Supporting Information

Iodine-catalyzed, highly atom-economic synthesis of 9sulfenylphenanthrenes and polycyclic heteroaromatics in water

Nilanjana Mukherjee and Tanmay Chatterjee*
Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
Email: tanmay@hyderabad.bits-pilani.ac.in
\section*{Contents}

1. General considerations S-2
2. Experimental procedure for the synthesis of 2-alkynyl biaryls (1a-1m) S-2
3. Experimental procedure for the synthesis of 2-(cyclopropylethynyl)-1,1'-biphenyl (1k) S-3
4. General experimental procedure for the synthesis of 9-sulfenylphenanthrenes and polycyclic heteroaromatics (3aa-3al and 3ba-3ma). S-3
4.1. Multigram-scale synthesis of phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) S-4
5. Table S1. Calculation of EcoScale score for the I_{2} catalyzed synthetic process S-5
6. Table S2. Calculation of green metrics for the Pd-catalyzed synthetic process S-6
7. Table S3. Calculation of EcoScale score for the Pd-catalyzed S-7
8. Table S4. Calculation of green metrics for the I_{2}-catalyzed synthetic process S-8
9. Table S5. Calculation of EcoScale score for the I_{2}-catalyzed synthetic process S-9
10. Figure 1 Mass spectrum of the reaction mixture of diphenyl disulfide and I_{2} S-10
11. Analytical data of Starting Material (1k) S-10
12. Analytical data of all synthesized products (3aa-3al and 3ba-3ma) S-11
13. References S-18
14. NMR Spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) S-19

1. General considerations

General reagent information

All reagents and solvents were purchased from Sigma-Aldrich, TCI and AVRA chemical companies. Flash column chromatography was performed using silica gel (100-200 mesh).

General analytical information

The starting materials such as 2-(phenylethynyl)-1,1'-biaryls and products such as 9 -sulphenyl phenanthrenes and polycyclic heteroaromatics were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. NMR spectra were recorded on a Bruker 400 MHz instrument $\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR). Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra can be found at the end of the Supporting Information. ${ }^{1} \mathrm{H}$ NMR experiments are reported in units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) in the deuterated solvent. ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to deuterochloroform (77.00 ppm) and all were obtained with ${ }^{1} \mathrm{H}$ decoupling. Coupling constants were reported in Hz . Reactions were monitored by thin layer chromatography (TLC) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture using 1,3,5trimethoxybenzene as the internal standard. Mass spectral data of unknown compounds were obtained from BITS-Pilani, Pilani Campus, India on a high resolution mass spectrometer, HRMS (6545 Q-TOF LC/MS, Agilent). Melting points of unknown compounds were recorded on a KRUSS Optronic M3000 apparatus.

2. Experimental procedure for the synthesis of 2-alkynyl biaryls (1a-1m).

1a

1b

1c

1d

1 e

$1 f$

1 g

1h

$1 i$

1j

11

1 m

All starting materials except $\mathbf{1 k}\left(\mathbf{1 a},{ }^{1} \mathbf{1 b},{ }^{1} \mathbf{1 c},{ }^{1} \mathbf{1 d},{ }^{1} \mathbf{1 e},{ }^{1} \mathbf{1 f},{ }^{1} \mathbf{1 g},{ }^{1} \mathbf{1 h},{ }^{1} \mathbf{1 i},{ }^{1} \mathbf{1},{ }^{1}, \mathbf{1},{ }^{1} \mathbf{1 m}{ }^{2}\right)$ were synthesized by following a literature protocol and characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$. ${ }^{1,2}$

3. Experimental procedure for the synthesis of 2-(cyclopropylethynyl)-1,1'biphenyl (1k).

Step-1: 2-Iodo-1,1'-biphenyl S2 was synthesized from [1,1'-biphenyl]-2-amine S1 by following a reported protocol. ${ }^{1}$

