆H₃₇NNaO₆SSe 714.1399; Found 714.1389.

4-(1-(1,1-Dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-2-(phenylselanyl)ethyl)phenyl

(2*S*)-2-(6-methoxynaphthalen-2-yl)propanoate (4al). Compound 4al was prepared according to the general procedure and isolated as an oil (97 mg, 72% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). $[\alpha]_{25}^{\text{p}}$ =16.2, c=0.07 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 7.1 Hz, 1H), 7.86 – 7.70 (m, 6H), 7.56 – 7.45 (m, 5H), 7.25 – 7.21 (m, 3H), 7.17 – 7.13 (m, 2H), 6.97 (d, *J* = 8.6 Hz, 2H), 5.32 (t, *J* = 8.0 Hz, 1H), 4.11 (dd, *J* = 14.2, 7.1 Hz, 1H), 4.04 (dd, *J* = 10.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.75 (dd, *J* = 13.0, 7.7 Hz, 1H), 1.67 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 157.6, 156.7, 150.0, 136.3, 134.0, 133.7, 133.2, 133.1, 133.0, 132.8, 128.8, 128.3, 128.2, 127.9, 127.8, 126.7, 126.3, 126.0, 125.1, 125.0, 124.1, 120.4, 119.7, 118.1, 104.6, 56.2, 54.3, 44.5, 27.9, 17.4. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₃₅H₂₉NNaO₆SSe 694.0773; Found 694.0777.

(5*R*,5*aR*,8*aR*,9*R*)-8-Oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3',4':6,7]na phtho[2,3-*d*][1,3]dioxol-5-yl

4-(1-(1,1-dioxido-3-oxobenzo[*d*]**isothiazol-2(3***H***)-yl**)-**2-(phenylselanyl)ethyl)benzoate** (4**am**). Compound **4am** was prepared according to the general procedure and isolated as a yellow solid (101 mg, 57% yield) after flash chromatography (petroleum ether/ethyl acetate =3/1); mp = 84-86 \mathbb{C} . [α]^D₂₅ = - 30.9, c=0.069 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* =

8.4 Hz, 2H), 7.91 (d, J = 7.3 Hz, 1H), 7.84 – 7.70 (m, 4H), 7.60 (d, J = 8.3 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.20 – 7.18 (m, 3H), 6.76 – 6.75 (m, 1H), 6.50 (s, 1H), 6.35 (s, 2H), 6.03 (d, J = 8.7 Hz, 1H), 5.91 (d, J = 6.9 Hz, 2H), 5.33 (td, J = 8.1, 3.0 Hz, 1H), 4.57 (d, J = 4.0 Hz, 1H), 4.34 (dd, J = 9.2, 6.6 Hz, 1H), 4.23 (t, J = 9.7 Hz, 1H), 4.05 (q, J = 7.1 Hz, 1H), 4.00 – 3.91 (m, 1H), 3.82 – 3.75 (m, 1H), 3.73 (d, J = 1.2 Hz, 3H), 3.70 (d, J = 1.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 165.2, 157.7, 151.6, 147.2, 146.7, 141.4, 141.3, 136.3, 136.1, 134.0, 133.8, 133.4, 132.8, 131.4, 128.95, 128.93, 128.3, 128.0, 127.9, 127.2, 126.9, 125.8, 124.3, 119.9, 108.8, 107.0, 106.0, 100.6, 73.3, 70.5, 59.7, 55.1, 44.6, 42.7, 37.8, 27.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₄₄H₃₇NNaO₁₂SSe 906.1094; Found 906.1091.

2-(1-((*R***)-2,8-Dimethyl-2-((4***R***,8***R***)-4,8,12-trimethyltridecyl)chroman-6-yl)-2-(phenylselanyl)e thyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (4an). Compound 4an was prepared according to the general procedure and isolated as an oil (95 mg, 63% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). [\alpha]_{25}^{D} = 16.8, c=0.027 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): \delta 7.97 (d,** *J* **= 6.7 Hz, 1H), 7.88 – 7.74 (m, 3H), 7.55 (d,** *J* **= 6.4 Hz, 2H), 7.25 – 7.21 (m, 3H), 7.14 (s, 1H), 7.08 – 7.09 (m, 1H), 5.29 (dd,** *J* **= 10.5, 5.7 Hz, 1H), 4.06 (dd,** *J* **= 12.9, 8.8 Hz, 1H), 3.76 (dd,** *J* **= 12.9, 7.4 Hz, 1H), 2.75 – 2.63 (m, 2H), 1.82 – 1.67 (m, 2H), 1.60 – 1.02 (m, 27H), 0.90 – 0.80 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): \delta 157.7, 151.5, 136.4, 133.5, 133.1, 132.7, 128.4, 128.0, 127.5, 126.4, 126.3, 126.2, 125.7, 125.2, 124.1, 119.7, 119.2, 75.3, 56.9, 39.4, 38.3, 36.41, 36.40, 36.3, 31.76, 31.69, 29.9, 28.6, 27.0, 23.8, 23.4, 23.3, 21.7, 21.6, 21.3, 20.0, 18.7, 18.6. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₄₂H₅₇NNaO₄SSe 774.3066; Found 774.3051.**

