Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Lignin Monomer Conversion into Biolubricant Base Oils

Elvis Osamudiamhen Ebikade^{1, 2}, Sunitha Sadula¹, Sibao Liu^{1, 3}, and Dionisios G. Vlachos^{1, 2*}

¹Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, DE, 19716 USA.

²Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716 USA.

³Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical

Engineering and Technology, Tianjin University, Tianjin 300072, China

*Corresponding author: <u>vlachos@udel.edu</u>

Figure S1: GCMS mass fragmentation of (a) branched benzene lubricant product (mass from GCMS – 414.3, calculated mass – 414) and (b) enal byproduct (mass from GCMS – 350.4, calculated mass – 350).

Figure S2: ¹H NMR spectrum of HAA reaction product. The sample was prepared in CDCl₃. The predominant product is the BBL followed by the enal product. The labels a-i are referencing the hydrogen atoms.

Figure S3: Effect of temperature on the yield of BBL and enal product and conversion of guaiacol and lauryl aldehyde reactants. A) Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 12 hr, 150 mg P-SiO₂. B) Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 1 hr, 150 mg P-SiO₂.

Figure S4: Effect of catalyst (P-SiO₂) amount on the yield of BBL and enal product and conversion of guaiacol and lauryl aldehyde reactants. A) Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 12 hr, 150 °C. B) Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 1 hr, 150 °C.

Figure S5: GC Chromatogram after heating lauryl aldehyde with and without acid catalyst. Reaction conditions: 5 mmol lauryl aldehyde, 100 mg P-SiO₂, 150 °C, 15 hr. Pictures inset from lauryl aldehyde condensation with and without acid catalyst.

Table S1: Initial reaction rate data.

Reaction rates (M/min)				
	130 °C	140 °C	150 °C	
r _{BBL}	0.0000381	0.0000453	0.0000784	
r _{Byproduct}	0.00000676	0.0000109	0.0000189	

Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 100 mg P-SiO₂.

Table S2: Comparison of guaiacol and lauryl aldehyde HAA in batch and semi-batch system.

	Batch system	Semi-batch system
Guaiacol conversion (%)	51.0	59.6
Lauryl aldehyde conversion (%)	96.2	94.0

BBL yield (%)	39.8	53.8
Byproduct yield (%)	11.0	6.8
Carbon balance (%)	85.0	92.0

Reaction conditions. Batch system: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 150 mg P-SiO₂, 12 hr, 150 °C. Semi-batch system: 10 mmol guaiacol, 1.25 mmol lauryl aldehyde,150 mg P-SiO₂, 12 hr, 150 °C, 1.25 mmol lauryl aldehyde was added at an interval of 4 hr thrice.

Figure S6: Yield of branched benzene lubricant (BBL) and condensation byproduct at various fractional loadings of lauryl aldehyde at 2 hr (solid bars) and 4 hr (slashed bars) reaction time. Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde (batch) 150 mg P-SiO₂, 150 °C

Figure S7: TGA profile of fresh and spent P-SiO₂ catalyst. Heating from 30 to 700 °C at a heating rate of 10 K min⁻¹ under air (30 mL min⁻¹).

Figure S8: GC Chromatogram of THF wash of spent catalyst after HAA reaction.

Figure S9: Recyclability of P-SiO₂ for the synthesis of branched benzene lubricant. Reaction conditions: 10 mmol guaiacol, 5 mmol lauryl aldehyde, 150 mg P-SiO₂, 150 °C, 24 hr, semi-batch system.

Figure S10: GCMS mass fragmentation of (a) cyclic C_{24} alkane base oil (mass from GCMS – 334.43, calculated mass – 334) and (b) branched C_{24} alkane base oil (mass from GCMS – 338.4, calculated mass – 338).

Figure S11: ¹H NMR spectrum of C₂₄ alkane lubricant mix. Sample was prepared in CDCl₃. The predominant product is the C₂₄ cyclic alkane lubricant, followed by the C₂₄ branched alkane lubricant. The labels a-d are referencing the hydrogen atoms.

Figure S12: Branched cyclic lubricant yield at different reaction times (0.3 g HAA reaction product, 0.2 g Ir-ReOx on silica, 20 ml cyclohexane, 500 rpm, 200 °C, 5 MPa H₂).

Figure S13: Chromatogram of HDO of benzene lubricant over different catalysts (0.3 g HAA reaction product, 0.2 g catalyst, 20 ml cyclohexane, 500 rpm, 200 °C, 12 hr, 5 MPa H₂).

Table S3. Summary of experimental settings and lubricant product yields for the HDO reaction. Reaction conditions: 0.3 g HAA reaction product, 0.2 g catalyst, 20 ml cyclohexane, 500 rpm, 5 MPa H₂.

	Temperature		C ₂₄ lubricant mix
Time (hr)	(°C)	Catalyst	yield* (%)
6	200	Ir-ReOx	54
12	200	Ir-ReOx	82
18	200	Ir-ReOx	78
18	180	Ir-ReOx	52
18	220	Ir-ReOx	70
18	250	Ir-ReOx	67
12	200	Pd/C	62
12	200	4 wt.% WOx-Pt/C	68
*contains Ca	cyclic alkane l	ubricant Carbranched	alkane lubricant and

^{*}contains C_{24} cyclic alkane lubricant, C_{24} branched alkane lubricant and dodecyl cyclohexane

Figure S14: Lubricant products. Left (clear) –cyclic and branched C₂₄ alkane base oil from HDO reaction. Right (dark) – BBL and byproduct mixture from HAA reaction.