Supporting information

Ionic liquid based dynamic supercritical carbon dioxide extraction of six different cannabinoids from *Cannabis sativa* L.

Christoph Kornpointner[†]a, Aitor Sainz Martinez[†]b, Michael Schnürch^b, Heidi Halbwirth^{*}a and Katharina Bica-Schröder^{*}b

- a. Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060, Vienna, Austria. Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
- b. Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060, Vienna, Austria.

[†] These two authors contributed equally to this work.

* correspondence: katharina.schroeder@tuwien.ac.at, heidrun.halbwirth@tuwien.ac.at

Number of pages: 7

Number of figures: 7

Number of tables: 4

Table S1 Extraction parameters for IL-SFE.

Exp.	IL	t _{Pre} / T _{Pre} /		m _⊪ /	т _{н20} /	P _{sfe} /	T _{sfe} /
		min	°C	g	g	MPa	°C
1	[C ₂ mim][OAc]	60	25	3	6	20	70
2	[C ₂ mim][OAc]	60	70	3	6	20	70
3	[C ₂ mim][OAc]	15	25	3	6	20	70
4	[C ₂ mim][OAc]	15	70	3	6	20	70
5	[C ₂ mim][OAc]	15	70	3	3	20	70
6	[C ₂ mim][OAc]	15	70	3	9	20	70
7	[C ₂ mim][OAc]	15	70	3	-	20	70
8	[C ₂ mim][OAc]	15	70	-	9	20	70
9	-	-	-	-	-	20	70
10	[C ₂ mim][OAc]	15	70	3	9	10	70
11	[C ₂ mim][OAc]	15	70	3	9	15	70
12	[C ₂ mim][OAc]	15	70	3	9	30	70
13	[C ₂ mim][OAc]	15	70	3	9	20	35
14	[C ₂ mim][OAc]	15	70	3	9	10	35
15	[Ch][OAc]	15	70	3	9	20	70
16	[C₂mim][DMP]	15	70	3	9	20	70

Pre: IL pre-treatment before SFE

Exp. Number corresponds to the main article

Table S2. Extracted cannabinoids by IL-SFE and conventional extraction, ($n = 3 \pm SD$).

Exp.	Yield CBD /	Yield CBDA /	Yield Δ ⁹ -THC /	Yield THCA /	Yield CBG /	Yield CBGA /
	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
IL-SFE						
1	4.29 ± 0.24^{f}	8.8 ± 1.0 ^{cd}	0.159 ± 0.004 ^{de}	0.306 ± 0.008^{def}	0.137 ± 0.007 ^d	0.092 ± 0.019 ^{fg}
2	6.58 ± 0.24 ^c	6.3 ± 0.6^{fg}	0.164 ± 0.008 ^{cde}	0.307 ± 0.013 ^{cdef}	0.186 ± 0.003 ^c	0.058 ± 0.017 ^g
3	5.0 ± 0.3 ^{de}	7.9 ± 0.6 ^{de}	0.169 ± 0.008 ^{cd}	0.308 ± 0.023 ^{cdef}	0.154 ± 0.008 ^d	0.067 ± 0.012 ^{fg}
4	5.29 ± 0.27 ^d	8.3 ± 0.4 ^{cde}	0.174 ± 0.004 ^{cd}	0.339 ± 0.013 ^{abcd}	0.164 ± 0.007 ^{cd}	0.082 ± 0.012 ^{fg}
5	7.45 ± 0.05 ^b	1.09 ± 0.17 ^h	0.1807 ± 0.0007 ^c	0.150 ± 0.014 ⁱ	0.226 ± 0.007 ^b	n.d.
6	4.6 ± 0.3e ^f	10.9 ± 0.4^{ab}	0.177 ± 0.007 ^{cd}	0.365 ± 0.011^{ab}	0.157 ± 0.016 ^{cd}	0.178 ± 0.003 ^{cd}
7	0.150 ± 0.021^{i}	0.1727 ± 0.0025 ^h	0.023 ± 0.007 ⁱ	0.0099 ± 0.0020^{k}	n.d.	n.d.
8	2.24 ± 0.12^{h}	9.8 ± 0.5 ^{bc}	0.114 ± 0.003^{g}	0.260 ± 0.019^{g}	0.0641 ± 0.0015^{f}	0.196 ± 0.007 ^{bc}
9	3.01 ± 0.04^{g}	7.1 ± 0.5 ^{ef}	0.165 ± 0.003 ^{cde}	0.190 ± 0.012^{h}	0.101 ± 0.012^{e}	0.095 ± 0.007 ^{fg}
10	3.388 ± 0.012^{g}	0.27 ± 0.06 ^h	0.0793 ± 0.0010 ^h	0.0092 ± 0.0019^{k}	0.045 ± 0.008^{fg}	n.d.
11	4.44 ± 0.03^{ef}	8.56 ± 0.18 ^{cde}	0.1596 ± 0.0015 ^{de}	0.297 ± 0.004^{efg}	0.158 ± 0.005 ^{cd}	0.100 ± 0.005^{f}
12	$4.1 \pm 0.4^{\text{f}}$	10.68 ± 0.28^{ab}	0.163 ± 0.013 ^{cde}	0.338 ± 0.011^{abcd}	0.142 ± 0.028^{d}	0.213 ± 0.009 ^{bc}
13	3.29 ± 0.20^{g}	11.6 ± 0.5^{a}	0.148 ± 0.006^{ef}	0.345 ± 0.007 ^{abc}	0.105 ± 0.005 ^e	0.219 ± 0.013^{b}
14	3.01 ± 0.17^{g}	10.6 ± 0.6^{ab}	0.137 ± 0.006 ^f	0.330 ± 0.013^{bcde}	0.103 ± 0.007 ^e	0.145 ± 0.009 ^{be}
15	4.04 ± 0.22 ^f	11.4 ± 0.3^{a}	0.161 ± 0.005 ^{de}	0.374 ± 0.007 ^a	0.144 ± 0.011^{d}	0.258 ± 0.013 ^a
16	3.255 ± 0.028^{g}	8.6 ± 0.9 ^{cde}	0.171 ± 0.006 ^{cd}	0.278 ± 0.019^{fg}	0.106 ± 0.006^{e}	0.19 ± 0.03^{bc}
Conventional extraction (70 °C)						
17 ¹	4.24 ± 0.09^{f}	11.2 ± 0.4^{ab}	0.225 ± 0.006 ^b	0.274 ± 0.018^{fg}	0.158 ± 0.006 ^{cd}	0.294 ± 0.018 ^a
18 ²	9.50 ± 0.19 ^a	5.34 ± 0.14^{g}	0.351 ± 0.004 ^a	0.096 ± 0.005 ^j	0.300 ± 0.005 ^a	0.1396 ± 0.0023 ^e
19 ³	0.70 ± 0.18^{i}	0.86 ± 0.15 ^h	0.036 ± 0.009^{i}	0.020 ± 0.004^{k}	0.017 ± 0.004^{g}	0.015 ± 0.003^{h}