2-(2-((4-(*tert***-Butyl)phenyl)selanyl)-1-phenylethyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (5a**). Compound **5a** was prepared according to the general procedure and isolated as a yellow solid (73 mg, 73% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1); mp = 42-44 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.0 Hz, 1H), 7.82 – 7.67 (m, 3H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.30 – 7.22 (m, 3H), 7.19 (d, *J* = 7.4 Hz, 2H), 5.34 (t, *J* = 8.1 Hz, 1H), 3.99 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.71 (dd, *J* = 12.9, 8.1 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 149.8, 136.4, 135.7, 133.7, 133.2, 132.8, 127.7, 127.6, 127.5, 126.1, 125.2, 124.5, 124.1, 119.7, 57.1, 33.5, 30.2, 28.7, 28.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₅H₂₅NNaO₃SSe 522.0613; Found 522.0610.

2-(2-((4-Methoxyphenyl)selanyl)-1-phenylethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (5b).

Compound **5b** was prepared according to the general procedure and isolated as a white solid (57 mg, 60% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1); mp = 198-199 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 7.0 Hz, 1H), 7.88 – 7.73 (m, 3H), 7.53 (dd, *J* = 13.1, 7.6 Hz, 4H), 7.37 – 7.29 (m, 3H), 6.78 (d, *J* = 8.8 Hz, 2H), 5.40 – 5.30 (m, 1H), 4.03 (dd, *J* = 12.9, 8.1 Hz, 1H), 3.79 (s, 3H), 3.67 (dd, *J* = 12.9, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 157.7, 136.4, 135.8, 135.5, 133.6, 133.2, 127.7, 127.6, 127.5, 126.1, 124.1, 119.7, 117.8, 113.8, 56.9, 54.2, 28.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₉NNaO₄SSe 496.0092; Found 496.0089.

$\label{eq:linear} 2-(1-Phenyl-2-((4-(trifluoromethoxy)phenyl)selanyl)ethyl) benzo[d] isothiazol-3(2H)-one (d) and (d$

1,1-dioxide (**5c**). Compound **5c** was prepared according to the general procedure and isolated as an oil (82 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 6/1). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.0 Hz, 1H), 7.90 – 7.74 (m, 3H), 7.59 – 7.52 (m, 4H), 7.38 – 7.29 (m, 3H), 7.06 (d, J = 8.0 Hz, 2H), 5.38 (t, J = 8.1 Hz, 1H), 4.11 (dd, J = 13.0, 8.1 Hz, 1H), 3.79 (dd, J = 13.0, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 147.9, 136.3, 135.4, 134.5, 133.8, 133.3, 127.9, 127.6, 127.5, 126.1, 126.0, 124.1, 120.6 (q, J_{C-F} =256.0 Hz), 120.5, 119.8, 57.0, 28.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -57.8. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₆F₃NNaO₄SSE 549.9810; Found 549.9815.

2-(2-((4-Fluorophenyl)selanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5d). Compound 5d was prepared according to the general procedure and isolated as an oil (75 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 6.9 Hz, 1H), 7.84 – 7.64 (m, 3H), 7.62 – 7.40 (m, 4H), 7.31 – 7.16 (m, 3H), 6.98 – 6.74 (m, 2H), 5.27 (t, *J* = 7.4 Hz, 1H), 3.99 (dd, *J* = 13.0, 8.7 Hz, 1H), 3.65 (dd, *J* = 13.0, 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 162.7 (d, *J*_{C-F} = 247.9 Hz), 158.8, 137.3, 136.64, 136.60 (d, *J*_{C-F} = 8.0 Hz), 134.8, 134.3, 128.8, 128.6 (d, *J*_{C-F} = 10.7 Hz), 127.1, 125.2, 123.3 (d, *J*_{C-F} = 3.5 Hz), 120.8, 116.4, 116.2, 57.9, 29.7. ¹⁹F NMR (376 MHz, CDCl₃): δ 113.6. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₆FNNaO₃SSe 483.9892; Found 483.9880.

2-(2-((4-Chlorophenyl)selanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5e). Compound 5e was prepared according to the general procedure and isolated as a white solid (77 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1); mp = 107-109 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.0 Hz, 1H), 7.89 – 7.75 (m, 3H), 7.56 (d, *J* = 7.7 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.39 – 7.29 (m, 3H), 7.18 (d, *J* = 8.5 Hz, 2H), 5.40 –

5.33 (m, 1H), 4.12 (dd, J = 13.0, 8.1 Hz, 1H), 3.75 (dd, J = 13.0, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 137.3, 136.6, 135.3, 134.8, 134.3, 134.0, 129.3, 128.9, 128.7, 128.5, 127.05, 127.01, 125.2, 120.8, 57.9, 29.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₆ClNNaO₃SSe 499.9597; Found 499.9590.

