Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary information

An ATP-Cu(II) catalyst efficiently catalyzes enantioselective Michael

reactions in water

Xingchen Dong,^{†a} Zijian Yuan,^{†a} Yao Qu,^a Yuxin Gao,^a Xue Pei,^a Qianqian Qi,^a Yujuan Pei,^a Jiaqi Li,^a Yashao Chen^a and Changhao Wang^{*ab}

^a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China. E-mail: changhaowang@snnu.edu.cn

^b Xi'an Key Laboratory of Organometallic Material Chemistry, Shaanxi Normal University, Xi'an, 710119, China.

⁺These authors contributed equally.

Table of Contents

1. General remarks	S3
2. Tables S1-S6	S4
3. Figures S1-S4	S6
4. Determination of the absolute configuration of 3a	S8
5. Detailed procedures of ATP·Cu ²⁺ catalyzed enantioselective Michael reactions reaction scales	
6. References	S11
7. NMR and HRMS data	S12
8. HPLC traces	S25

1. General remarks

Circular Dichroism (CD) spectra were measured on a Chirascan Circular Dichroism Spectrometer (Applied Photophysics Ltd, England, UK). The CD spectra were performed using a quartz cell (1 mm optical path length), an instrument scanning speed of 100 nm/min and were accumulated by taking the average of three scans made from 200 to 320 nm at 4 °C. Ultraviolet-visible (UV-Vis) spectra were collected by Agilent Cary 3500 in a sealed quartz cell with a path length of 1.0 cm. The enantioselective Michael reactions were analyzed by high performance liquid chromatography (HPLC, Shimadzu Prominence-*i* LC-2030) with chiral stationary phase using hexane and *iso*-propanol as eluents. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹G NMR) spectra were recorded on Bruker AV 400 MHz spectrometers using residue solvent peaks as an internal standard (¹H NMR: CDCl₃ = 7.26, ¹³C NMR: CDCl₃ = 77.16). Chemical shifts were reported in parts per million (ppm) with respect to the residual solvent signal. Peak multiplicities were reported as follows: s = singlet, m = multiplet. d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets. The coupling constant (*J*) were reported in hertz (Hz). High-resolution mass spectra (HRMS) were collected on a Bruker Maxis System.

ATP, UTP, GTP, CTP, dATP, ADP, AMP, 3',5'-Cyclic AMP and adenosine were purchased from Sangon (Shanghai, China). The substrates **2a-c**, metal salts and achiral ligands and buffers were purchased from Energy Chemical and J&K Scientific Ltd. The chemicals were used without further purification unless otherwise stated. Water used was distilled and deionized using a Milli-Q A10 water purification system. Compounds **1a-h** and racemates **3a-j** were prepared as the literatures reported¹⁻³.

2. Tables S1-S6

Entry ^a	Metal cofactor	Conversion (%)	ee (%)
1	Cu(NO ₃) ₂	63	75
2	Cu(OTf) ₂	70	75
3	CuSO ₄	58	75
4	CuCl ₂	72	74

 Table S1 Enantioselective Michael reactions catalyzed by ATP·Cu²⁺ with different copper(II) salts.

^a Reaction conditions: **1a** (2 μmol), **2a** (200 μmol), ATP (250 μM), copper(II) salts (50 μM), MOPS (20 mM, pH 7.9), 4 °C, 72 h.

Entry ^a	ΑΤΡ/μΜ	Cu(OTf)₂/µM	Conversion (%)	ee (%)
1	250	50 0 1		31
2	250	25	20	76
3	250	50	70	75
4	250	100	73	74
5	250	250	95	66
6	250	500	91	54

^a Reaction conditions: **1a** (2 μmol), **2a** (200 μmol), ATP (250 μM), MOPS (20 mM, pH 7.9), 4 °C, 72 h.

Entry ^a	Buffer	рН	Conversion (%)	ee (%)
1	MOPS	7.4	48	74
2	MOPS	7.9	70	75
3	MOPS	9.0	83	74
4	CHES	8.0	70	75
5	CHES	9.0	89	74
6	CHES	9.5	96	74
7	CHES	10.0	94	70
8	Tris	7.4	4	60
9	PBS	7.4	28	68
10	MES	7.0	8	64

Table S3 Enantioselective Michael reactions catalyzed by ATP·Cu²⁺ in different buffers.

 a Reaction conditions: **1a** (2 µmol), **2a** (200 µmol), ATP (250 µM), Cu(OTf)_2 (50 µM), 4 °C, 72 h.

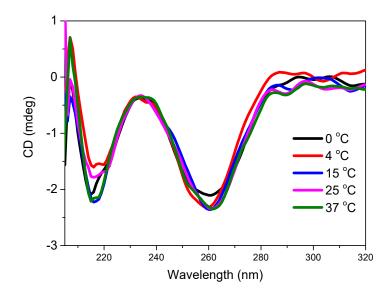
Entry ^a	Molar ratios of 1a/2a	Conversion (%)	ee (%)
1	1:2	16	72
2	1:5	34	72
3	1:10	58	73
4	1:20	78	74
5	1:50	90	74
6	1:100	97	74

Table S4 ATP·Cu²⁺ catalyzed Michael reactions of 1a with different amount of 2a.

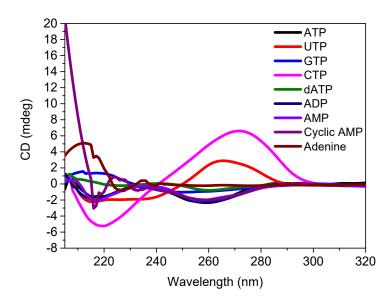
^a Reaction conditions: **1a** (2 μmol), **2a** (4-200 μmol), ATP (250 μM), Cu(OTf)₂ (50 μM), CHES (20mM, pH 9.5), 4 °C, 72 h.

Table S5 Enantioselective Michael reactions catalyzed by ATP and different metal ions.

Entry ^a	Metal cofactor	Conversion (%)	ee (%)
1	Ag(OTf) ₂	6	< 3
2	Yb(OTf) ₃	8	< 3


^a Reaction conditions: **1a** (2 μmol), **2a** (200 μmol), ATP (250 μM), metal cofactor (50 μM), CHES (20mM, pH 9.5), 4 °C, 72 h.

ν R ₁	Nu: ATP·Cu ²⁺ CHES buffer (pH 9.5) 4 °C, 72 h a-c	$N_{R_1} $
$\begin{array}{l} \textbf{1a:} \ R_1 \!\!=\!\! Me, \ R_2 \!\!=\!\! C_6 H_5 \\ \textbf{1b:} \ R_1 \!\!=\!\! Me, \ R_2 \!\!=\!\! 4 \!\!-\! ClC_6 H_4 \\ \textbf{1c:} \ R_1 \!\!=\!\! Me, \ R_2 \!\!=\!\! 4 \!\!-\! BrC_6 H_4 \\ \textbf{1d:} \ R_1 \!\!=\!\! Me, \ R_2 \!\!=\!\! 2 \!\!-\! BrC_6 H_4 \end{array}$	1e : R_1 =Me, R_2 =4-MeOC ₆ H ₄ 1f : R_1 =Me, R_2 = <i>iso</i> -propyl 1g : R_1 =Me, R_2 =furyl 1h : R_1 =Et, R_2 =C ₆ H ₅	 2a: dimethyl malonate 2b: diethyl malonate 2c: nitromethane


Entry ^a	1	2	3	Conversion (%)	ee (%)
1	1a	2a	3a	96	74
2 ^b	1b	2a	3b	70	77
3 ^b	1c	2a	3c	80	80
4 ^b	1d	2a	3d	64	41
5	1e	2a	Зе	83	80
6	1f	2a	3f	44	< 3
7	1g	2a	3g	85	55
8	1h	2a	3h	95	67
9	1a	2b	3 i	98	77
10	1a	2c	3j	90	65

^a Reaction conditions: **1** (2 µmol), **2** (200 µmol), ATP (250 µM), Cu(OTf)₂ (50 µM), CHES buffer (20 mM, pH 9.5), 4 ^oC, 72 h. The conversion of **1a** reacting with **2a** was calculated by HPLC analysis, while all other conversions of **1a g** were determined by ¹H NMR. The ee values of **3a-j** were determined by chiral HPLC. All data were averaged by duplicated experiments with the reproducibility of ±5% conversion and ±3% ee. ^b Using ATP (1 mM) and Cu(OTf)₂ (200 µM).

