Supporting information for

Combination of Aerobic/Moisture/Ambient Temperature Compatible Organolithium Chemistry with Sustainable Solvents: Selective and Efficient Synthesis of Guanidines and Amidines

David Elorriaga, *a Blanca Parra-Cadenas, a Antonio Antiñolo, Fernando Carrillo-Hermosilla, *a and Joaquín García-Álvarez*b

^a Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain.

^b Laboratorio de Química Sintética Sostenible (QuimSinSos). Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain.

Table of Contents

- 1. General Methods and Materials
- 2. Experimental procedures and characterisation details
 - 2.1 General procedure for the synthesis of guanidine compounds **3aa-la**, at room temperature, in the presence of air and using 2-MeTHF as sustainable solvent by one-pot/one-step protocol.
 - 2.2 General procedure for the synthesis of guanidine compounds 3aa-la and 3ab-ac, at room temperature, in the presence of air and using 2-MeTHF as sustainable solvent by one-pot/two-steps protocol.
 - 2.3 General procedure of the screening for the synthesis of amidine compound **6aa**, at room temperature by one-pot/one-step protocol.
 - 2.4 General procedure for the synthesis of amidine compounds **6aa-la** and **6ab-ae**, at room temperature, in the presence of air and using CPME as sustainable solvent by one-pot/two-steps protocol.
- 3. ^{1}H and $^{13}C{^{1}H}$ NMR spectra
- 4. References

1.- General Methods and Materials

All reagents were obtained from commercial suppliers and used without further purification with the exception of the *Deep Eutectic Solvents* (*DESs*),¹ which were prepared by following the corresponding methods reported in the literature. *n*-Butyl lithium (1.6 M solution in hexanes) was purchased from Sigma Aldrich and its concentration was established by titration with *L*-menthol.²

Commercially available 2-MeTHF and CPME were directly employed without any previous purification technique (distillation/use of molecular sieves) and were directly opened and stored in the presence of air and moisture.

NMR spectra were recorded on Bruker 400 and 500 spectrometers at 298 K, using standard TOPSPIN 4.0 software. ¹H, ¹³C and ¹⁹F NMR spectra were referenced against the appropriate solvent signal. All ¹³C spectra were proton decoupled. Characterisation details, including ¹H, and ¹³C{¹H} NMR spectra, for compounds **3aa-la**, **3ab-ac**, **4a**, **6aa-la**, **6ab-ae** and **7a** are included in the following sections of this Supporting Information.

FT-IR spectra were recorded on a Bruker Tensor 27 spectrophotometer, using an ATR accessory.

2.- Experimental procedure and characterisation details

2.1.- General procedure for the synthesis of guanidine compounds 3aa-la, at room temperature, in the presence of air and using 2-MeTHF as sustainable solvent by one-pot/one-step protocol.

Syntheses were performed under air and at room temperature. In a glass tube, the appropriate amine (**1a-l**, 0.5 mmol) and diisopropylcarbodiimide (**2a**, 0.5 mmol, 77.6 μ l) were dissolved in the corresponding alternative solvent (1 mL) under air, followed by the addition over 10 seconds of 0.5 mmol of *n*-butyl lithium (1.6 M solution in hexanes) at room temperature, and the reaction mixture was stirred for 30 seconds. The reaction was then stopped by addition of 5 ml of distillated water and the mixture was extracted with 2-MeTHF (3 x 5 mL). The combined organic phases were dried over anhydrous MgSO₄ and the solvent was concentrated in vacuo. Yields of the reaction

crudes were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard (0.5 mmol). Separation and purification of all compounds were carried out using TLC glass plate silica. All reactions were done in triplicate to ensure good reproducibility of obtained yields.

2.2.- General procedure for the synthesis of guanidine compounds 3aa-la and 3abac, at room temperature, in the presence of air and using 2-MeTHF as sustainable solvent by one-pot/two-steps protocol.