2-(2-(Benzo[d][1,3]dioxol-5-ylselanyl)-1-phenylethyl) benzo[d] isothiazol-3(2H)-one

1,1-dioxide (**5f**). Compound **5f** was prepared according to the general procedure and isolated as an oil (81 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.8 Hz, 1H), 7.93 – 7.77 (m, 3H), 7.55 (d, *J* = 7.8 Hz, 2H), 7.46 – 7.20 (m, 3H), 7.16 – 6.94 (m, 2H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.09 – 5.86 (m, 2H), 5.36 (t, *J* = 8.0 Hz, 1H), 4.03 (dd, *J* = 13.0, 8.7 Hz, 1H), 3.69 (dd, *J* = 13.0, 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 147.94, 147.91, 137.4, 136.8, 134.7, 134.2, 129.0, 128.7, 128.6, 128.5, 127.1, 125.1, 120.8, 119.9, 115.2, 109.1, 101.3, 57.9, 30.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₇NNaO₅SSe 509.9885; Found 509.9890.

2-(2-(Naphthalen-2-ylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5g). Compound 5g was prepared according to the general procedure and isolated as a yellow solid (76 mg, 77% yield) after flash chromatography (petroleum ether/ethyl acetate = 7/1). mp = 110-112 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, *J* = 7.8 Hz, 1H), 8.07 – 7.68 (m, 7H), 7.64 – 7.46 (m, 4H), 7.45 – 7.24 (m, 4H), 5.42 (t, *J* = 8.1 Hz, 1H), 4.08 (dd, *J* = 12.7, 8.3 Hz, 1H), 3.83 (dd, *J* = 12.7, 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 137.4, 136.6, 134.7, 134.4, 134.2, 134.1, 134.1, 129.2, 128.7, 128.65, 128.59, 128.5, 128.3, 127.8, 127.1, 126.8, 126.3, 125.8, 125.1, 120.7, 57.9, 29.0. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₅H₁₉NNaO₃SSe 516.0143; Found 516.0157.

2-(1-Phenyl-2-(thiophen-2-ylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5h). Compound 5h was prepared according to the general procedure and isolated as an oil (67 mg, 75% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 8.01 – 7.97 (m, 1H), 7.88 – 7.76 (m, 3H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.40 – 7.39 (m, 1H), 7.37 – 7.30 (m, 3H), 7.27 (dd, *J* = 3.5, 1.2 Hz, 1H), 6.96 (dd, *J* = 5.3, 3.5 Hz, 1H), 5.41 (dd, *J* = 8.9, 7.3 Hz, 1H), 4.00 (dd, *J* = 13.0, 8.1 Hz, 1H), 3.63 (dd, *J* = 13.0, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 136.4, 135.8, 135.7, 133.7, 133.3, 130.6, 127.8, 127.6, 127.5, 127.2, 126.1, 124.2, 121.5, 119.8, 56.6, 31.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₉H₁₅NNaO₃S₂Se 471.9551; Found 471.9549.

2-(2-(Methylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5i). Compound 5i was prepared according to the general procedure and isolated as a yellow solid (62 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1); mp = 94-96 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.0 Hz, 1H), 7.90 – 7.77 (m, 3H), 7.63 (d, *J* = 6.9 Hz, 2H), 7.42 – 7.31 (m, 3H), 5.39 (t, *J* = 8.2 Hz, 1H), 3.68 (dd, *J* = 12.9, 8.2 Hz, 1H), 3.53 (dd, *J* = 12.9, 8.2 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 136.4, 135.8, 133.7, 133.3, 127.8, 127.6, 127.5, 126.1, 124.2, 119.8, 56.5, 25.2, 4.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₆H₁₅NNaO₃SSe 403.9830; Found 403.9824.

S N Ph

2-(2-(Benzylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5j). Compound 5j was prepared according to the general procedure and isolated as a yellow solid (70 mg, 77% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1); mp = 39-40 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 6.9 Hz, 1H), 7.90 – 7.76 (m, 3H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.27 (m, 8H), 5.25 (t, *J* = 8.2 Hz, 1H), 3.83 (d, *J* = 4.6 Hz, 2H), 3.64 (dd, *J* = 13.1, 8.3 Hz, 1H), 3.41 (dd, *J* = 13.1, 8.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 137.6, 136.3, 135.9, 133.7, 133.3, 128.0, 127.7, 127.6, 127.5, 127.4, 126.2, 125.9, 124.2, 119.8, 56.6, 26.7, 23.6. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₁₉NNaO₃SSe 480.0143; Found 480.0140.

2-(2-(Phenethylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5k). Compound 5k was prepared according to the general procedure and isolated as an oil (73 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.96 – 7.83 (m, 1H), 7.80 – 7.75 (m, 1H), 7.74 – 7.65 (m, 2H), 7.60 – 7.44 (m, 2H), 7.37 – 7.22 (m, 3H), 7.23 – 7.13 (m, 2H), 7.12 – 7.06 (m, 3H), 5.29 (t, *J* = 8.2 Hz, 1H), 3.59 – 3.43 (m, 2H), 2.87 (dd, *J* = 8.6, 6.0 Hz, 2H), 2.76 (dd, *J* = 8.1, 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 141.0, 137.4, 136.7, 134.8, 134.3, 128.8, 128.6, 128.5, 128.4, 127.2, 126.4, 125.2, 120.8, 58.0, 37.0, 25.8, 24.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₃SSe 494.0300; Found 494.0308.