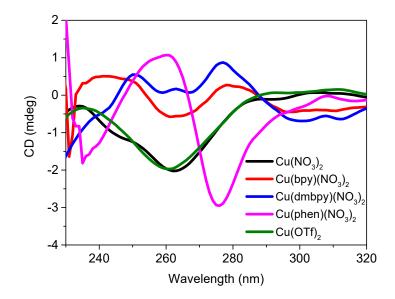

3. Figures S1-S4

Figure S1 CD spectra of ATP (250 μ M) with Cu(OTf)₂ (50 μ M) at different temperatures in CHES buffer (20 mM, pH 9.5).

Figure S2 CD spectra of different ATP analogues (250 μ M) with Cu(OTf)₂ (50 μ M) in CHES buffer (20 mM, pH 9.5).

Figure S3 CD spectra of ATP (250 μ M) with different copper(II) cofactors (50 μ M) in CHES buffer (20 mM, pH 9.5).

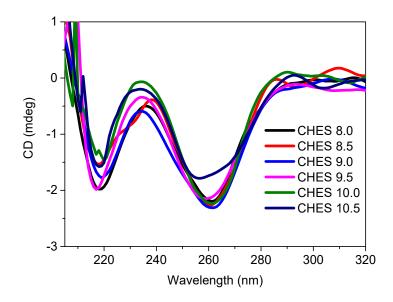
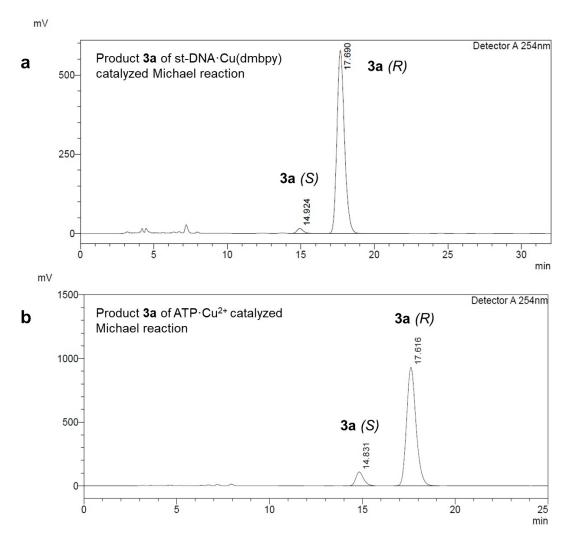



Figure S4 CD spectra of ATP (250 μ M) with Cu(OTf)₂ (50 μ M) in different CHES buffers (20 mM).

4. Determination of the absolute configuration of 3a

For the ATP·Cu²⁺ catalyzed enantioselective Michael reaction of **1a** and **2a**, the absolute configuration of the product **3a** was determined in comparison of the reported literature⁴. Roelfes et al. reported that the enantioselective Michael reaction of **1a** and **2a** was catalyzed by salmon testes DNA (st-DNA) and Cu(dmbpy)(NO₃)₂, yielding the chiral product **3a** at 96% ee in *R* configuration. The configuration of **3a** were assigned on the HPLC trace using Chiralpak AD column (hexane/*i*-PrOH = 80:20, 1.0 mL/min⁻¹, 254 nm). Using the same HPLC condition and Chiralpak AD column, we analyzed the product **3a** that was obtained from the enantioselective Michael reaction of **1a** and **2a** catalyzed by ATP·Cu²⁺. By comparison to the reference, we determined that the major product **3a** generated by ATP·Cu²⁺ was in *R* configuration.

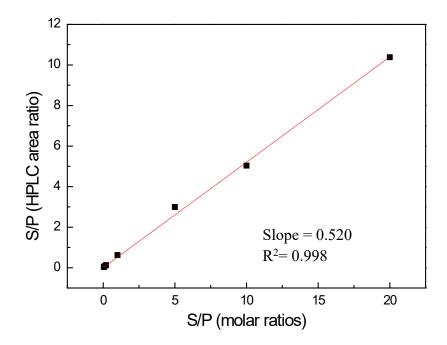
Figure S5 HPLC traces of product of **3a** from the enantioselective Michael reaction catalyzed by (a) st-DNA/Cu(dmbpy) and (b) ATP·Cu²⁺ using Chiralpak AD column. The major product **3a** generated by ATP·Cu²⁺ is *R* configuration.

5. Detailed procedures of ATP·Cu²⁺ catalyzed enantioselective Michael reactions in different reaction scales

5.1 Analytical scale

Using enone **1** in a 2 µmol scale: To a CHES buffer (2.0 mL, 20 mM, pH 9.5), an aqueous solution of ATP (final conc. 250 µM) was added. After stirred for twenty minutes at 4 °C, a solution of Cu(OTf)₂ (final conc. 50 µM) was added. After stirred for another twenty minutes at 4 °C. Then, the mixture of **1** in DMSO (20 µL of a 0.1 M solution) and nucleophile **2** (200 µmol, 100 eq.) were added. The above reaction media was stirred for 72 h followed by the extraction with ethyl acetate (3 × 2 mL) and removal of the solvent under reduced pressure. After a short flash chromatography, the residue was directly analyzed by chiral HPLC with the eluents of hexane and *iso*-propanol (*i*-PrOH), using a Daicel Chiralpak AD or ODH column column (250 × 4.6 mm). The conversion of **1a** was calculated by HPLC with a correction factor and the conversions of **1b-h** were estimated by ¹H NMR from the crude products.

The conversion of **1a** was calculated by the following equation as described in the literature³.

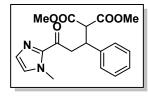

Conversion of **1a** (%) =
$$\frac{PA_{3a}}{PA_{3a} + PA_{1a}/f}$$

Where PA_{1a} and PA_{3a} are the peak areas of **1a** and **3a**, respectively. And *f* is the correction factor determined to be 0.520 from a fitting curve (Figure S6).

Using enone **1** in a 0.1 mmol scale: In order to obtain the isolated yields of the Michael products **3a-j**, the ATP·Cu²⁺ catalyzed enantioselective Michael reactions were carried out using enone **1** in a 0.1 mmol scale. The typical procedure is as follows: ATP (0.05 mmol) and Cu(OTf)₂ (0.01 mmol) was dissolved in a CHES buffer (15 mL, 20 mM, pH 9.5). After stirring for 30 min at 4 °C, a mixture of **1** (0.1 mmol) and **2** (5 mmol, 50 eq.) in DMSO (0.5 mL) were added. The mixture was stirred for 72 h followed by the extraction with ethyl acetate (2 × 10 mL). The combined organic fractions were dried by Na₂SO₄ and concentrated under vacuum. The residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 6:1, v/v) and the isolated yields of **3a-j** were obtained. The enantioselectivities of pure **3a-j** were analyzed by chiral HPLC with the eluents of hexane and *i*-PrOH using Daicel Chiralpak AD or ODH column (250 × 4.6 mm).

5.2 Preparative scale

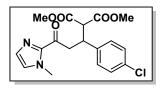
Using enone **1** in a 0.5 mmol scale: To a CHES buffer (60 mL, 20 mM, pH 9.5) in a round-bottom flask, ATP (0.5 mmol) and Cu(OTf)₂ (0.1 mmol) were added. After stirring for 30 min at 4 °C, a mixture of **1** (0.5 mmol, **1a** = 106 mg, **1c** = 145 mg, **1e** = 121 mg) and **2a** (25 mmol, 50 eq.) in DMSO (1.2 mL) were added. The reaction was stirred for 72 h and monitored by TLC, followed by the extraction with ethyl acetate (2 × 30 mL). The combined organic fractions were dried by Na₂SO₄ and concentrated under reduced pressure. The crude products of **3a**, **3c** and **3e** were purified by silica gel chromatography using petroleum ether and ethyl acetate as eluents with a volume ratio of 6:1. The enantioselectivities of **3a**, **3c** and **3e** were analyzed by chiral HPLC with the eluents of hexane and *i*-PrOH, using Daicel Chiralpak AD column (250 × 4.6 mm).