Step-2: 2-iodo-1,1'-biphenyl $\mathbf{S 2}$ ($1.4 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.07 \mathrm{~g}, 0.1 \mathrm{mmol})$, CuI $(0.019 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL})$ were added in a flame-dried two neck round bottomed flask (RBF) under N_{2} atmosphere in a standard Schlenk-line process and stirred for 5 min at room temperature. Cyclopropylacetylene $\mathbf{S 3}$ ($508 \mu \mathrm{~L}, 6 \mathrm{mmol}, 1.2$ equiv) was then added to the reaction mixture under nitrogen atmosphere. The reaction mixture was stirred for 12 h at room temperature. After the completion of the reaction, $\mathrm{Et}_{3} \mathrm{~N}$ was evaporated under reduced pressure. The crude reaction mixture was diluted with ethyl acetate (30 mL) and washed with water three times ($3 \times 10 \mathrm{~mL}$). The solvent was evaporated under reduced pressure and the crude product was purified through silica gel column chromatography to provide 2-(cyclopropylethynyl)-1,1'-biphenyl $1 \mathbf{k}(0.436 \mathrm{~g}, 2 \mathrm{mmol})$ in 40% yield.
4. General experimental procedure for the synthesis of 9sulfenylphenanthrenes and polycyclic Heteroaromatics (3aa-3al and 3ba-3ma). Representative experimental procedure for the synthesis of phenyl(10-phenylphenanthren-9-yl)sulfane (3aa): Phenyl(10-phenylphenanthren-9-yl)sulfane $\mathbf{1 a}(0.127 \mathrm{~g}, 0.5 \mathrm{mmol}, 1$ equiv), 1,2-diphenyldisulfane $\mathbf{2 a}(0.065 \mathrm{~g}, 0.3 \mathrm{mmol}, 0.6$ equiv) and $\mathrm{I}_{2}(0.0254 \mathrm{~g}, 0.1 \mathrm{mmol})$ were taken in a RBF and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL}, 1.6 \mathrm{M})$ was added to it. Then $\mathrm{H}_{2} \mathrm{O}_{2}$ ($0.02 \mathrm{~mL}, 0.25 \mathrm{mmol}, 0.5$ equiv) was added to the RBF and the reaction mixture was stirred in an oil bath at $60^{\circ} \mathrm{C}$ under aerobic atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, iodine was quenched with
saturated sodium thiosulfate solution and ethyl acetate (30 mL) was added to the reaction mixture. The whole solution was then transferred to a separating funnel for extraction. The reaction mixture was extracted with ethyl acetate twice (2 X 10 mL) and the combined organic layer was washed with water (3 X 10 mL). The solvent was evaporated under reduced pressure to afford the crude product which was purified by flash column chromatography through silica gel to afford the pure product, phenyl(10-phenylphenanthren-9-yl)sulfane 3aa ($0.167 \mathrm{~g}, 0.46$ mmol) in 92% yield.

4.1. Multigram-scale synthesis of phenyl(10-phenylphenanthren-9-

 yl)sulfane (3aa) : Phenyl(10-phenylphenanthren-9-yl)sulfane 1a ($10.17 \mathrm{~g}, 40 \mathrm{mmol}, 1$ equiv), 1,2-diphenyldisulfane $\mathbf{2 a}\left(5.24 \mathrm{~g}, 24 \mathrm{mmol}, 0.6\right.$ equiv) and $\mathrm{I}_{2}(2.03 \mathrm{~g}, 8 \mathrm{mmol})$ were taken in a RBF and $\mathrm{H}_{2} \mathrm{O}(24.4 \mathrm{~mL}, 1.6 \mathrm{M})$ was added to it. Then $\mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{~mL}, 20 \mathrm{mmol}, 0.5$ equiv) was added to the RBF and the reaction mixture was stirred in an oil bath at $60^{\circ} \mathrm{C}$ under aerobic atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, iodine was quenched with saturated sodium thiosulfate solution and ethyl acetate was added to the reaction mixture. The whole solution was then transferred to a separating funnel for extraction. The reaction mixture was extracted with ethyl acetate twice and the combined organic layer was washed with water. The solvent was evaporated under reduced pressure to afford the crude product which was purified by flash column chromatography through silica gel to afford the pure product, phenyl(10-phenylphenanthren-9-yl)sulfane 3aa ($10.95 \mathrm{~g}, 30.2 \mathrm{mmol}$) in 75.52% yield.
5. Table S1. Calculation of EcoScale score for the $\mathbf{I}_{\mathbf{2}}$ catalyzed synthetic process in water to synthesize phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) from 2-(phenylethynyl)-1,1'-biphenyl (1a) and diphenyl diselenide (2a) (this work)
EcoScale Calculation:Eco Scale $=100$ - Sum of individual penaltiesScore on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequate
A. Calculation of Penalty Points :

B. Ecoscale calculation:

EcoScale score: $(100-33)=67$ (>50; it is an acceptable synthesis)
6. Table S2. Calculation of green metrics for the Pd-catalyzed synthetic process to synthesize phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) from 2-(phenylethynyl)-1,1'-biphenyl (1a) and diphenyl diselenide (2a) ${ }^{3}$