2-(2-(Pentylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5I). Compound 5I was prepared according to the general procedure and isolated as an oil (72 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 8.13 – 7.99 (m, 1H), 7.97 – 7.74 (m, 3H), 7.67 – 7.55 (m, 2H), 7.44 – 7.28 (m, 3H), 5.38 (t, *J* = 8.2 Hz, 1H), 3.61 (d, *J* = 8.2 Hz, 2H), 2.59 (t, *J* = 7.5 Hz, 2H), 1.74 – 1.59 (m, 2H), 1.41 – 1.09 (m, 4H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 137.4, 136.7, 134.7, 134.3, 128.76, 128.64, 128.60, 127.2, 125.2, 120.8, 58.1, 32.0, 30.0, 25.0, 24.4, 22.2, 14.0. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₀H₂₃NNaO₃SSe 460.0456; Found 460.0466.

2-(2-(Heptylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5m). Compound 5m was prepared according to the general procedure and isolated as an oil (70 mg, 75% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.04 – 7.93 (m, 1H), 7.93 – 7.75 (m, 3H), 7.68 – 7.55 (m, 2H), 7.42 – 7.29 (m, 3H), 5.38 (t, *J* = 8.2 Hz, 1H), 3.61 (d, *J* = 8.2 Hz, 2H), 2.59 (t, *J* = 7.5 Hz, 2H), 1.73 – 1.59 (m, 2H), 1.42 – 1.19 (m, 8H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 137.4, 136.7, 134.7, 134.3, 128.8, 128.64, 128.60, 127.2, 125.2, 120.8, 58.1, 31.7, 30.3, 29.8, 28.8, 25.1, 24.4, 22.6, 14.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₂H₂₇NNaO₃SSe 488.0769; Found 488.0782.

2-(2-(Isobutylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5n). Compound **5n** was prepared according to the general procedure and isolated as an oil (65 mg, 77% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.93 – 7.71 (m, 3H), 7.71 – 7.53 (m, 2H), 7.47 – 7.28 (m, 3H), 5.38 (t, *J* = 8.2 Hz, 1H), 3.60 (d, *J* = 8.1 Hz, 2H), 2.52 (dd, *J* = 6.8, 1.8 Hz, 2H), 1.82 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.97 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 137.4, 136.7, 134.7, 134.3, 128.8, 128.64, 128.59, 127.2, 125.2, 120.8, 58.1, 35.1, 29.2, 25.0, 22.63, 22.57. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₉H₂₁NNaO₃SSe 446.0300; Found 446.0323.

2-(2-(Cyclohexylselanyl)-1-phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (50). Compound **50** was prepared according to the general procedure and isolated as an oil (56 mg, 62% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 6.9 Hz, 1H), 7.91 – 7.73 (m, 3H), 7.70 – 7.54 (m, 2H), 7.46 – 7.31 (m, 3H), 5.40 (t, *J* = 8.2 Hz, 1H), 3.66 (dd, *J* = 12.7, 8.8 Hz, 1H), 3.58 (dd, *J* = 12.7, 7.6 Hz, 1H), 2.95 (tt, *J* = 10.9, 3.7 Hz, 1H), 2.08 – 1.99 (m, 2H), 1.75 – 1.69 (m, 2H), 1.57 – 1.43 (m, 2H), 1.38 – 1.19 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 137.5, 136.7, 134.7, 134.3, 128.73, 128.57, 128.56, 127.2, 125.2, 120.8, 58.5, 39.8, 34.5, 34.3, 26.81, 26.79, 25.8, 22.9. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₂₃NNaO₃SSe 472.0456; Found 472.0465.

Methyl

2-((2-(1,1-dioxido-3-oxobenzo[*d*]**isothiazol-2(3***H***)-y**]**)-2-phenylethyl)selanyl)-2-methylpropano ate (5p)**. Compound **5p** was prepared according to the general procedure and isolated as an oil (51 mg, 55% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 8.07 – 7.97 (m, 1H), 7.91 – 7.73 (m, 3H), 7.66 – 7.50 (m, 2H), 7.45 – 7.29 (m, 3H), 5.44 (t, *J* = 8.3 Hz, 1H), 3.85 (dd, *J* = 12.8, 8.4 Hz, 1H), 3.78 (s, 3H), 3.74 (dd, *J* = 12.8, 7.6 Hz, 1H), 1.65 (s, 3H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 158.7, 137.4, 136.7, 134.7, 134.3, 128.8, 128.6, 128.5, 127.2, 125.2, 120.8, 57.9, 52.6, 41.4, 26.1, 26.0, 24.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₀H₂₁NNaO₅SSe 490.0198; Found 490.0209.

4-((2-(1,1-Dioxido-3-oxobenzo[*d*]isothiazol-2(3*H*)-yl)-2-phenylethyl)selanyl)butanoic acid (5q). Compound 5q was prepared according to the general procedure and isolated as an oil (54 mg, 60% yield) after flash chromatography (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CD₃OD): δ 8.18 – 7.83 (m, 4H), 7.71 – 7.49 (m, 2H), 7.44 – 7.22 (m, 3H), 5.37 (t, *J* = 8.2 Hz, 1H), 3.65 (dd, *J* = 12.9, 8.7 Hz, 1H), 3.54 (dd, *J* = 12.9, 7.7 Hz, 1H), 2.78 – 2.54 (m, 2H), 2.42 – 2.32 (m, 2H), 1.97 – 1.85 (m, 2H). ¹³C NMR (100 MHz, CD₃OD): δ 175.4, 159.0, 137.4, 135.1, 134.5, 128.4, 128.3, 128.2, 128.1, 126.7, 124.7, 120.6, 57.7, 33.2, 25.2, 24.2, 23.0. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₁₉H₁₉NNaO₅SSe 476.0041; Found 476.0051.