Figure S6 Determination of the correction factor between **1a** and **3a** on HPLC. The HPLC ratios of peak areas (PA_{1a}/PA_{3a}) were determined with the standard molar ratios (n_{1a}/n_{3a}) of 1/20, 1/10, 1/5, 1, 5, 10, 20. The correction factor (f = 0.520) was estimated from the fitting curve ($R^2 = 0.998$).

6. References

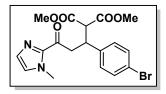
- 1. C. Wang, G. Jia, Y. Li, S. Zhang and C. Li, Chem. Commun., 2013, 49, 11161-11163.
- 2. Y. Li, C. Wang, G. Jia, S. Lu and C. Li, *Tetrahedron*, 2013, **69**, 6585-6590.
- 3. C. Wang, M. Hao, Q. Qi, J. Dang, X. Dong, S. Lv, L. Xiong, H. Gao, G. Jia, Y. Chen, J. S. Hartig and C. Li, *Angew. Chem. Int. Ed.*, 2020, **59**, 3444-3449.
- 4. D. Coquière, B. L. Feringa and G. Roelfes, Angew. Chem. Int. Ed., 2007, 46, 9308-9311.

7. NMR and HRMS data


2-[3-(1-Methyl-1H-imidazol-2-yl)-3-oxo-1-phenyl-propyl]-malonic acid dimethyl ester (3a).

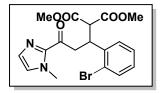
White solid (94% yield), $R_f = 0.2$ (petroleum ether: ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.22 (d, J = 13.1 Hz, 2H), 7.17 – 7.15 (m, 1H), 7.12 (s, 1H), 6.97 (s, 1H), 4.14 (td, J = 10.0, 4.3 Hz, 1H), 3.91 – 3.80 (m, 5H), 3.71 (s, 3H), 3.50 (dd, J = 17.5, 4.4 Hz, 1H), 3.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.61 (s), 168.63 (s), 168.18

(s), 142.78 (s), 140.49 (s), 128.91 (s), 128.41 (d, J = 13.1 Hz), 127.33 – 127.21 (m), 127.08 (d, J = 21.6 Hz), 57.70 (s), 52.82 (s), 52.47 (s), 42.89 (s), 40.33 (s), 36.22 (s). HRMS (ESI) calcd. For $[C_{18}H_{20}N_2O_5]\cdot Na^+$ (M+Na)⁺: m/z 367.1264, found 367.1263.


2-[1-(4-Chloro-phenyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxo-propyl]-malonic acid dimethyl ester

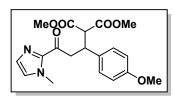
(3b). White solid (59% yield), $R_f = 0.25$ (petroleum ether: ethyl acetate = 2:1). ¹H NMR (600 MHz, CDCl₃) δ 7.22 (dd, J = 22.8, 8.5 Hz, 4H), 7.08 (s, 1H), 6.96 (s, 1H), 4.15 – 4.11 (m, 1H), 3.86 (s, 3H), 3.84 – 3.76 (m, 2H), 3.71 (s, 3H), 3.48 (s, 3H), 3.41 (dd, J = 17.5, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.37 (s), 168.30 (s), 167.90 (s), 142.75 (s),

139.05 (s), 132.83 (s), 129.74 (s), 129.04 (s), 128.53 (s), 127.02 (s), 57.34 (s), 52.73 (s), 52.43 (s), 42.61 (s), 39.75 (s), 36.03 (s). HRMS (ESI) calcd. For $[C_{18}H_{19}N_2O_5CI] \cdot H^+ (M+H)^+$: *m/z* 379.1055, found 379.1052.


2-[1-(4-Bromo-phenyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxo-propyl]-malonic acid dimethyl ester

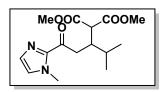
(3c). White solid (63% yield), $R_f = 0.2$ (petroleum ether: ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (q, J = 8.5 Hz, 4H), 7.03 (s, 1H), 6.93 (s, 1H), 4.09 (td, J = 10.1, 4.3 Hz, 1H), 3.82 (s, 3H), 3.79 – 3.67 (m, 2H), 3.67 (s, 3H), 3.44 (s, 3H), 3.37(dd, J = 17.5, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.38 (s), 168.36 (s), 167.96 (s), 139.63

(s), 131.56 (s), 130.18 (s), 129.08 (s), 127.11 (s), 121.08 (s), 57.33 (s), 52.84 (s), 52.55 (s), 42.63 (s), 39.85 (s), 36.15 (s). HRMS (ESI) calcd. For $[C_{18}H_{19}N_2O_5Br]\cdot Na^+$ (M+Na)⁺: m/z 445.0370, found 445.0363.


2-[1-(3-Bromo-phenyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxo-propyl]-malonic acid dimethyl ester

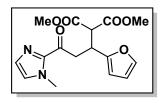
(3d). White solid (51% yield), $R_f = 0.2$ (petroleum ether: ethyl acetate = 2:1). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (s, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.10 (dd, J = 15.3, 7.5 Hz, 2H), 6.96 (s, 1H), 4.12 (td, J = 9.9, 4.4 Hz, 1H), 3.86 (d, J = 14.3 Hz, 3H), 3.78 (dd, J = 17.6, 9.7 Hz, 2H), 3.71 (s, 3H), 3.50 – 3.44 (m, 4H). ¹³C NMR (100 MHz, 100 MHz, 10

CDCl₃) δ 189.27 (s), 168.24 (s), 167.83 (s), 142.98 (s), 131.41 (s), 130.27 (s), 129.90 (s), 129.09 (s), 127.02 (d, *J* = 8.3 Hz), 122.32 (s), 57.27 (s), 52.70 (s), 52.42 (s), 42.52 (s), 39.96 (s), 36.00 (s). HRMS (ESI) calcd. For [C₁₈H₁₉N₂O₅Br]·Na⁺ (M+Na)⁺: *m/z* 445.0370, found 445.0376.


2-[1-(4-Methoxy-phenyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxo-propyl]-malonic acid dimethyl ester

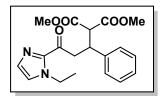
(3e). White solid (80% yield), $R_f = 0.15$ (petroleum ether: ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 2H), 7.04 (d, J = 0.8 Hz, 1H), 6.92 (s, 1H), 6.75 – 6.72 (m, 2H), 4.08 (td, J = 10.0, 4.3 Hz, 1H), 3.82 (d, J = 3.8 Hz, 3H), 3.76 (dd, J = 20.0, 9.0 Hz, 2H), 3.69 (d, J = 6.9 Hz, 6H), 3.44 (s, 3H), 3.38 (dd, J = 17.4, 4.3 Hz,

1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.83 (s), 168.65 (s), 168.21 (s), 158.49 (s), 142.95 (s), 132.47 (s), 129.35 (s), 128.99 (s), 126.95 (s), 113.76 (s), 57.85 (s), 55.17 (s), 52.69 (s), 52.40 (s), 42.94 (s), 39.68 (s), 36.09 (s). HRMS (ESI) calcd. For $[C_{19}H_{22}N_2O_6]\cdot Na^+$ (M+Na)⁺: m/z 397.1370, found 397.1363.


2-{2-Methyl-1-[2-(1-methyl-1H-imidazol-2-yl)-2-oxo-ethyl]-propyl}-malonic acid dimethyl ester (3f).