Yield of desired product (3aa) $=95 \%$
Atom Economy $(\%)=\frac{\text { mass of desired product }}{\text { total mass of all reactants }} \times 100=\frac{362.49}{254.33+218.33+(2 \times 253.81)} \times 100=36.98 \%$

Atom Efficiency $(\%)=(\% y i e l d$ of product $\times \%$ atom economy $) \times 100=(95 \% \times 36.98 \%) \times 100=35.13 \%$

Carbon Efficiency (\%) = $\begin{array}{r}\text { amount of carbon in desired product } \\ \text { total amount of carbon presented in all reactants }\end{array} \times 100=\frac{26}{20+12} \times 100=81.3 \%$
Reaction Mass Efficiency $(\%)=\frac{\text { mass of isolated product }}{\text { mass of all reactants }} \times 100=\frac{0.172}{0.127+0.109+0.253} \times 100=35.17 \%$

Reactant 1:	2-(Phenylethynyl) 1,1'-biphenyl (1a)	0.127 g	0.5 mmol	FW 254.332
Reactant 2:	1,2-Diphenyldisulfane (2a)	0.109 g	0.5 mmol	FW 218.332
Catalyst 1:	lodine	0.253 g	1.0 mmol	FW 253.8089
Catalyst 2:	palladium(II) chloride	0.008 g	0.05 mmol	FW 177.32
Solvent:	THF	4.44 g	61.57 mmol	FW 72.11
Product:	Phenyl(10-phenylphenanthren-9-yl)sulfane	0.172 g	0.47 mmol	FW 362.49:

E-factor $=\frac{\text { total waste }(\mathrm{Kg})}{\text { total product }(\mathrm{Kg})}=\frac{(0.127+0.109+0.253+0.008+4.44)-0.172}{0.172}=27.7 \mathrm{Kg}$ waste $/ \mathrm{Kg} \mathrm{pdt}$

7. Table S3. Calculation of EcoScale score for the Pd-catalyzed synthetic process to synthesize phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) from 2-(phenylethynyl)-1,1'-biphenyl (1a) and diphenyl diselenide (2a) ${ }^{3}$

Eco Scale Calculation:

Eco Scale $=100$ - Sum of individual penalties

Score on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequate
A. Calculation of Penalty Points :

Parameters

1. Yield: $\quad(100-\%$ of yield $) / 2=(100-95) / 2=2.5$
2. Price of reaction components (To obtain 10 mmol of end product, 3aa)
a. 2-(Phenylethynyl)-1,1'-biphenyl $=10.64$ mmole $=2.94 \mathrm{~g}=$ USD 13.55
[Synthesis cost: Required Chemicals :
i) [1,1'-biphenyl]-2-amine $=2.65 \mathrm{~g}=$ USD 7.71
ii) $\mathrm{HCl}=8.13 \mathrm{~mL}=$ USD 0.26
iii) $\mathrm{NaNO}_{2}=1.31 \mathrm{~g}=$ USD 0.059
iv) $\mathrm{KI}=3.91 \mathrm{~g}=$ USD 1.24
v) $\mathrm{Bis}($ triphenyl phosphine) $\mathrm{Pd}(\mathrm{II})$ dichloride $=0.093 \mathrm{~g}=$ USD 1.77
vi) $\mathrm{Cul}=0.025 \mathrm{~g}=$ USD 0.0083
vii) Phenyl acetylene $=1.75 \mathrm{~mL}=$ USD 2.19
viii) Triethylamine $=31.90 \mathrm{~mL}=$ USD 0.316
b. 1,2-Diphenyldisulfane $=10.64$ mmole $=2.32 \mathrm{~g}=$ USD 1.49
c. lodine $=21.28$ mmole $=5.40 \mathrm{~g}=$ USD 1.60
d. Palladium(II) chloride (As catalyst) $=0.188 \mathrm{~g}=$ USD 13.35
e. $\mathrm{THF}=106.4 \mathrm{~mL}=$ USD 8.34

Total cost of synthesis of $\mathbf{3 a a}=(13.55+1.49+1.60+13.35+8.34)=$ USD 38.33
Thus expensive, since $\$ 10<$ (total cost of synthesis of 10 mmol of 3aa) < $\$ 50$:
3
3. Safety

1,2-Diphenyldisulfane (T) 5
lodine (T) 5
Palladium(II) chloride (T) 5
THF (T, F) 10
4. Technical Setup

Common Setup 0
Inert gas atmosphere 1
5. Temperature/ Time
$80^{\circ} \mathrm{C}, 14 \mathrm{~h}$ (Heating, > 1h) 3
6. Work up and purification :
a. Adding solvent 0
b. Liquid-Liquid extraction 3
c. Classical Chromatography 10