N - Se O Ph

4-((2-(1,1-Dioxido-3-oxobenzo[*d*]isothiazol-2(3*H*)-yl)-2-phenylethyl)selanyl)-N-((*R*)-1-phenyle thyl)butanamide (5r). Compound 5r was prepared according to the general procedure and isolated as an oil (57 mg, 51% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). $[\alpha]_{25}^{D} = 40$, c=0.011 g/100 mL, CHCl₃.¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.5 Hz, 1H), 7.88 – 7.77 (m, 3H), 7.71 – 7.53 (m, 2H), 7.41 – 7.23 (m, 8H), 5.88 (q, *J* = 6.7 Hz, 1H), 5.36 (td, *J* = 8.2, 2.3 Hz, 1H), 3.63 (ddd, *J* = 12.8, 8.1, 1.2 Hz, 1H), 3.56 (dd, *J* = 12.8, 8.2 Hz, 1H), 2.60 (td, *J* = 7.3, 1.9 Hz, 2H), 2.42 (tt, *J* = 7.3, 2.8 Hz, 2H), 2.07 – 1.88 (m, 2H), 1.52 (dd, *J* = 6.6, 1.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 158.7, 141.7, 137.4, 136.7, 134.8, 134.3, 128.8, 128.6, 128.6, 128.5, 127.9, 127.2, 126.1, 125.2, 120.8, 72.4, 57.9, 34.3, 25.4, 24.6, 23.9, 22.3. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₇H₂₈N₂NaO₄SSe 579.0827; Found 579.0828.

6-Bromo-2-(1-phenyl-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (6a). Compound 6a was prepared according to the general procedure and isolated as a white solid (81 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). mp = 118-119 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 1.6 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.36 (m, 4H), 7.31 – 7.22 (m, 3H), 7.23 – 7.14 (m, 3H), 5.47 – 5.22 (m, 1H), 3.99 (dd, *J* = 12.9, 8.6 Hz, 1H), 3.70 (dd, *J* = 12.9, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 137.7, 136.5, 135.3, 132.8, 128.7, 128.1, 127.84, 127.83, 127.6, 127.5, 126.7, 125.4, 124.8, 122.9, 57.1, 27.9. HRMS (ESI): m/z [M+H]⁺ Calcd for C₂₁H₁₇BrNO₃SSe 521.9272; Found 521.9280.

6-Nitro-2-(1-phenyl-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (6b). Compound 6b was prepared according to the general procedure and isolated as a yellow solid (78 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). mp = 140-141 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.61 (d, *J* = 1.9 Hz, 1H), 8.54 (dd, *J* = 8.4, 1.9 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.56 – 7.35 (m, 4H), 7.35 – 7.24 (m, 3H), 7.23 – 7.02 (m, 3H), 5.33 (dd, *J* = 8.9, 7.3 Hz, 1H), 4.03 (dd, *J* = 13.0, 8.8 Hz, 1H), 3.69 (dd, *J* = 13.1, 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 150.4, 137.6, 135.0, 132.9, 130.3, 128.19, 128.17, 128.08, 127.7, 127.6, 127.5, 126.8, 125.7, 115.8, 57.7, 27.7. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₁H₁₆N₂NaO₅SSe 510.9837; Found 510.9837.

5,7-Dimethoxy-2-(1-phenyl-2-(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (**6c**). Compound **6c** was prepared according to the general procedure and isolated as a yellow solid (71 mg, 71% yield) after flash chromatography (petroleum ether/ethyl acetate = 4/1). mp = 88-89 °C ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.27 (m, 4H), 7.30 – 7.20 (m, 3H), 7.19 – 7.17 (m, 3H), 6.88 (d, *J* = 2.0 Hz, 1H), 6.59 (d, *J* = 2.0 Hz, 1H), 5.23 (t, *J* = 8.1 Hz, 1H), 3.97 (dd, *J* = 12.8, 8.3 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 3.74 (dd, *J* = 12.9, 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 157.6, 154.7, 135.7, 132.6, 129.8, 128.14, 128.10, 127.6, 127.5, 127.4, 126.5, 115.6, 103.3, 98.9, 56.3, 55.6, 55.3, 28.0. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₅SSe 526.0198; Found 526.0206.