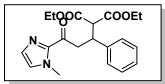
White solid (37% yield), $R_f = 0.2$ (petroleum ether: ethyl acetate = 3:1).¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 1H), 7.00 (s, 1H), 3.98 (s, 3H), 3.71 (s, 3H), 3.60 (d, J = 6.7 Hz, 4H), 3.23 (t, J = 5.8 Hz, 2H), 2.93 -2.89 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.50 (s), 169.61 (s), 169.41 (s), 143.06 (s), 128.96 (s),

126.93 (s), 54.37 (s), 52.48 (d, J = 13.3 Hz), 38.98 (s), 37.65 (s), 36.25 (s), 30.16 (s), 20.89 (s), 18.15 (s). HRMS (ESI) calcd. For $[C_{15}H_{22}N_2O_5] \cdot Na^+$ (M+Na)⁺: m/z 333.1421, found 333.1429.

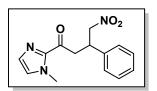

2-[1-Furan-2-yl-3-(1-methyl-1H-imidazol-2-yl)-3-oxo-propyl]-malonic acid dimethyl ester (3g).

Yellow oil (95% yield), $R_f = 0.2$ (petroleum ether: ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 2.0 Hz, 1H), 7.08 (s, 1H), 6.98 (s, 1H), 6.19 – 6.17 (m, 1H), 6.10 (d, J = 3.2 Hz, 1H), 4.25 (td, J = 9.2, 4.4 Hz, 1H), 3.90 (s, 3H), 3.82 (dd, J = 19.2, 9.1 Hz, 2H), 3.68 (s, 3H), 3.58 (s, 3H), 3.41 (dd, J = 17.7, 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.49 (s), 168.25 (d, J = 7.6 Hz), 153.62 (s), 142.73 (s), 141.78 (s),

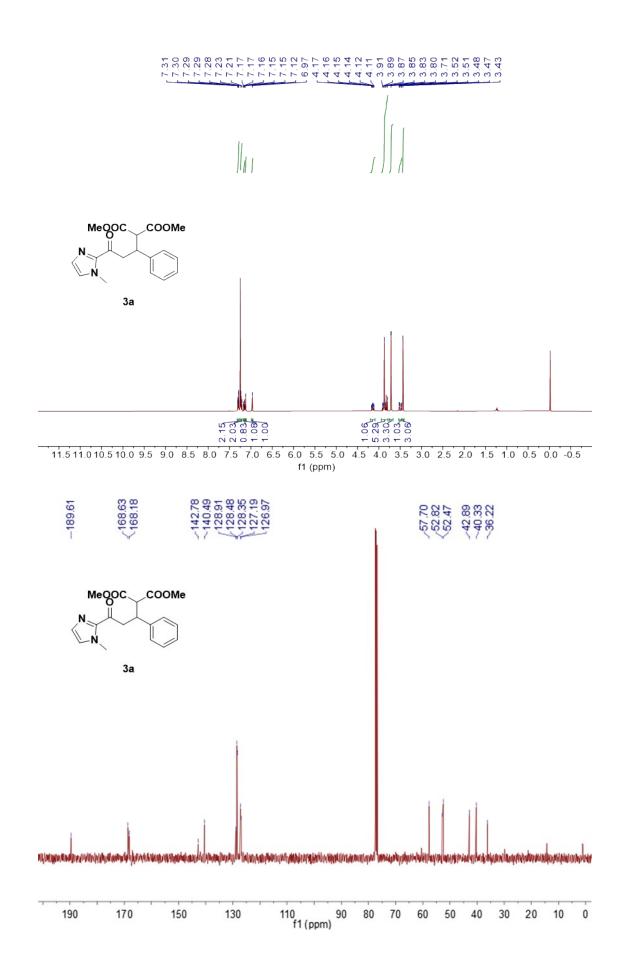
129.12 (s), 127.07 (s), 110.25 (s), 107.00 (s), 55.27 (s), 52.70 (d, J = 8.5 Hz), 40.35 (s), 36.18 (s), 34.01 (s). HRMS (ESI) calcd. For $[C_{16}H_{18}N_2O_6]\cdot Na^+$ (M+Na)⁺: m/z 357.1057, found 357.1055.

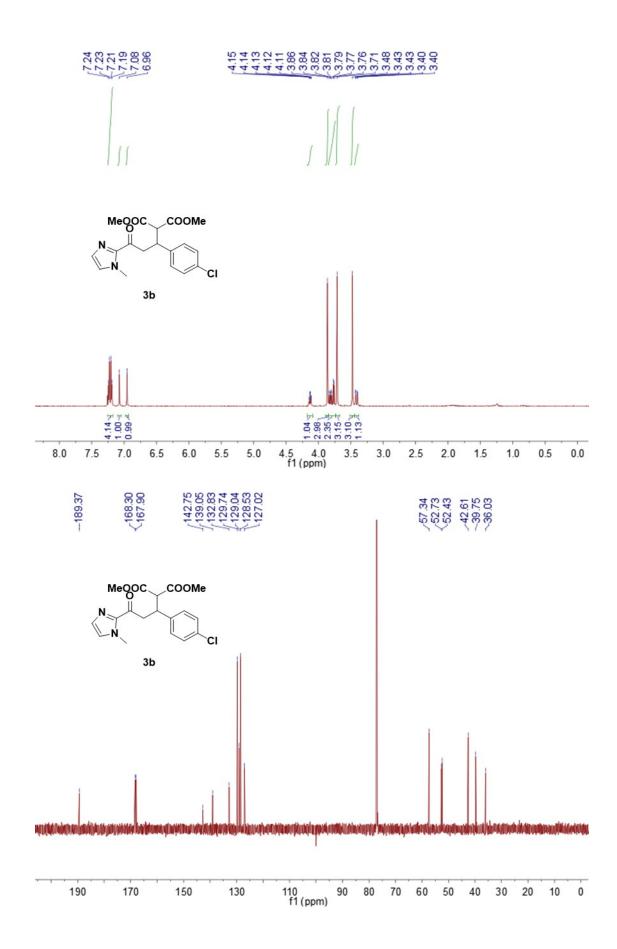

2-[3-(1-Ethyl-1H-imidazol-2-yl)-3-oxo-1-phenyl-propyl]-malonic acid dimethyl ester (3h).

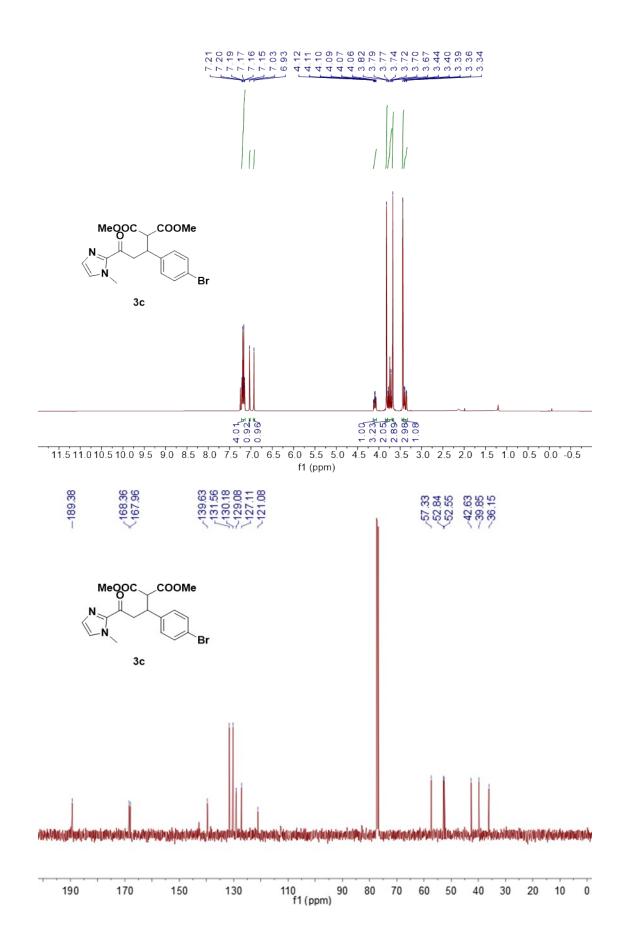
White solid (90% yield), $R_f = 0.25$ (petroleum ether: ethyl acetate = 3:1).¹H NMR (400 MHz, CDCl₃) δ 7.30 - 7.28 (m, 2H), 7.25 - 7.21 (m, 2H), 7.16 - 7.12 (m, 1H), 7.09 (s, 1H), 7.02 (s, 1H), 4.34 - 4.24 (m, 2H), 4.18 (td, J = 10.0, 4.6 Hz, 1H), 3.87 - 3.80 (m, 2H), 3.72 (s, 3H), 3.51 - 3.46 (m, 1H), 3.45 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.50 (s), 168.50 (s), 168.06 (s), 142.25 (s), 140.46 (s),