Syntheses were performed under air and at room temperature. In a glass tube, the appropriate amine (**1a-l**, 0.5 mmol) was dissolved in the corresponding alternative solvent (1 mL) under air, followed by the addition of 0.5 mmol of *n*-butyl lithium (1.6 M solution in hexanes) at room temperature, and the reaction mixture was stirred for 10 seconds. Then, the corresponding carbodiimide (**2a-c**, 0.5 mmol) was added to the reaction mixture and leaved stirring for another 30 seconds. The reaction was then stopped by addition of 5 ml of distillated water and the mixture was extracted with 2-MeTHF (3 x 5 mL). The combined organic phases were dried over anhydrous MgSO₄ and the solvent was concentrated in vacuo. Yields of the reaction crudes were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard (0.5 mmol). Separation and purification of all compounds were carried out using TLC glass plate silica. All reactions were done in triplicate to ensure good reproducibility of obtained yields.

2.3.- General procedure of the screening for the synthesis of amidine compound 6aa, at room temperature by one-pot/one-step protocol.

Syntheses were performed under air and at room temperature. In a glass tube, aniline (1a, 0.5 mmol) and benzonitrile (5a, 0.5 mmol, 51.5 μ l) were dissolved in the corresponding alternative solvent (1 mL) under air, followed by the addition over 10 seconds of 0.5 mmol of *n*-butyl lithium (1.6 M solution in hexanes) at room temperature, and the reaction mixture was stirred for 30 seconds. The reaction was then stopped by addition of 5 ml of distillated water and the mixture was extracted with 2-MeTHF (3 x 5 mL). The combined organic phases were dried over anhydrous MgSO₄ and the solvent was concentrated in vacuo. Yields of the reaction crudes were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard (0.5 mmol). Separation and purification of every compound was carried out using TLC glass plate

silica. All reactions were done in triplicate to ensure good reproducibility of obtained yields.

2.4.- General procedure for the synthesis of amidine compounds 6aa-la and 6ab-ae, at room temperature, in the presence of air and using CPME as sustainable solvent by one-pot/two-steps protocol.

Syntheses were performed under air and at room temperature. In a glass tube, the appropriate amine (**1a-I**, 0.5 mmol) was dissolved in the corresponding alternative solvent (1 mL) under air, followed by the addition of 0.5 mmol of *n*-butyl lithium (1.6 M solution in hexanes) at room temperature, and the reaction mixture was stirred for 10 seconds. Then the corresponding nitrile (**5a-e**, 0.5 mmol) was added to the reaction mixture and leaved stirring for another 90 seconds. The reaction was then stopped by addition of 5 ml of distillated water and the mixture was extracted with CPME (3 x 5 mL). The combined organic phases were dried over anhydrous MgSO₄ and the solvent was concentrated in vacuo. Yields of the reaction crudes were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard (0.5 mmol). Separation and purification of every compound was carried out using TLC glass plate silica. All reactions were done in triplicate to ensure good reproducibility of obtained yields.

1,3-diisopropyl-2-phenylguanidine (3aa): ¹H NMR (CDCl₃) δ (ppm) = 1.17 (d, J = 6.4 Hz, 12H, CH₃), 3.74-3.81 (m, 2H, CH), 6.87-6.89 (m, 2Harom), 6.93-6.97 (m, 1Harom), 7.26-7.28 (m, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.4 (4C), 43.6 (2C), 121.8, 123.6 (2C), 129.4 (2C), 150.7. FT-IR (cm⁻¹) = 3245, 3071, 2972, 2928, 2867, 1927, 1617, 1587,

1546, 1510, 1362, 1258, 1164, 1122, 1069.

1,3-diisopropyl-2-(4-(tert-butyl)phenyl)guanidine

(3ba): ¹H NMR (CDCl₃) δ (ppm) = 1.16 (d, J = 6.4 Hz, 12H, CH₃), 1.30 (s, 9H, CH₃), 3.76-3.78 (m, 2H, CH), 6.77-6.79 (d, J = 8.5 Hz, 2Harom), 7.24-7.26 (d, J = 8.5Hz, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.6 (4C), 31.7 (3C), 34.3, 43.5 (2C), 122.9 (2C), 126.2 (2C), 144.2, 147.1, 150.5. FT-IR (cm⁻¹) = 3224, 2963, 1627, 1600, 1510, 1463, 1332, 1261, 1189, 1113, 1074.