Total penalty points: 47.5
B. Ecoscale calculation:

Eco-scale Score: (100-47.5) = 52.5 ($\mathbf{~} 50$; it is an acceptable synthesis)

8. Table S4. Calculation of green metrics for the I_{2}-catalyzed synthetic process to synthesize phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) from

 2-(phenylethynyl)-1,1'-biphenyl (1a) and (methylsulfinyl)benzene (2a') ${ }^{1}$

Yield of desired product (3aa) $=81 \%$
Atom Economy $(\%)=\frac{\text { mass of desired product }}{\text { total mass of all reactants }} \times 100=\frac{362.49}{254.33+[(3 \times 140.2)+(3 \times 210.3)]} \times 100=27.76 \%$

Atom Efficiency $(\%)=(\% y i e l d$ of product $\times \%$ atom economy $) \times 100=(81 \% \times 27.76 \%) \times 100=22.48 \%$
Carbon Efficiency $(\%)=\frac{\text { amount of carbon in desired product }}{\text { total amount of carbon presented in all reactants }} \times 100=\frac{24}{20+(3 \times 7)+(3 \times 4)} \times 100=45.28 \%$
Reaction Mass Efficiency $(\%)=\frac{\text { mass of isolated product }}{\text { total mass of all reactants }} \times 100=\frac{0.147}{0.127+0.210+0.315} \quad \times 100=\mathbf{2 2 . 5 5 \%}$

[^0]
9. Table S5. Calculation of EcoScale score for the I_{2}-catalyzed synthetic process to synthesize phenyl(10-phenylphenanthren-9-yl)sulfane (3aa) from

2-(phenylethynyl)-1,1'-biphenyl (1a) and (methylsulfinyl)benzene (2a') ${ }^{1}$

Eco Scale Calculation:

Eco Scale $=100-$ Sum of individual penalties

Score on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequate

A. Calculation of Penalty Points :

| Parameters | $(100-\%$ of yield $) / 2=(100-81) / 2$ |
| :--- | :---: | Penalty Points

2. Price of reaction components (To obtain 10 mmol of end product, 3aa)
a. 2-(Phenylethynyl)-1,1'-biphenyl $=12.35 \mathrm{mmol}=3.14 \mathrm{~g}=$ USD 15.72
[Synthesis cost: Required Chemicals :
i) $[1,1$ '-biphenyl]-2-amine $=3.07 \mathrm{~g}=$ USD 8.93
ii) $\mathrm{HCl}=9.44 \mathrm{~mL}=$ USD 0.30
iii) $\mathrm{NaNO}_{2}=1.53 \mathrm{~g}=$ USD 0.07
iv) $\mathrm{KI}=4.54 \mathrm{~g}=$ USD 1.44
v) Bis(triphenyl phosphine) $\mathrm{Pd}(\mathrm{II})$ dichloride $=0.108 \mathrm{~g}=$ USD 2.06
vi) $\mathrm{Cu}=0.029 \mathrm{~g}=$ USD 0.0097
vii) Phenyl acetylene $=2.034 \mathrm{~mL}=$ USD 2.54
viii) Triethylamine $=37.06 \mathrm{~mL}=$ USD 0.37
b. Methyl Phenyl Sulfoxide $=37.05 \mathrm{mmol}=5.19 \mathrm{~g}=$ USD 28.65
c. lodine (As catalyst) $=2.47 \mathrm{mmol}=0.627 \mathrm{~g}=$ USD 0.19
d. TFAA $=5.16 \mathrm{~mL}=$ USD 0.97
e. Toluene $=30.88 \mathrm{~mL}=$ USD 1.13

Total cost of synthesis of $\mathbf{3 a a}=(13.67+28.74+0.186+0.967+1.136)=$ USD 46.66
Thus expensive, since $\$ 10<$ (total cost of synthesis of 10 mmol of $\mathbf{3 a a})<\$ 50$:
3. Safety

Methyl Phenyl Sulfoxide (T) 5
lodine (T) 5
TFAA 5
Toluene (F,T) 10
4. Technical Setup 0 Common Setup
5. Temperature/time: 3 $120^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (Heating, > 1h)
6. Work-up and purification:

Adding of solvents 0
Liquid-liquid Extraction 3
Column Chromatography 10
Total penalty points:
53.5
B. Ecoscale calculation:

Eco-scale Score: $(100-53.5)=46.5(<50$, it is an inadequate synthesis)
10.