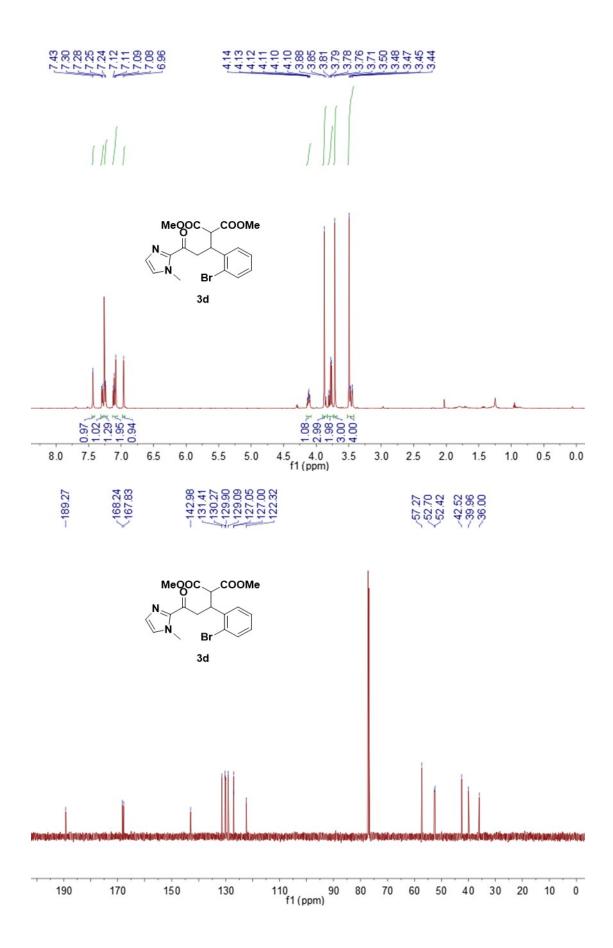

129.14 (s), 128.27 (d, J = 4.0 Hz), 127.01 (s), 125.12 (s), 57.63 (s), 52.59 (s), 52.25 (s), 43.57 (s), 42.90 (s), 40.51 (s), 16.20 (s). HRMS (ESI) calcd. For $[C_{19}H_{22}N_2O_5]\cdot Na^+ (M+Na)^+: m/z$ 381.1434, found 381.1431.

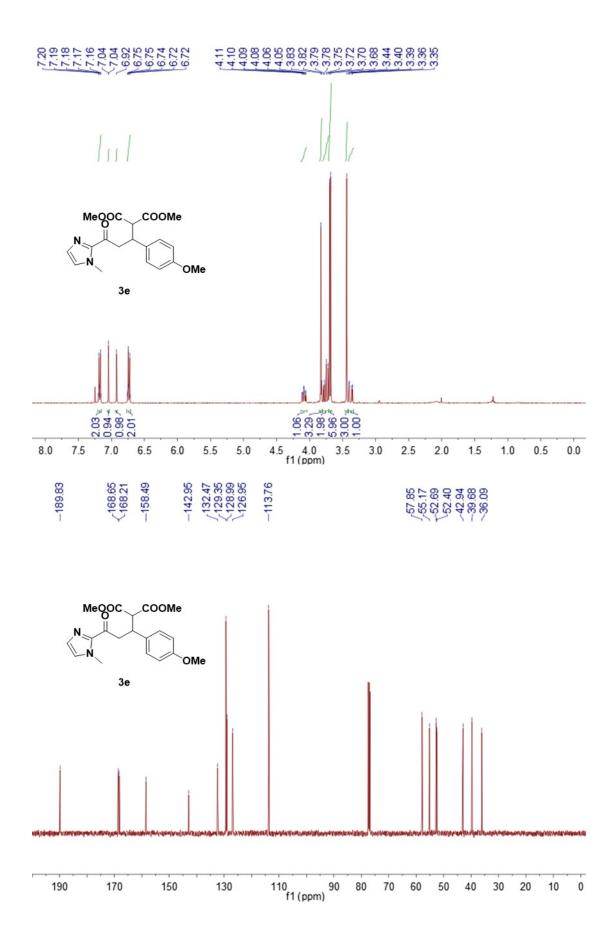
2-[3-(1-Methyl-1H-imidazol-2-yl)-3-oxo-1-phenyl-propyl]-malonic acid diethyl ester (3i).

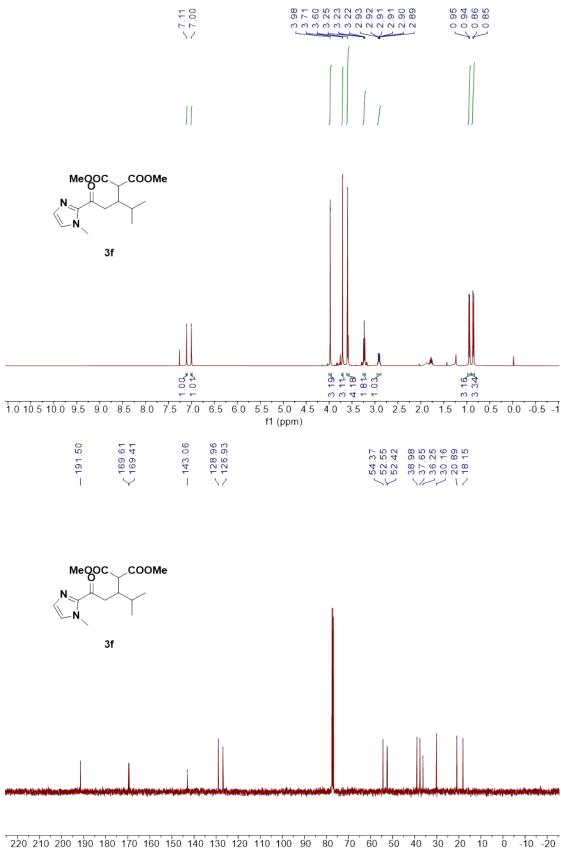

White solid (91% yield), $R_f = 0.3$ (petroleum ether: ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.13 (m, 5H), 7.06 (d, J = 0.6 Hz, 1H), 6.93 (s, 1H), 4.19 – 4.11 (m, 3H), 3.90 – 3.74 (m, 7H), 3.44 (dd, J = 17.4, 4.1 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.73 (s), 168.22 (s), 167.79 (s), 142.89 (s), 140.66 (s), 128.71 (d, J = 33.0 Hz), 128.34 (s), 126.97 (d, J = 18.4 Hz), 61.71 (s), 61.31 (s), 57.90 (s), 43.19 (s), 40.35 (s), 36.12 (s), 14.11 (s), 13.80 (s). HRMS (ESI) calcd. For $[C_{20}H_{24}N_2O_5] \cdot Na^+$ (M+Na)⁺: m/z 395.1577, found 395.1571.