1,3-diisopropyl-2-(4-methoxyphenyl)guanidine (3ca): ¹H NMR (CDCl₃) δ (ppm) = 1.13 (d, J = 6.4 Hz, 12H, CH₃), 3.65 (bs, 2H, CH), 3.75 (s, 3H, CH₃), 6.75-6.81 (m, 4Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.5 (4C), 43.5 (2C), 55.6, 114.8 (2C), 124.4 (2C), 143.1, 150.9,

154.8. FT-IR (cm⁻¹) = 3243, 2967, 2833, 1643, 1611, 1502, 1462, 1362, 1263, 1165, 1036.

1,3-diisopropyl-2-(4-fluorophenyl)guanidine (3da): ¹H NMR (CDCl₃) δ (ppm) = 1.15 (d, *J* = 6.3 Hz, 12H, CH₃), 3.74-3.77 (m, 4H, NH, CH), 6.77-6.96 (m, 4Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.4 (4C), 43.5 (2C), 115.9 (2C), 124.6 (2C), 145.7, 150.9, 158.5 (2C). ¹⁹F NMR (CDCl₃) δ (ppm) = 123.1. FT-IR (cm⁻¹) = 3293,

2973, 2869, 1716, 1635, 1541, 1498, 1365, 1258, 1214, 1093.

1,3-diisopropyl-2-(4-chlorophenyl)guanidine (3ea): ¹H NMR (CDCl₃) δ (ppm) = 1.16 (d, *J* = 6.4 Hz, 12H, CH₃), 3.74-3.79 (m, 2H, CH), 6.80 (d, *J* = 8.6 Hz, 2Harom) 7.20 (d, *J* = 8.6 Hz, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.4 (4C), 43.6 (2C), 123.7, 124.9 (2C), 126.7, 129.4 (2C), 150.7. FT-IR (cm⁻¹) = 3026, 2969, 1878,

1738, 1632, 1583, 1483, 1364, 1263, 1161, 1089.

1,3-diisopropyl-2-(4-bromophenyl)guanidine (3fa): ¹H NMR (CDCl₃) δ (ppm) = 1.18 (d, *J* = 6.5 Hz, 12H, CH₃), 3.75-3.84 (m, 2H, CH), 6.84 (d, *J* = 8.5 Hz, 2Harom) 7.37 (d, *J* = 8.5 Hz, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.3 (4C), 44.2 (2C), 125.1 (2C), 132.5 (4C), 151.5. FT-IR (cm⁻¹) = 3295, 2972, 2867, 1877, 1633,

1577, 1495, 1460, 1364, 1264, 1163, 1124, 1072.

1,3-diisopropyl-2-mesitylguanidine (**3ga**): ¹H NMR (CDCl₃) δ (ppm) = 1.16 (bs, 12H, CH₃), 2.08 (s, 6H, CH₃), 2.23 (s, 3H, CH₃), 3.44 (bs, 2H, CH), 6.81 (s, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 18.4 (4C), 20.9 (2C), 23.8, 43.5 (2C), 128.8 (3C), 131.0 148.4. FT-IR (cm⁻¹) = 3294, 2966, 2918, 1622, 1604, 1539, 1476,

1362, 1266, 1243, 1123.

1,3-diisopropyl-2-(4-(trifluoromethyl)

phenyl)guanidine (3ha): ¹H NMR (CDCl₃) δ (ppm) = 1.18 (d, J = 6.4 Hz, 12H, CH₃), 3.63(bs, 2H, NH), 3.74-3.81 (m, 2H, CH), 6.92 (d, J = 8.3 Hz, 2Harom) 7.48 (d, J = 8.3 Hz, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.4 (4C), 43.4 (2C), 123.1, 123.5, 126.5 (2C), 150.2,

154.2. ¹⁹F NMR (CDCl₃) δ (ppm) = -61.4. . FT-IR (cm⁻¹) = 3291, 2964, 1638, 1597, 1515, 1455, 1320, 1267, 1156, 1104, 1064, 1011.