<Spectrum>

Figure 1 Mass spectrum of the reaction mixture of diphenyl disulfide and \mathbf{I}_{2}

11. Analytical data of starting material (1k)

2-(cyclopropylethynyl)-1,1'-biphenyl (1k). Pale yellow liquid (0.436 g, 40%); eluent hexane; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=10.0,6.6,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $0.81-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.64,140.74$, 132.84, 129.28, 129.21, 127.69, 127.59, 127.19, 126.87, 122.20, 96.44, 75.20, 8.32, 0.30 . HRMS (ESI), m/ z calcd for $\mathrm{C}_{17} \mathrm{H}_{15}[\mathrm{M}+\mathrm{H}]^{+}: 219.1168$; found: 219.1158 .

12. Analytical data of all synthesized products (3aa-3al and 3ba -3ma)

Phenyl(10-phenylphenanthren-9-yl)sulfane (3aa). ${ }^{\mathbf{3}}$ Yellow solid (0.167 g , 92%); eluent hexane; $\mathrm{mp}=125-127{ }^{\circ} \mathbf{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.83$ $(\mathrm{dd}, J=8.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.64$ $(\mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 146.82,140.15,138.97,132.21,132.04,131.08,130.87,129.48,128.70$, $128.63,128.02,127.93,127.61,127.57,127.34,127.09,127.05,126.71,126.33,124.63$, $122.74,122.55$.

(4-Bromophenyl)(10-phenylphenanthren-9-yl)sulfane (3ab) :
White solid ($0.185 \mathrm{~g}, 84 \%$); eluent hexane; $\mathrm{mp}=166-168{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{H O}_{3}$) $\delta 8.69(\mathrm{dd}, J=18.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.63(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 3 \mathrm{H})$, $7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 145.63,139.34,138.61,133.68,132.02$, $130.76,130.70,130.41,129.74,129.46,128.88,128.71,128.23,128.16,127.94,127.70$, 127.44, 126.51, 124.86, 124.38, 122.64, 121.06. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{BrS}: \mathrm{C}, 70.75 ; \mathrm{H}, 3.88$; S, 7.26; found C, 70.91; H, 3.56; S, 7.41.
 (4-Chlorophenyl)(10-phenylphenanthren-9-yl)sulfane (3ac) $:^{3}$ White solid ($0.131 \mathrm{~g}, 66 \%$); eluent hexane; $\mathrm{mp}=115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.81-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.58(\mathrm{dd}, J=8.3,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44$ $(\mathrm{dd}, J=4.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}$) $\delta 147.04,140.01,137.54,132.17,131.80,131.17$, $130.97,130.47,129.43,128.78,128.03,127.82,127.79,127.71,127.55,127.50,127.21$, $126.84,126.66,122.87,122.60$.
 (4-Fluorophenyl)(10-phenylphenanthren-9-yl)sulfane (3ad) : ${ }^{3}$ Fluoroscent Blue solid ($0.144 \mathrm{~g}, 70 \%$); eluent hexane; $\mathrm{mp}=118-120$ ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{dd}$, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddt}, J=8.4,6.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (ddd, J $=8.2,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}$, 3 H), 7.34 (ddd, $J=4.0,2.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (dd, $J=9.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (t, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.89,159.46,146.67,140.02,133.86,133.84,132.14$, 131.91, 131.03, 130.91, 129.54, 128.64, 128.32, 128.25, 127.96, 127.85, 127.67, 127.58, $127.53,127.38,127.10,126.76,122.80,122.54,115.83,115.61$.
 (4-Nitrophenyl)(10-phenylphenanthren-9-yl)sulfane (3ae) :3 Yellow crystalline solid ($0.082 \mathrm{~g}, 36 \%$); eluent hexane/EtOAc (10:1); $\mathrm{mp}=188-190{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.83(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.46$ (dd, $J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, 2H), $7.79-7.72$ (m, 2H), $7.67-7.45$ (m, 4H), 7.43 (dd, $J=4.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24-7.21$ (m, $2 \mathrm{H}), 6.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 148.95, 147.78, 144.81, 139.61, $132.05,131.41,131.33,131.07,129.14,128.96,128.32,128.16,128.00,127.80,127.56$, $127.18,127.06,125.60,124.69,123.89,123.12,122.71$.

(10-Phenylphenanthren-9-yl)(p-tolyl)sulfane (3af) : ${ }^{3}$ Yellow solid $(0.170 \mathrm{~g}, 90 \%)$; eluent hexane; $\mathrm{mp}=105-107{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.82$ (dd, $J=8.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.72 (dd, $J=8.3,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}$, 2H), 7.51 - 7.48 (m, 3H), $7.37-7.31$ (m, 2H), 6.92 (dd, $J=21.3,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.26$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.63,140.25,135.34,134.38,132.23,132.07,131.04$, $130.88,129.55,129.44,128.68,128.12,127.94,127.52,127.30,126.98,126.68,126.47$, 122.71, 122.54, 20.82.