(3a*R*,6*R*)-8,8-dimethyl-1-(1-phenyl-2-(phenylselanyl)ethyl)hexahydro-3*H*-3a,6-methanobenz o[*c*]isothiazole 2,2-dioxide (6d). Compound 6d was prepared according to the general procedure and isolated as a white solid (53 mg, 56% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). mp = 128-130 °C. $[\alpha]_{2s}^{D}$ = 30, c=0.017 g/100 mL, CHCl₃. ¹H NMR (400 MHz, CDCl₃): δ 7.54 – 7.47 (m, 2H), 7.43 – 7.35 (m, 2H), 7.36 – 7.29 (m, 3H), 7.28 – 7.18 (m, 3H), 4.75 (dd, *J* = 10.7, 5.2 Hz, 1H), 3.81 (dd, *J* = 12.2, 5.2 Hz, 1H), 3.64 (dd, *J* = 12.2, 10.7 Hz, 1H), 3.23 (dd, *J* = 7.9, 5.0 Hz, 1H), 3.20 – 2.95 (m, 2H), 1.89 – 1.68 (m, 3H), 1.60 – 1.56 (m, 1H), 1.46 – 1.28 (m, 2H), 1.23 – 1.08 (m, 1H), 0.94 (s, 3H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.2, 132.7, 130.3, 129.2, 128.9, 128.2, 127.2, 63.8, 58.0, 50.1, 49.6, 47.7, 44.7, 35.3, 32.3, 27.7, 26.7, 20.2, 20.1. HRMS (ESI): m/z [M+Na]⁺ Calcd for C₂₄H₂₉NNaO₂SSe 498.0976; Found 498.0980.

N-(1-Phenyl-2-(phenylselanyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (6e). Compound 6e was prepared according to the general procedure and isolated as a yellow solid (68 mg, 61% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1); mp = 136-138 °C. ¹H

NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.1 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.37 – 7.30 (m, 4H), 7.28 – 7.26 (m, 3H), 7.22 – 7.16 (m, 9H), 4.90 (dd, J = 11.5, 3.4 Hz, 1H), 4.80 (dd, J = 15.1, 11.5 Hz, 1H), 3.48 (dd, J = 15.1, 3.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 137.0, 135.0, 132.5, 128.4, 128.2, 128.1, 127.9, 127.6, 127.5, 127.5, 127.0, 51.3, 45.6. The data are in accordance with the literature.²

1-(1-Phenyl-2-(phenylselanyl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole (6f). Compound 6f was prepared according to the general procedure and isolated as an oil (38 mg, 50% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1).¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.13 (m, 11H), 5.77 (dd, *J* = 9.4, 5.8 Hz, 1H), 4.18 (dd, *J* = 13.1, 7.6 Hz, 1H), 3.75 (dd, *J* = 13.1, 7.6 Hz, 1H).¹³C NMR (100 MHz, CDCl₃): δ 145.1, 137.3, 132.7, 132.0, 128.2, 128.0, 127.9, 127.7, 126.7, 126.2, 125.8, 122.9, 119.0, 108.5, 62.6, 31.5. The data are in accordance with the literature.²

1-Phenyl-2-(phenylselanyl)ethan-1-one (8). Oil, petroleum ether/ethyl acetate = 30/1, 14 mg, 25% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 2H), 7.51 – 7.43 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.23 – 7.16 (m, 3H), 4.10 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 193.9, 134.4, 133.0, 132.2, 128.2, 128.0, 127.7, 127.6, 127.1, 31.7. Spectral data are in good agreement with literature values.³

6. ORTEP drawing

Figure S8 ORTEP drawing of 4w with the thermal ellipsoids at 30% probability. Hydrogen atoms were omitted for clarity.

Table S1 Crystal data and structure refinement for 4w.

CCDC	2102240
Empirical formula	C ₂₄ H ₂₁ NO ₃ SSe
Formula weight	482.44

Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.6984(11)
b/Å	11.1240(5)
c/Å	14.3493(11)
α/°	90
β/°	117.396(10)
γ/°	90
Volume/Å ³	2083.1(3)
Z	4
$\rho_{calc}g/cm^3$	1.538
μ/mm^{-1}	1.930
F(000)	984.0
Crystal size/mm ³	0.13 imes 0.11 imes 0.08
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.812 to 49.996
Index ranges	$-17 \le h \le 17, -11 \le k \le 13, -17 \le l \le 14$
Reflections collected	8449
Independent reflections	$3670 [R_{int} = 0.0292, R_{sigma} = 0.0443]$
Data/restraints/parameters	3670/0/271
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0336, wR_2 = 0.0735$
Final R indexes [all data]	$R_1 = 0.0429, wR_2 = 0.0773$
Largest diff. peak/hole / e Å-3	0.43/-0.38

Figure S9 ORTEP drawing of 4y with the thermal ellipsoids at 30% probability. Hydrogen atoms were omitted for clarity.

Table S2 Crystal data and structure refinement for 4y.

CCDC	2102238
Empirical formula	C ₂₂ H ₁₉ NO ₃ SSe
Formula weight	456.40
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.4942(8)
b/Å	18.7603(10)
c/Å	11.8071(8)
α/°	90
β/°	112.137(9)
γ/°	90
Volume/Å ³	1948.0(3)
Z	4
$\rho_{calc}g/cm^3$	1.556
μ/mm^{-1}	2.058
F(000)	928.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Kα (λ = 0.71073)
2 Θ range for data collection/°	4.31 to 50
Index ranges	$-11 \le h \le 10, -16 \le k \le 22, -11 \le l \le 14$
Reflections collected	8562
Independent reflections	3433 [$R_{int} = 0.0451$, $R_{sigma} = 0.0628$]
Data/restraints/parameters	3433/0/254
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0395, wR_2 = 0.0801$
Final R indexes [all data]	$R_1 = 0.0540, wR_2 = 0.0874$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.41

Figure S10 ORTEP drawing of 6d with the thermal ellipsoids at 30% probability. Hydrogen atoms were omitted for clarity.