methyl 4-((bis(isopropylamino)methylene)amino) benzoate (3ia): ¹H NMR (CDCl₃) δ (ppm) = 1.14 (d, *J* = 6.2 Hz, 12H, CH₃), 3.74 (bs, 4H, CH, NH), 3.85 (s, 3H, OCH₃), 6.87 (d, *J* = 8.6 Hz, 2Harom) 7.90 (d, *J* = 8.6 Hz, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.3 (4C),

43.3 (2C), 51.7, 122.4, 123.1, 131.2, 150.2, 155.9, 167.5. FT-IR (cm⁻¹) = 3371, 2971, 1713, 1573, 1541, 1504, 1435, 1324, 1263, 1165, 1100, 1066, 1012.

1,3-diisopropyl-2-(pyridin-3-yl)guanidine (3ja): ¹H NMR (CDCl₃) δ (ppm) = 1.16 (d, *J* = 6.4 Hz, 12H, CH₃), 3.75-3.80 (m, 2H, CH), 7.14-7.21 (m, 2Harom), 8.16-8.19 (m, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.3 (4C), 43.6 (2C), 124.0, 130.7, 142.8, 145.6, 151.1. FT-IR (cm⁻¹) = 3283, 2969, 2929, 1608, 1543, 1476, 1383, 1262, 1169, 1126, 1069, 1040.

N,N'-diisopropylpiperidine-1-carboximidamide (3ka): ¹H NMR (CDCl₃) δ (ppm) = 1.08 (d, *J* = 6.3 Hz, 12H, CH₃), 1.51 (bs, 6H, CH₂), 3.02 (bs, 4H, CH₂), 3.36 (bs, 2H, CH). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 23.8 (2C), 25.2, 26.3 (4C), 46.7 (2C), 49.2 (2C), 156.3. FT-IR (cm⁻¹) = 2963, 2930, 2854, 1627, 1453, 1364, 1275, 1257, 1166, 1125, 1084.

N,N'-diisopropylmorpholine-4-carboximidamide (3la): ¹H NMR (CDCl₃) δ (ppm) = 1.10 (bs, 12H, CH₃), 3.10 (bs, 4H, CH₂), 3.42 (bs, 2H, CH), 3.68-3.70 (m, 4H, CH₂). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 24.4 (4C), 46.9 (2C), 48.8 (2C), 67.2 (2C), 155.3. FT-IR (cm⁻¹) = 3369, 3178, 2964, 2852, 1624, 1454, 1363, 1299, 1260, 1166, 1116, 1007.

1,3-dicyclohexyl-2-phenylguanidine (3ab): ¹H NMR (CDCl₃) δ (ppm) = 1.08-2.01 (m, 20H, CH₂), 3.39-3.43 (m, 2H, CH), 3.79 (bs, 2H, NH), 6.85-7.26 (m, 5Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 24.9 (4C), 25.8 (2C), 33.9 (4C), 50.4 (2C), 121.6, 123.7

(2C), 129.3 (2C), 150.3. FT-IR (cm⁻¹) = 3253, 3054, 2931, 2852, 1611, 1587, 1550, 1502, 1446, 1275, 1256, 1190, 1167, 1084.

1,3-di-p-tolylguanidine-2-phenyl (3ac): ¹H NMR (CDCl₃) δ (ppm) = 2.33 (s, 6H, CH₃), 7.03-7.32 (m, 13Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 20.9 (2C), 115.2, 118.6, 121.7 (2C), 122.1 (2C), 123.1, 129.4 (2C), 130.0 (2C), 133.3, 145.9. FT-IR (cm⁻¹) =

3393, 3025, 2920, 1639, 1588, 1504, 1441, 1318, 1221, 1108, 1030.

N,N'-diisopropylpentanimidamide (4a): ¹H NMR (CDCl₃) δ (ppm) = 0.91 (t, *J* = 7.3 Hz, 3H, CH₃), 1.09, (d, *J* = 6.3 Hz, 12, CH₃), 1.30-1.52 (m, 4H, CH₂), 2.10-2.14 (m, 2H, CH₂), 3.66 (bs, 2H, CH). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 14.0, 22.9, 24.1 (4C), 30.3, 44.9 (2C), 77.36, 156.9. FT-IR (cm⁻¹) = 3307, 2961, 2870, 1609,

1493, 1467, 1378, 1360, 1266, 1180, 1125, 1025.