\mathbf{N}-(2-(10-Phenylphenanthren-9-yl)phenyl)benzamide (3ag) : Off White solid ($0.145 \mathrm{~g}, 60 \%$); eluent hexane/EtOAc (20:1); mp = $155-157{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.40(\mathrm{dd}, J=7.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.36-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H})$,
$7.28(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=8.3,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H})$, $7.00-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=5.3,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.72-6.66$ $(\mathrm{m}, 1 \mathrm{H}), 6.58-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 164.93,146.03,139.65,136.45,134.60,132.76,132.20,131.64,130.78$, $130.71,130.57,129.41,128.63,128.50,128.22,128.16,128.08,127.83,127.70,127.45$, 127.38, 127.27, 127.16, 127.11, 126.80, 124.65, 122.85, 122.53, 121.10. HRMS (ESI), m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 482.1573$; found: 482.1553.

Benzyl(10-phenylphenanthren-9-yl)sulfane (3ah) : White crystalline solid ($0.143 \mathrm{~g}, 76 \%$); eluent hexane; $\mathrm{mp}=185-187{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.90(\mathrm{dd}, J=6.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.82-8.73(\mathrm{~m}, 2 \mathrm{H}), 7.74$ (dd, $J=6.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 7.37 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 146.22,140.35,137.72,132.22$, $132.10,130.70,130.60,130.11,128.95,128.53,128.19,127.80,127.40,127.17,127.03$, 126.84, 126.57, 122.98, 122.45, 40.84. HRMS (ESI), m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 377.1358; found: 377.1285.

(10-Phenylphenanthren-9-yl)(propyl)sulfane (3ai) : White crystalline solid $(0.115 \mathrm{~g}, 70 \%)$; eluent hexane; $\mathrm{mp}=100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=12.8,8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (ddd, $J=8.3,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}$, $5 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 145.39,140.64,132.53,132.10$, $130.65,130.45,130.35,128.32,127.93,127.87,127.20,127.11,126.98,126.74,126.56$, 122.85, 122.41, 38.67, 22.87, 13.41 (Overlapping peaks present). HRMS (ESI), m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 329.1358$; found: 329.1292.

4-((10-Phenylphenanthren-9-yl)thio)butanoic acid (3aj):
Yellow crystalline solid ($0.104 \mathrm{~g}, 56 \%$); eluent hexane/EtOAc (20:1); $\mathbf{m p}=130-132{ }^{\circ} \mathbf{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.90$ (dd, $J=6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.77$ (dd, $J=12.4,7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.77-$ 7.71 (m, 2H), 7.67 (ddd, $J=8.3,5.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,1.5$
$\mathrm{Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 179.33,145.69,140.38,132.23,131.97,130.71,130.53,130.40,129.42$, $128.38,127.94,127.69,127.32,127.26,127.15,126.83,126.63,122.94,122.42,77.00,35.54$, 32.55, 24.04. HRMS (ESI), m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}$ [M]: 373.1257; found: 373.1180.

2-(10-Phenylphenanthren-9-yl)ethan-1-ol (3ak) : Yellow solid ($0.066 \mathrm{~g}, 40 \%$); eluent hexane/EtOAc (25:1); mp $=123-125{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.84(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J$ $=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (ddd, $J=8.3,5.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 146.03,140.35,131.80,130.89,130.63,130.38,128.50,128.28,127.60$, $127.50,127.37,126.99,126.80,123.13,122.48,59.78$, 39.77. Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}$, 79.97; H, 5.49; S, 9.70; found C, 79.81; H, 5.61; S, 9.86.

Cyclohexyl(10-phenylphenanthren-9-yl)sulfane (3al) :3 Off White solid (, $0.074 \mathrm{~g}, 38 \%$); eluent hexane; $\mathrm{mp}=129-131{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.92(\mathrm{dd}, J=7.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ (dd, $J=10.5,7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72$ (ddd, $J=4.6,2.4,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.46$ (m, 2H), 7.45 (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{tt}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=13.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.33-1.18$ (m, 4H), 1.09 (ddd, $\left.J=16.7,10.3,3.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}\right) \delta$ $145.47,140.62,133.16,132.17,130.69,130.56,130.44,129.85,128.36,128.25,127.78$, $127.10,127.05,126.94,126.70,126.57,122.77,122.42,48.55,33.46,26.03,25.63$.