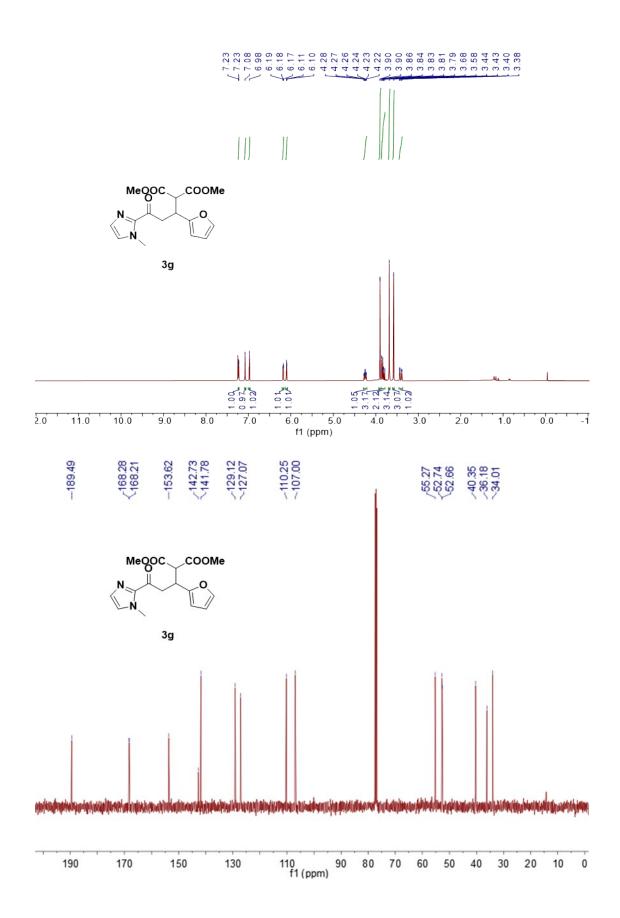

1-(1-Methyl-1H-imidazol-2-yl)-4-nitro-3-phenyl-butan-1-one (3j). White solid (89% yield), R_f =

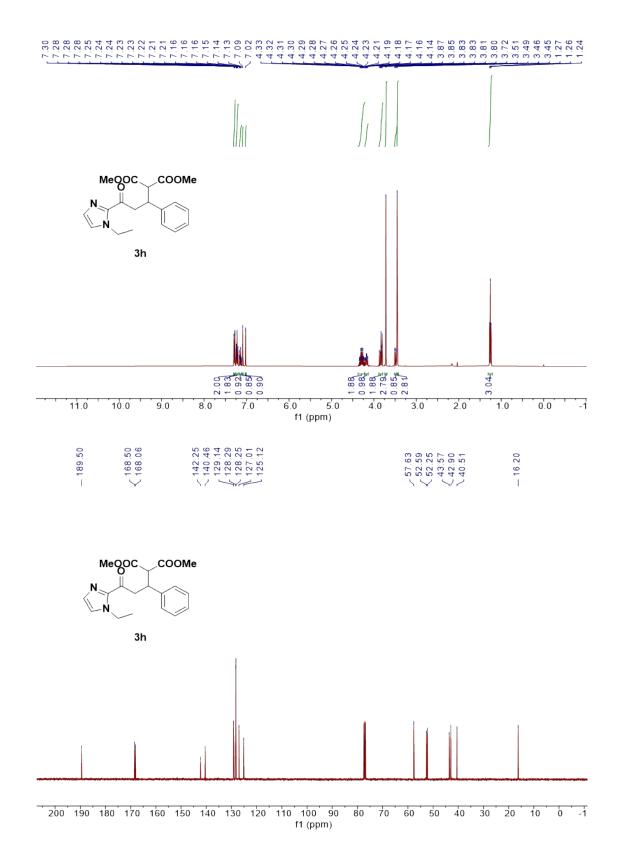


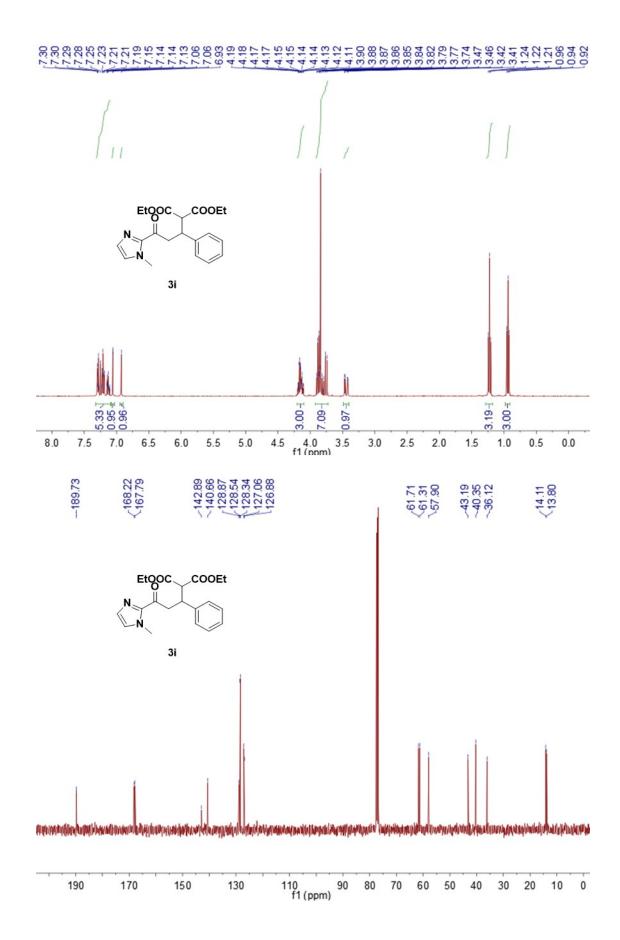

0.25 (petroleum ether: ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 5.3 Hz, 4H), 7.25 – 7.21 (m, 1H), 7.14 (s, 1H), 7.02 (s, 1H), 4.73 (dd, *J* = 12.7, 6.9 Hz, 1H), 4.63 (dd, *J* = 12.4, 8.2 Hz, 1H), 4.24 – 4.15 (m, 1H), 3.93 (s, 3H), 3.74 (dd, *J* = 17.4, 7.3 Hz, 1H), 3.53 (dd, *J* = 17.5, 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.14 (s), 139.03 (s),

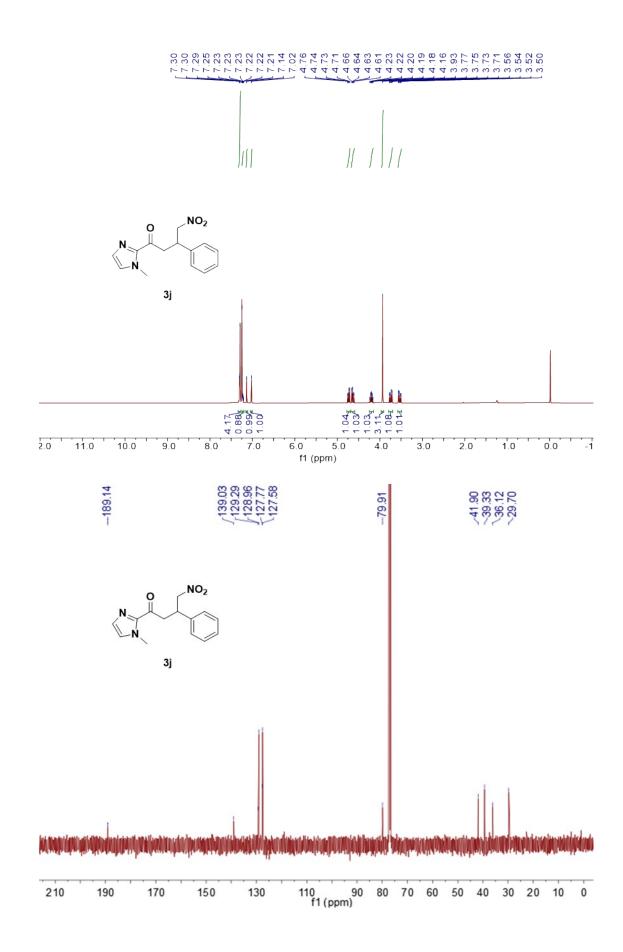

129.29 (s), 128.96 (s), 127.68 (d, J = 19.8 Hz), 79.91 (s), 41.90 (s), 39.33 (s), 36.12 (s), 29.70(s). HRMS (ESI) calcd. For $[C_{14}H_{15}N_3O_3]\cdot Na^+$ (M+Na)⁺: m/z 296.1006, found 296.1001.