N-phenylbenzimidamide (6aa): ¹H NMR (CDCl₃) δ (ppm) = 4.94 (bs, 2H, NH), 6.98-7.82 (m, 10Harom). ¹³C{¹H} NMR

 $(CDCl_3) \delta$ (ppm) = 122.5, 124.1, 127.5, 128.9 (4C), 129.9 (4C), 131.4. FT-IR (cm⁻¹) = 3467,3346, 3052, 1955, 1614, 1589, 1568, 1481, 1447, 1377, 1238, 1169, 1076, 1023.

N-(4-(tert-butyl)phenyl)benzimidamide (6ba): ¹H NMR (CDCl₃) δ (ppm) = 1.33 (s, 9H, CH₃), 6.91-7.83 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 31.8 (3C), 34.7, 122.0, 126.7 (4C), 127.5, 128.9 (4C), 129.9 (4C), 131.4. FT-IR (cm⁻¹) = 3442, 3120, 2958, 2859, 1902, 1636, 1598, 1569, 1498, 1383, 1267, 1190, 1111, 1085.

N-(4-methoxyphenyl)benzimidamide (6ca): ¹H NMR (CDCl₃) δ (ppm) = 3.80 (s, 3H, CH₃), 6.88-7.78 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 55.8, 115.2 (4C), 124.4, 127.8, 129.1 (4C), 131.9. FT-IR (cm⁻¹) = 2949, 2835, 1631, 1569, 1502, 1444, 1373, 1235, 1177, 1104, 1029.

N-(4-fluorophenyl)benzimidamide (6da): ¹H NMR (CDCl₃) δ (ppm) = 5.06 (bs, 2H, NH), 6.91-7.81 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 116.5 (2C), 123.4, 127.2 (2C), 128.9 (3C), 131.2 (2C), 158.6, 160.5. ¹⁹F NMR (CDCl₃) δ (ppm) = 120.8. FT-IR (cm⁻¹) = 3470, 3342, 3057, 2857, 2356, 1903, 1612, 1568, 1496, 1445, 1409,

1377, 1211, 1092.

N-(4-chlorophenyl)benzimidamide (6ea): ¹H NMR (CDCl₃) δ (ppm) = 5.07 (bs, 2H, NH), 6.90-7.80 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 123.6 (2C), 127.2, 128.9 (2C), 129.9 (3C), 131.3 (2C), 135.2, 147.7, 156.2. FT-IR (cm⁻¹) = 3470, 3343, 3081, 2679, 1915, 1611, 1566, 1484, 1445, 1377, 1238, 1169, 1095, 1009.

N-(4-bromophenyl)benzimidamide (6fa): ¹H NMR (CDCl₃) δ (ppm) = 5.02 (bs, 2H, NH), 6.86-7.80 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 116.7, 124.1 (2C), 127.3 (3C), 129.0 (2C), 131.4, 132.9 (2C). FT-IR (cm⁻¹) = 3471, 3348, 3077, 2367, 1917, 1610, 1566, 1481, 1375, 1238, 1172, 1100, 1073, 1004.

N-mesitylbenzimidamide (6ga): ¹H NMR (CDCl₃) δ (ppm) = 2.11 (s, 6H, CH₃), 2.28 (s, 3H, CH₃), 4.58 (bs, 2H, NH), 6.89-7.92 (m, 7Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 17.9 (2C), 20.9, 127.0 (2C), 128.8 (3C), 129.1 (2C), 130.9 (2C), 132.6, 135.5, 142.8, 154.2. FT-IR (cm⁻¹) = 3448, 3290, 3132, 2910, 2363, 1899, 1634, 1575, 1476,

1376, 1228, 1024, 1005.