Identification code	2102239
Empirical formula	C ₂₄ H ₂₉ NO ₂ SSe
Formula weight	474.50
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	9.8465(7)
b/Å	23.1935(15)
c/Å	10.1145(8)
α/°	90
β/°	108.968(8)
γ/°	90
Volume/Å ³	2184.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.443
μ/mm^{-1}	1.835
F(000)	984.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.08
Radiation	Mo K α ($\lambda = 0.71073$)
2 Θ range for data collection/	4.258 to 59.344
Index ranges	$-12 \le h \le 7, -31 \le k \le 26, -13 \le l \le 13$
Reflections collected	11701
Independent reflections	7934 [$R_{int} = 0.0301, R_{sigma} = 0.0615$]
Data/restraints/parameters	7934/1/528
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0383, wR_2 = 0.0703$
Final R indexes [all data]	$R_1 = 0.0471, wR_2 = 0.0747$
Largest diff. peak/hole / e Å ^{-?}	³ 0.52/-0.54
Flack parameter	-0.011(9)

Table S3 Crystal data and structure refinement for 6d.

7. References

- 1. D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues and A. L. Braga, *Org. Lett.*, **2010**, 12, 3288.
- K. Sun, X. Wang, Y. Lv, G. Li, H. Jiao, C. Dai, Y. Li, C. Zhang and L. Liu, *Chem. Commun.*, 2016, 52, 8471.
- 3. Y. Nishiyama, H. Kawamatsu, S. Funato, K. Tokunaga and N. Sonoda, J. Org. Chem., 2003, 68, 3599.

8. Copies of NMR spectra

¹H NMR (400 MHz, CDCl₃) of **4a**

¹H NMR (400 MHz, CDCl₃) of **4b**

$\begin{array}{c} 7.39\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.98\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.78\\ 7.88\\ 7.75\\ 7.55\\ 7.75\\ 7.75\\ 7.72\\ 5.33\\ 3.38\\ 3.38\\ 3.38\\ 3.38\\ 3.38\\ 7.88\\$

$\begin{array}{c} 7.90\\$

 ^{13}C NMR (100 MHz, CDCl_3) of 4g

$$- 168.2 \\ - 157.7 \\ - 157.7 \\ - 133.3 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 132.8 \\ - 112.7 \\ - 20.1 \\ -$$

⁰ ⁰ SePh ¹³C NMR (100 MHz, CDCl₃) of **4h**

¹³C NMR (100 MHz, CDCl₃) of **4j**

7.89 7.89 7.89 7.89 7.89 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.75 7.74 7.75 7.74 7.75</td

f1 (ppm)

7.85 <t

9.89 7.789 7.89 7.89 7.80 <

$\begin{array}{c} 7.98\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.12\\ 7.52\\ 7.72\\$

¹H NMR (400 MHz, CDCl₃) of **4p**

¹³C NMR (100 MHz, CDCl₃) of **4p**

$\begin{array}{c} 7&99\\ 7&97\\ 7&97\\ 7&97\\ 7&97\\ 7&97\\ 7&97\\ 7&12\\$

¹H NMR (400 MHz, CDCl₃) of **4q**

$\begin{array}{c} 7&93\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&92\\ 7&10\\$

¹H NMR (400 MHz, CDCl₃) of **4r**

$\begin{array}{c} 7.93\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.78\\ 7.77\\ 7.78\\ 7.77\\ 7.78\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.72\\ 7.77\\ 7.72\\$

¹³C NMR (100 MHz, CDCl₃) of **4t**

$\begin{array}{c} 7.91\\ 7.89\\ 7.89\\ 7.89\\ 7.89\\ 7.89\\ 7.77\\ 7.75\\$

¹H NMR (400 MHz, $CDCl_3$) of **4u**

¹³C NMR (100 MHz, CDCl₃) of **4u**

7.92 <t

¹³C NMR (100 MHz, CDCl₃) of **4v**

$\begin{array}{c} 7.82\\ 7.80\\$

0. -SePh Ph č

¹H NMR (400 MHz, CDCl₃) of **4w**

7.85 7.85 7.77 7.85 7.77 7.83 7.77 7.83 7.85 7.77 7.85 7.77 7.85 7.77 7.85 7.77 7.85 7.75 <t

N N N Ph

¹³C NMR (100 MHz, CDCl₃) of **4x**

7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.98 7.98 7.97 7.98 7.97 7.98 7.98 7.99 7.91 7.92 7.92 7.128 7.128 7.128 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 <t

,0SePh ď

¹H NMR (400 MHz, CDCl₃) of **4y**

¹³C NMR (100 MHz, CDCl₃) of **4y**

¹H NMR (400 MHz, CDCl₃) of **4z**

$$-157.41$$

$$-157.41$$

$$138.13$$

$$-138.13$$

$$-128.15$$

$$-128.15$$

$$-126.69$$

$$-126.69$$

$$-125.63$$

$$-125.63$$

$$-119.76$$

$$-29.39$$

0 0. SePh 'n

¹³C NMR (100 MHz, CDCl₃) of **4z**

¹H NMR (400 MHz, CDCl₃) of 4aa

¹³C NMR (100 MHz, CDCl₃) of **4aa**

 C_2H_5 ő ¹H NMR (400 MHz, CDCl₃) of **4ab**

f1 (ppm) . 130 $\begin{array}{c} 7.88\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.72\\$