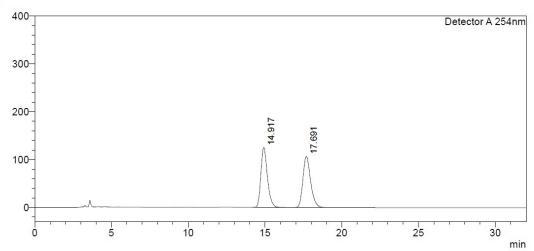








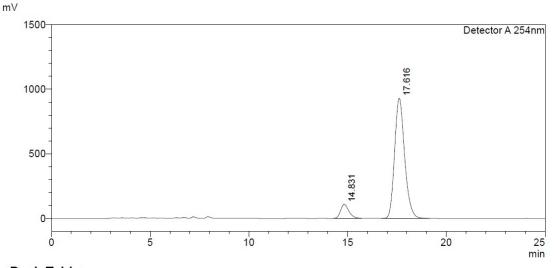



8. HPLC traces

3a racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).

Retention times: 14.9 min and 17.7 min.

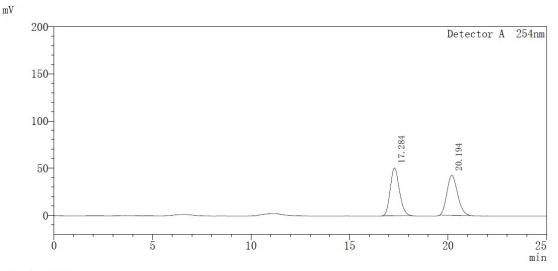


<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.917	3714146	125128	49.953			
2	17.691	3721117	106520	50.047			
Tota		7435263	231647				

Product **3a** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1a** in a 0.5 mmol scale (83% ee).

Retention times: 14.8 min and 17.6 min.

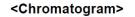


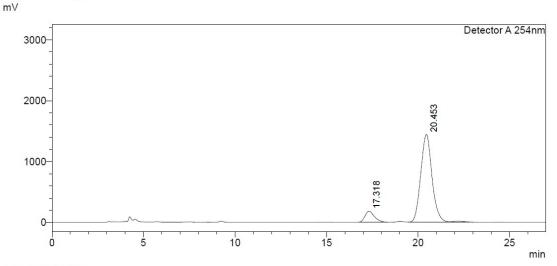
Delect	01 A 2041111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.831	3142245	108368	0.000		M	
2	17.616	32844655	929661	0.000		M	
Total		35986901	1038029				

3b racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).

Retention times: 17.3 min and 20.2 min.

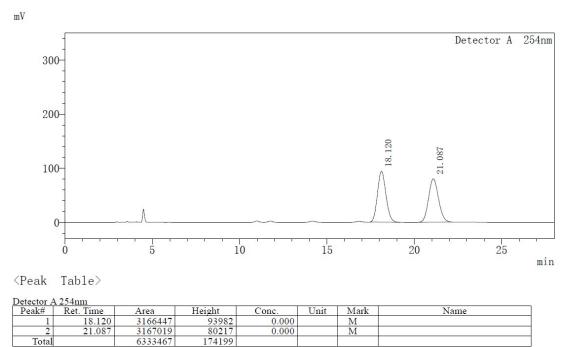

<Peak Table>


Detector	Δ	254nm

DCICCI				0.0			
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.284	1636515	50706	50.737		M	
2	20.194	1588994	42456	49.263		M	
Total		3225509	93162				

Product **3b** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1b** in a 0.1 mmol scale (81% ee).

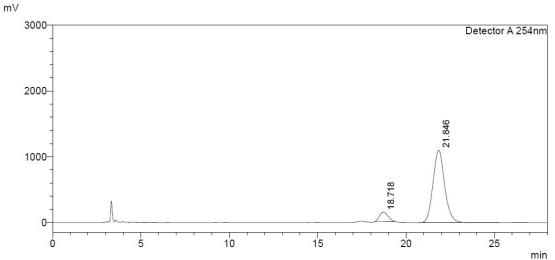
Retention times: 17.3 min and 20.5 min.



Detect	Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	17.318	6459870	180458	9.489	147254	M				
2	20.453	61617645	1438868	90.511		M				
Total		68077515	1619326							

3c racemate

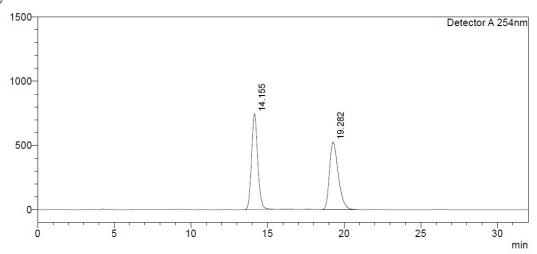
The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).


Retention times: 18.1 min and 21.1 min.

Product **3c** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1c** in a 0.5 mmol scale (83% ee).

Retention times: 18.7 min and 21.8 min.

<Chromatogram>

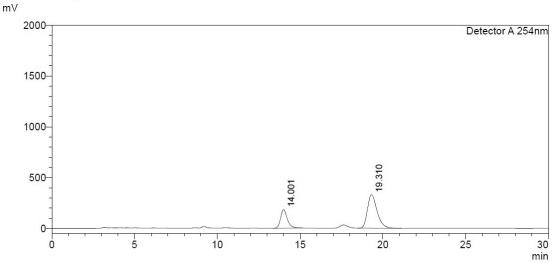

Detect							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.718	4753918	142281	8.679		M	
2	21.846	50022999	1098712	91.321		M	
Total		54776917	1240993				

3d racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).

Retention times: 14.2 min and 19.3 min.

<Peak Table>

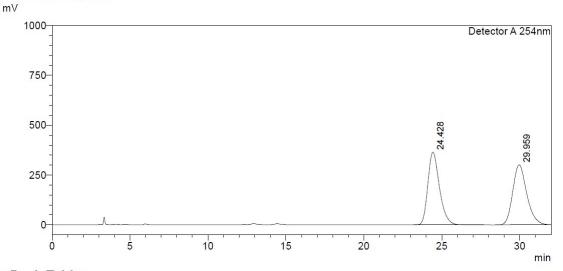

Detec	tor A 254nm						
Peak#	# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.155	20855447	745233	49.789		M	
2	19.282	21032277	526221	50.211		M	
Tota	l	41887724	1271454				

Product **3d** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1d** in

a 0.1 mmol scale (44% ee).

Retention times: 14.0 min and 19.3 min.

<Chromatogram>

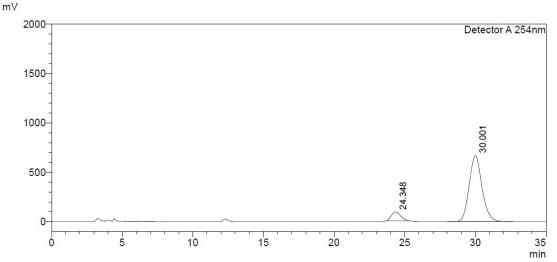

	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.001	5246579	184508	28.248		M	
2	19.310	13326511	330981	71.752		M	
Total		18573089	515489				

3e racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).

Retention times: 24.4 min and 30.0 min.

<Chromatogram>

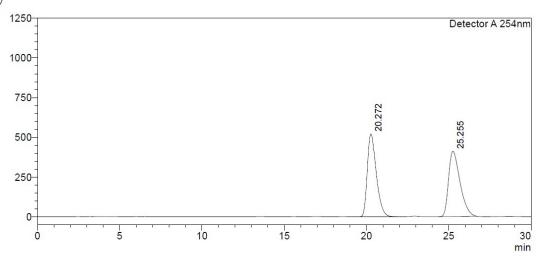

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	24.428	18903008	364743	50.076			
2	29.959	18845723	301003	49.924	(
Total		37748731	665746				

Product **3e** from the enantioselective Michael reactions catalyzed by ATP-Cu(II) catalyst using **1e** in a 0.5 mmol scale (83% ee).