phenyl(piperidin-1-yl)methanimine (6ka): ¹H NMR (CDCl₃) δ (ppm) = 1.52-1.61 (m, 6H, CH₂), 3.29-3.31 (m, 4H, CH₂), 5.83 (bs, 1H, NH), 7.29-7.34 (m, 5Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 24.8 (2C), 25.9, 47.3 (2C), 126.9 (2C),

128.6 (2C), 129.1, 138.7, 169.7. FT-IR (cm⁻¹) = 3311, 2933, 2852, 2228, 1678, 1584, 1566, 1443, 1374, 1305, 1181, 1106, 1027.

morpholino(phenyl)methanimine (6la): ¹H NMR (CDCl₃) δ (ppm) = 3.32-3.34 (m, 4H, CH₂), 3.66-3.68 (m, 4H, CH₂), 5.18 (bs, 1H, NH), 7.29-7.36 (m, 5Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 46.8 (2C), 66.7 (2C), 127.1 (2C), 128.8 (2C), 129.6,

137.4, 169.9. FT-IR (cm⁻¹) = 3300, 2964, 2952, 1675, 1569, 1445, 1367, 1263, 1192, 1112, 1009.

N-phenylacetimidamide (6ab): ¹H NMR (CDCl₃) δ (ppm) = 2.06 (s, 3H, CH₃), 5.01 (bs, 2H, NH), 6.88-7.32 (m, 5Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 21.3, 122.6 (2C), 123.7 (2C), 129.6, 147,9, 157.4. FT-IR (cm⁻¹) = 2949, 2835, 1631, 1569, 1502, 1444, 1373, 1235, 1177, 1104, 1029.

4-methoxy-N-phenylbenzimidamide (6ad): ¹H NMR (CDCl₃) δ (ppm) = 3.86 (s, 3H, CH₃), 5.07 (bs, 2H, NH), 6.92-7.80 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 55.7, 114.1 (2C), 122.4 (2C), 123.7, 128.9 (2C), 129.8 (2C), 162.0. FT-IR (cm⁻¹) = 3440, 3309, 3140, 2959, 2839, 1945, 1633, 1609, 1589, 1564, 1518, 1417, 1384, 1193, 1115, 1070, 1024.

N-phenyl-4-(trifluoromethyl)benzimidamide (6ae): ¹H NMR (CDCl₃) δ (ppm) = 5.26 (bs, 2H, NH), 6.97-7.95 (m, 9Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 122.0 (2C), 124.2 (2C), 125.8, 127.8 (2C), 129.9 (2C), 155.0. ¹⁹F NMR (CDCl₃) δ (ppm) = -62.84. FT-IR (cm⁻¹) = 3445, 3292, 3118, 2321, 1948, 1634, 1568, 1484, 1409, 1387, 1321, 1233, 1168, 1125, 1064, 1015.

1-phenylpentan-1-imine (7a): ¹H NMR (CDCl₃) δ (ppm) = 0.95 (t, J = 7.3 Hz, 3H, CH₃), 1.37-1.46, (m, 2H, CH₂), 1.55-1.67 (m, 2H, CH₂), 2.67-2.83 (m, 2H, CH₂), 7.39-7.44 (m, 3Harom), 7.70-7.72 (m, 2Harom). ¹³C{¹H} NMR (CDCl₃) δ (ppm) = 14.0, 22.5, 28.5, 37.6, 126.5, 128.6, 128.7, 130.4,

179.5. FT-IR (cm⁻¹) = 3062, 2958, 2872, 1684, 1598, 1449, 1375, 1265, 1208, 1180, 1108, 1014.

3.- ¹H and ¹³C{¹H} NMR spectra data

Figure S1. ¹H-NMR full chart for 3aa in CDCl₃.

Figure S2. ¹³C-NMR full chart for 3aa in CDCl₃.

Figure S3. ¹H-NMR full chart for 3ba in CDCl₃.

Figure S4. ¹³C-NMR full chart for **3ba** in CDCl₃.

Figure S5. ¹H-NMR full chart for 3ca in CDCl₃.

Figure S6. ¹³C-NMR full chart for 3ca in CDCl₃.

Figure S7. ¹H-NMR full chart for 3da in CDCl₃.