(6-Chloro-10-phenylphenanthren-9-yl)(phenyl)sulfane (3ba)
Yellow crystalline solid ($0.133 \mathrm{~g}, 67 \%$); eluent hexane; $\mathrm{mp}=155-157^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=8.3,6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51 (dd, $J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, $J=1.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=4.9,3.3,1.9 \mathrm{~Hz}$, 3H), 7.04 - 7.01 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ 147.04, 141.63, 133.87, 133.28, $132.45,132.36,131.80,130.86,130.09,129.61,129.20,129.03,128.03,127.93,127.72$, 127.47, 127.39, 127.14, 125.72, 122.63, 122.32. HRMS (ESI), m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{ClS}$ [M]: 396.0739; found: 396.0717.

(2-Chloro-10-phenylphenanthren-9-yl)(phenyl)sulfane (3ca): ${ }^{3}$ White crystalline solid ($0.129 \mathrm{~g}, 62 \%$); eluent hexane; $\mathrm{mp}=145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.66-8.72(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.59$ (m, 2H), $7.52-7.43$ (m, 4H), 7.28 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15-7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $145.69,139.37,138.60$, 133.31, 132.76, 131.96, 130.36, 129.44, 128.87, 128.70, 128.20, $128.15,128.00,127.83,127.67,127.61,127.42,126.49,124.85,124.24,122.68$.

(2-Bromo-10-phenylphenanthren-9-yl)(phenyl)sulfane (3da) : White solid ($0.155 \mathrm{~g}, 67 \%$); eluent hexane; $\mathrm{mp}=166-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=8.9,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24$ (dd, $J=5.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H})$, $6.92(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 145.63,139.34,138.61,133.68$, 132.02, 130.76, 130.70, 130.41, 129.74, 129.46, 128.88, 128.71, 128.23, 128.16, 127.94, 127.70, 127.44, 126.51, 126.37, 124.86, 124.38, 122.64, 121.06. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{BrS}: \mathrm{C}$, 70.75 ; H, 3.88; S, 7.26 found C, 70.96; H, 3.61; S, 7.10.

(4,10-Diphenylphenanthren-9-yl)(phenyl)sulfane (3ea) :White crystalline solid ($0.154 \mathrm{~g}, 70 \%$); eluent hexane; $\mathrm{mp}=200-202{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48$ (d, $J=14.7 \mathrm{~Hz}, 12 \mathrm{H}$), 7.31 (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (dd, $J=$ $11.6,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{dd}, J=31.2,7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 146.71, $145.25,140.62,140.23,138.90,133.74,133.06,131.89,130.89,129.60,129.09,129.03$, 128.89, 128.66, 128.28, 128.00, 127.77, 127.47, 127.35, 127.12, 126.94, 126.53, 125.68, 124.97, 124.71. Anal calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~S}$: C, 87.63 ; H, 5.06 ; S, 7.31 ; found C, 87.76 ; H, 5.18; S, 7.18.

(4-Methyl-10-phenylphenanthren-9-yl)(phenyl)sulfane
(3fa) :
Yellow solid ($0.135 \mathrm{~g}, 72 \%$); eluent hexane; $\mathrm{mp}=188-190{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (ddd, $J=8.5,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59$ (m, 2H), 7.46 (dd, J
$=4.1,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $147.23,140.88,138.94,134.98,133.71,132.94,132.23,132.03,131.33,129.50,128.62$, 127.92, 127.71, 127.23, 127.11, 126.84, 126.39, 125.75, 125.64, 124.61, 27.29. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 377.1358$; found: 377.1286.

Phenyl(6-phenylbenzo[c]phenanthren-5-yl)sulfane (3ga) : Yellow solid ($0.083 \mathrm{~g}, 38 \%$); eluent hexane; $\mathrm{mp}=145-147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.83(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.03 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{dd}, J=5.5,3.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=11.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94$ (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.03,140.21,138.98,133.52,133.31,130.64$, $130.40,129.84,129.53,129.15,128.83,128.65,128.58,128.21,127.95,127.46,127.40$, 127.12, 127.04, 126.64, 126.25, 126.22, 125.47, 124.74. HRMS (ESI), m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 413.1358$; found: 413.1327.

(10-(2-Chlorophenyl)phenanthren-9-yl)(phenyl)sulfane (3ha) : White crystalline solid ($0.188 \mathrm{~g}, 95 \%$); eluent hexane; $\mathrm{mp}=130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.3,5.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51$ (m, 3H), 7.45 (dd, $J=4.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.04$ (ddd, $\left.J=7.3,3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 147.03,139.80,138.57,133.31,132.59,132.05,130.47,130.08,129.78,129.45,128.82$, $128.75,128.01,127.97,127.89,127.50,127.37,126.80,126.40,124.89,122.63,122.42$. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{ClS}$: C, 78.67; H, 4.32; S, 8.08; found C, $78.56 ; \mathrm{H}, 4.48 ; \mathrm{S}, 8.21$.