Retention times: 24.3 min and 30.0 min.

<Chromatogram>

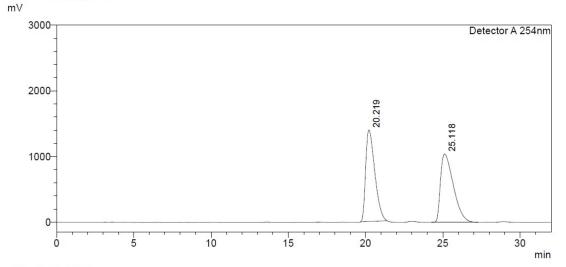

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	24.348	3913978	87168	8.498		M	
2	30.001	42144975	669604	91.502		M	
Total		46058953	756772				

3f racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 95:5, 1.0 mL/min, 254 nm).

Retention times: 20.3 min and 25.3 min.

<Peak Table>

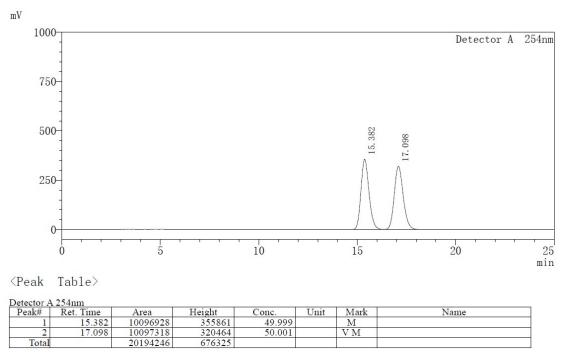

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	20.272	19775133	521163	49.823		M	
2	25.255	19915983	410648	50.177		M	
Total		39691117	931810				

Product **3f** from the enantioselective Michael reactions catalyzed by ATP-Cu(II) catalyst using **1f** in

a 0.1 mmol scale (3% ee).

Retention times: 20.2 min and 25.1 min.

<Chromatogram>

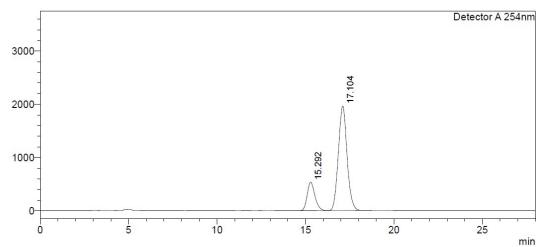


Delect	01/12041111		5.4 C		5.5	811 - BA	
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	20.219	57019400	1391921	48.663		M	Constant Constant
2	25.118	60153242	1039830	51.337		M	
Total		117172642	2431751				

3g racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 80:20, 1.0 mL/min, 254 nm).

Retention times: 15.4 min and 17.1 min.

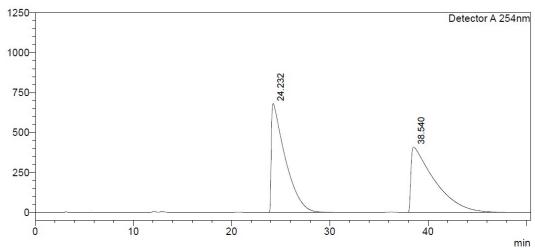


Product **3g** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1g** in a 0.1 mmol scale (61% ee).

Retention times: 15.3 min and 17.1 min.

<Chromatogram>

m٧


Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.292	16343143	536656	19.544		M	
2	17.104	67280192	1960423	80.456		M	
Total		83623334	2497079				

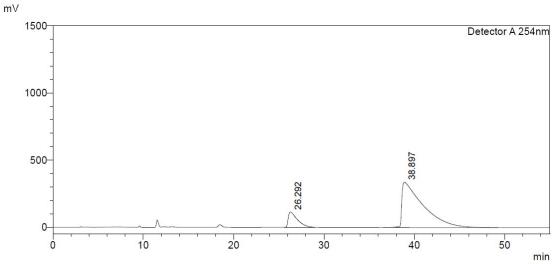
3h racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-ODH, hexane/*i*-PrOH 95:5, 1.0 mL/min, 254 nm).

Retention times: 24.2 min and 38.5 min.

mV

<Peak Table>

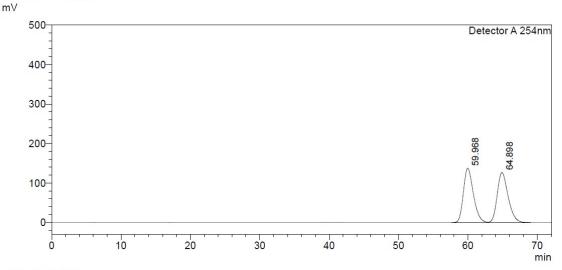

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	24.232	66874472	681126	49.761		M	
2	38.540	67516213	408577	50.239		M	
Total		134390685	1089704				

 $\label{eq:product 3h from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using 1h in$

a 0.1 mmol scale (75% ee).

Retention times: 26.2 min and 38.9 min.

<Chromatogram>


Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	26.292	7946610	113957	12.669		М	
2	38.897	54779826	336001	87.331		Μ	
Total		62726437	449958				

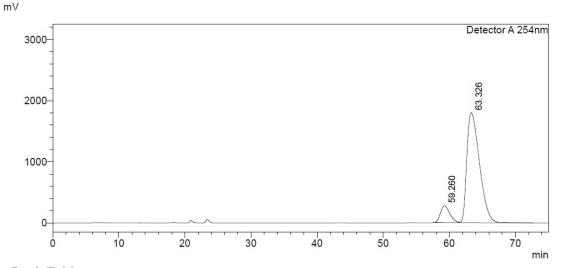
3i racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 90:10, 0.5 mL/min, 254 nm).

Retention times: 60.0 min and 64.9 min.

<Chromatogram>

<Peak Table>


Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	59.968	13740774	137407	49.971		Contraction of the	
2	64.898	13756745	126508	50.029		V	
Total		27497519	263916				

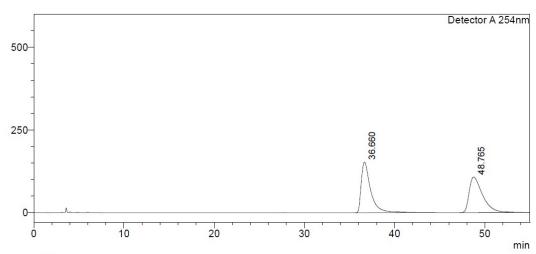
Product ${f 3i}$ from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using ${f 1a}$ in

a 0.1 mmol scale (80% ee).

Retention times: 59.3 min and 63.3 min.

<Chromatogram>

Delect	01 A 2041111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	59.260	27004652	275689	10.158		M	
2	63.326	238832474	1798483	89.842		VM	
Total		265837126	2074172				

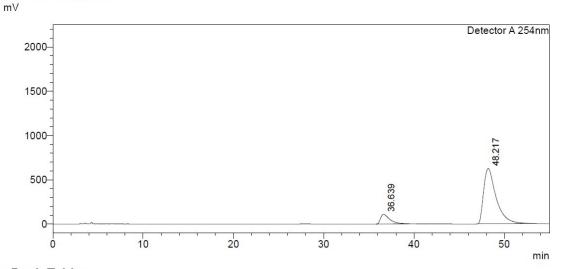

3j racemate

The ee were determined by chiral-phase HPLC (Daicel chiralpak-AD, hexane/*i*-PrOH 95:5, 1.0 mL/min, 254 nm).

Retention times: 36.7 min and 48.8 min.

<Chromatogram>

<Peak Table>


Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	36.660	11013399	152793	49.944		M	
2	48.765	11038284	107356	50.056		M	
Total		22051683	260149				

Product **3j** from the enantioselective Michael reaction catalyzed by ATP-Cu(II) catalyst using **1a** in

a 0.1 mmol scale (77% ee).

Retention times: 36.6 min and 48.2 min.

<Chromatogram>

Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
1	36.639	7719177	109352	11.482		M			
2	48.217	59509963	621217	88.518		М			
Total		67229140	730569						