Figure S8. ¹³C-NMR full chart for 3da in CDCl₃.

Figure S9. ¹H-NMR full chart for 3ea in CDCl₃.

Figure S10. ¹³C-NMR full chart for 3ea in CDCl₃.

Figure S11. ¹H-NMR full chart for 3fa in CDCl₃.

Figure S12. ¹³C-NMR full chart for 3fa in CDCl₃.

Figure S13. ¹H-NMR full chart for 3ga in CDCl₃.

Figure S14. ¹³C-NMR full chart for 3ga in CDCl₃.

Figure S15. ¹H-NMR full chart for **3ha** in CDCl₃.

Figure S16. ¹³C-NMR full chart for **3ha** in CDCl₃.

Figure S17. ¹H-NMR full chart for 3ia in CDCl₃.

Figure S18. ¹³C-NMR full chart for 3ia in CDCl₃.

Figure S19. ¹H-NMR full chart for 3ja in CDCl₃.

Figure S20. ¹³C-NMR full chart for 3ja in CDCl₃.

Figure S21. ¹H-NMR full chart for 3ka in CDCl₃.

Figure S22. ¹³C-NMR full chart for 3ka in CDCl₃.

Figure S24. ¹³C-NMR full chart for 3la in CDCl₃.

Figure S25. ¹H-NMR full chart for 3ab in CDCl₃.

Figure S26. ¹³C-NMR full chart for 3ab in CDCl₃.

Figure S27. ¹H-NMR full chart for 3ac in CDCl₃.

Figure S28. ¹³C-NMR full chart for 3ac in CDCl₃.

Figure S29. ¹H-NMR full chart for 4a in CDCl₃.

Figure S30. ¹³C-NMR full chart for 4a in CDCl₃.

Figure S31. ¹H-NMR full chart for 6aa in CDCl₃.

Figure S32. ¹³C-NMR full chart for 6aa in CDCl₃.

Figure S33. ¹H-NMR full chart for 6ba in CDCl₃.

Figure S34. ¹³C-NMR full chart for 6ba in CDCl₃.

Figure S35. ¹H-NMR full chart for 6ca in CDCl₃.

Figure S36. ¹³C-NMR full chart for 6ca in CDCl₃.

Figure S37. ¹H-NMR full chart for 6da in CDCl₃.

Figure S38. ¹³C-NMR full chart for 6da in CDCl₃.

Figure S39. ¹H-NMR full chart for 6ea in CDCl₃.

Figure S40. ¹³C-NMR full chart for 6ea in CDCl₃.

Figure S41. ¹H-NMR full chart for 6fa in CDCl₃.

Figure S42. ¹³C-NMR full chart for 6fa in CDCl₃.

Figure S43. ¹H-NMR full chart for 6ga in CDCl₃.

Figure S44. ¹³C-NMR full chart for 6ga in CDCl₃.

Figure S45. ¹H-NMR full chart for 6ka in CDCl₃.

Figure S46. ¹³C-NMR full chart for 6ka in CDCl₃.

Figure S47. ¹H-NMR full chart for 6la in CDCl₃.

Figure S48. ¹³C-NMR full chart for 6la in CDCl₃.

Figure S49. ¹H-NMR full chart for 6ab in CDCl₃.

Figure S50. ¹³C-NMR full chart for 6ab in CDCl₃.

Figure S51. ¹H-NMR full chart for 6ad in CDCl₃.

Figure S52. ¹³C-NMR full chart for 6ad in CDCl₃.

Figure S53. ¹H-NMR full chart for 6ae in CDCl₃.

Figure S54. ¹³C-NMR full chart for 6ae in CDCl₃.

Figure S55. ¹H-NMR full chart for 7a in CDCl₃.

Figure S57. ¹³C-NMR full chart for 7a in CDCl₃.

4.- References

- [1] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun., 2003, 70.
- [2] (a) S. C. Watson, J. F. Eastham, J. Organomet. Chem., 1967, 9, 165; (b) H.-S.
 Lin, L. A. Paquette, Synth. Commun., 2007, 24, 2503.