Phenyl(10-(4-propylphenyl)phenanthren-9-yl)sulfane (3ia) : Off White crystalline solid $(0.142 \mathrm{~g}, 70 \%)$; eluent hexane; $\mathrm{mp}=150-152$ ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.81(\mathrm{dd}, J=8.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.67$ (dd, $J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (dtd, $J=8.3,6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.99-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{dd}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.96,141.68,139.11,137.36,132.44,132.12,131.09,130.86$, $129.35,128.82$, $128.61,128.06,127.99,127.55,127.52$, 127.24, 126.95, 126.67, 126.49, 124.62, 122.73, 122.52, 37.91, 24.40, 13.96. Anal calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~S}: \mathrm{C}, 86.10 ; \mathrm{H}, 5.98 ; \mathrm{S}, 7.92$; found C, 86.46; H, 5.66; S, 7.82.

Phenyl(10-(m-tolyl)phenanthren-9-yl)sulfane (3ja) : Yellow crystalline solid ($0.132 \mathrm{~g}, 65 \%$); eluent hexane; $\mathrm{mp}=165-167{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.81-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{dd}, J=8.3,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.97 - $6.93(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 146.93, 140.05, 139.11, $137.39,132.28,132.15,131.05,130.83,130.26,128.76,128.58,128.07,128.03,127.81$, $127.53,127.15,126.96,126.66,126.53,124.65,122.72,122.51,21.48$. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 377.1358$; found: 377.1324.

(10-Cyclopropylphenanthren-9-yl)(phenyl)sulfane (3ka) : Yellow liquid ($0.083 \mathrm{~g}, 51 \%$); eluent hexane; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.47$ - 7.42 (m , 2H), $7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{tt}, J=$ 8.2, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.76-0.64(\mathrm{~m}, 2 \mathrm{H}), 0.64-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.44-0.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.56,140.88,140.51,138.79,136.39,130.03,129.37,128.95,128.55$, $128.35,127.79,127.11,127.00,125.53,107.14,22.63,9.54,8.62$. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{ClS}$: C, 84.62; H, 5.56; S, 9.82; found C, 84.71; H, 5.36; S, 9.92.

4-Phenyl-5-(phenylthio)naphtho[2,1-b]thiophene (31a) : Yellow solid $(0.103 \mathrm{~g}, 56 \%)$; eluent hexane; $\mathrm{mp}=80-82{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-8.38(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.64$ (m, 2H), 7.58 (ddd, $J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52-$ $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 142.35,140.14,139.92,139.21,137.14,132.50,129.45,128.96$, 128.76, 128.66, 128.15, 128.00, 126.74, 126.60, 126.31, 124.70, 123.98, 123.73, 122.35. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~S}_{2}$ [M]: 369.0766; found: 369.0732.

4-Phenyl-5-(phenylthio)pyrrolo[1,2-a]quinoline (3ma) : Yellow solid ($0.127 \mathrm{~g}, 66 \%$); eluent hexane; $\mathrm{mp}=56-58{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.18-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=4.9,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-$ $7.27(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 140.34,138.89$, 137.34, 136.09, 136.00, 130.24, 130.06, 129.96, 128.80, 128.65, 128.53, 127.74, 126.51, 126.27, 126.16, 125.95, 123.92, 119.98, 101.10, 100.77. Anal calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NS}: \mathrm{C}, 82.02$; H, 4.88; N, 3.99; S, 9.12; found C, 82.26; H, 4.36; N, 4.07; S, 9.31.

13. References:

1 N. Mukherjee and T. Chatterjee, J. Org. Chem., 2021, 86, 7881-7890.
2 S. K. Shukla, J. Singh V. Rustogi and A. K. Verma, J. Org. Chem., 2011, 76, 5670-5684
3 B. L. Hu, S. S. Pi, P. C. Qian, J. H. Li and X. G. Zhang, J. Org. Chem., 2013, 78, 1300-1305.

[^0]: E-factor $=\frac{\text { total waste }(\mathrm{Kg})}{\text { total product }(\mathrm{Kg})}=\frac{(0.127+0.210+0.025+0.315+1.083)-0.147}{0.147}=10.97 \mathrm{Kg}$ waste $/ \mathrm{Kg} \mathrm{pdt}$

