Supporting Information

Hydrogen Evolution System Based on Hybrid Nanogel Films with Capabilities of Spontaneous Moisture Collection and High Light Harvesting

Neng Hu,^a Weijia Wang^{b,*} Lin Lei,^b Huiqing Fan,^b Yeqiang Tan,^{c,*} Hua Yuan,^c Zhengwei Mao,^d Peter Müller-Buschbaum^{e,f} and Qi Zhong^{a,e,*}

^aKey Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China

^bState Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China

^cState Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China.

^dMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

^eTechnische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany

^fHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany

Corresponding Author

<u>qi.zhong@zstu.edu.cn</u> Phone +86 571 86843436 Fax +86 571 86843436

weijia.wang@nwpu.edu.cn

tanyeqiang@qdu.edu.cn

Figure S1. (a) HER values of the hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogel film with different amount of g-C₃N₄/Pt nanosheets (30 mg, green curve and 120 mg, violet curve) in non-aqueous environment (N₂ atmosphere). (b) Comparison of average HER values of hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogel film with different amount of g-C₃N₄/Pt nanosheets (30 mg, green column and 120 mg, violet column) in non-aqueous environment (N₂ atmosphere).

Figure S2. TEM images of the $g-C_3N_4$ nanogels (a) and $g-C_3N_4/Pt$ nanogels (b and c) on solid supports. The zoomed in region in (b) is indicated in orange. In the zoom-in (c), the position of Pt is indicated in red.

Figure S3. TEM image of the hybrid P(MEO₂MA-*co*-OEGMA₃₀₀)/g-C₃N₄/Pt nanogel on a solid support.

Figure S4. STEM images of the $P(MEO_2MA-co-OEGMA_{300})$ nanogels (a) and hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogels (e). EDS mapping profiles for $P(MEO_2MA-co-OEGMA_{300})$ nanogels (b, c and d) and hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogels (f, g, h, i and j). The element measured are marked on the left upper side of the images.

Figure S5. HER values of the hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogel film with thickness of 0.5 mm in non-aqueous environment (N₂ atmosphere).

Figure S6. Infrared thermal images (left) and corresponding digital images (right) of the hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogel film in photocatalytic hydrogen evolution measurement from top to bottom with xenon lamp irradiation for 0, 1, 2, 3 and 4 h, respectively.

Figure S7. ATR-FTIR spectra of the swollen hybrid $P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4/Pt$ nanogel film after the different irradiation durations (0 h: blue, 2 h: black and 4 h: red). The characteristic peak related to O-H groups decreases with irradiation time, indicating loss of water.

Figure S8. ATR-FTIR spectra of the $P(MEO_2MA-co-OEGMA_{300})$ nanogel film at different exposure time (0 h: dark cyan, 0.5 h: orange, 1 h: blue and 2 h: red) in water vapor atmosphere with (a) RH = 40% and (b) RH = 80%. Characteristic peaks are indicated.