O SePh ő ¹H NMR (400 MHz, CDCl₃) of **4ac**

0 ,0 SePh nC₈H₁₇ 'n

¹H NMR (400 MHz, $CDCl_3$) of **4ae**

7.91 7.92 7.93 7.94 7.95 <t

 ^{13}C NMR (100 MHz, CDCl_3) of 4ag

7.92 <t

¹H NMR (400 MHz, CDCl₃) of **4ah**

8.19 8.19 8.17 8.19 8.19 8.17 8.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.17 1.19 1.19 1.17 1.19 1.17 1

¹H NMR (400 MHz, CDCl₃) of **4ai**

7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.94 7.95 7.95 7.116 7.117 </t

¹H NMR (400 MHz, CDCl₃) of **4aj**

$$\begin{array}{c} 164.80 \\ 157.67 \\ 133.252 \\ 133.285 \\ 133.385 \\ 133.385 \\ 133.385 \\ 126.79 \\ 1226.29 \\ 1226.29 \\ 107.78 \\ 107.78 \\ 124.22 \\ 107.78 \\ 107.78 \\ 124.29 \\ 69.68 \\ 69.46 \\ 69.46 \\ 69.46 \\ 69.46 \\ 69.48 \\ 69.46 \\ 69.48 \\$$

¹³C NMR (100 MHz, CDCl₃) of **4aj**

¹H NMR (400 MHz, CDCl₃) of **4ak**

$\begin{array}{c} 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.76\\$

¹H NMR (400 MHz, CDCl₃) of **4am**

7.96 7.96 7.96 7.96 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.97 7.96 7.97 7.97 7.96 7.97 7.97 7.97 7.96 7.97 7.97 7.97 7.97 7.96 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97

S71

¹³C NMR (100 MHz, CDCl₃) of **5a**

$\begin{array}{c} 7.98\\ 7.96\\ 7.96\\ 7.96\\ 7.84\\ 7.84\\ 7.84\\ 7.84\\ 7.84\\ 7.86\\ 7.86\\ 7.73\\ 7.80\\ 7.73\\ 7.80\\ 7.73\\ 7.80\\ 7.73\\ 7.33\\$

¹H NMR (400 MHz, CDCl₃) of **5c**

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -12! f1(ppm)

$\begin{array}{c} 7.89\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.72\\ 7.77\\ 7.72\\$

¹H NMR (400 MHz, CDCl₃) of **5d**

¹H NMR (400 MHz, CDCl₃) of **5e**

¹H NMR (400 MHz, CDCl₃) of **5f**

¹H NMR (400 MHz, CDCl₃) of **5g**

¹H NMR (400 MHz, CDCl₃) of **5h**

SeMe Ph ¹H NMR (400 MHz, CDCl₃) of **5**i

,/// 11 1.00 × 1.00-3.00-5.5 5.0 f1 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.

$$-157.75$$

$$-157.75$$

$$133.71$$

$$133.71$$

$$133.71$$

$$127.53$$

$$127.53$$

$$124.15$$

$$-19.79$$

$$-25.24$$

$$-25.24$$

$$-4.05$$

SeBn ď

 ^{13}C NMR (100 MHz, CDCl_3) of 5j

7.91 7.91 7.91 7.91 7.92 7.93 7.94 7.95 7.95 7.91 7.92 7.93 7.94 7.95 7.95 7.10 7.11 7.12 <t

0,,0 0

¹H NMR (400 MHz, CDCl₃) of **5**I

8.02 7.1.25 8.01 7.1.25 8.02 7.1.25 8.02 7.1.25 8.02 8.03 8.04 8.05</

¹H NMR (400 MHz, CDCl₃) of **5m**

.0 ⁰ ¹H NMR (400 MHz, CDCl₃) of **5n**

Ρh ő

-соон Ph ő

¹H NMR (400 MHz, CD₃OD) of **5q**

8 7 7 8 8 0 8 0 1 8 0 1 8 0 1 7 7 8 0 0 1 7 1 8 0 0 1 7 1 8 0 0 1

Ö 0 Ph ò۰ Ρh ő

¹H NMR (400 MHz, CDCl₃) of **5r**

0,,0 Br SePh 0

¹³C NMR (100 MHz, CDCl₃) of **6a**

8.62 8.61 8.61 8.61 8.62 8.63 8.64 8.65 8.65 8.61 8.62 8.63 8.64 8.65 8.65 8.61 8.62 8.63 8.64 8.65 <t

¹H NMR (400 MHz, CDCl₃) of **6b**

OMe O,,,O -SePh . Ph MeC ő

 ^{13}C NMR (100 MHz, CDCl_3) of 6c

7.51 7.51 7.51 7.52 7.53 7.54 7.55 7.55 7.56 7.57 7.57 7.58 7.59 7.50 7.51 7.52 7.53 7.53 7.54 7.55 7.55 7.56 7.57 7.58 7.58 7.59 7.51 7.52 7.53 7.54 7.55 7.57 7.58 <t

PhO₂S_NSO₂Ph

 13 C NMR (100 MHz, CDCl₃) of **6e**