Mean values with different letters (a, b, c, etc.) within the same column are statistically different (p < 0.05)

 $^1\!2$ h in EtOH; $^2\!24$ h in EtOH; $^1\!2$ h in H_2O

Exp. Number corresponds to the main article

Figure S1. General structures of investigated ionic liquids.

Figure S2. Extracts of different IL-SFE. Left: Extract with [C₂min][OAc]; Middle: Extract with [Ch][OAc]; Right: Extract with [C₂min][DMP].

Figure S3. Residues after extraction of different IL-SFE. Left: Extract with [C₂min][OAc]; Middle: Extract with [C₂min][DMP].

Extract with [Ch][OAc]; Right:

Figure S4. ILs after purification. Left: Extract with [C₂min][OAc]; Middle: Extract with [Ch][OAc]; Right: Extract with [C₂min][DMP].

Table S3. Cannabinoid yields of supercritical CO2 extraction with EtOH as a modifier and conventional ethanolic extractionof another batch of industrial hemp, (n = $3 \pm SD$). SFE was performed at various temperatures, pressures and vol% EtOH.Total flow: 1 mL/min; Static extraction 30 min; Dynamic extraction 120 min. Conventional extraction was performed atvarious temperatures and a hemp:EtOH ratio of 1:10.

No.	EtOH/ vol%	T _{Pre} / °C	Σ(CBD)/ (mg/g)	Σ(THC)/ (mg/g)	Σ(CBG)/ (mg/g)
SFE					
1	1	35	4.1 ± 0.4^{c}	0.086 ± 0.010^{b}	0.045 ± 0.006 ^c
2	10	35	9.48 ± 0.18^{b}	0.222 ± 0.012 ^a	0.177 ± 0.003 ^b
3	20	35	9.55 ± 0.20^{b}	0.243 ± 0.022 ^a	0.178 ± 0.005 ^b
4	20	80	0.36 ± 0.10^{d}	0.00492 ± 0.00021 ^c	n.d.
Conventional e	extraction				
5	-	35	10.29 ± 0.07ª	0.233 ± 0.006ª	0.2173 ± 0.0017 ^a
6	-	60	10.9 ± 0.4^{a}	0.249 ± 0.015ª	0.229 ± 0.010 ^a
7	-	80	10.9 ± 0.3^{a}	0.250 ± 0.012 ^a	0.231 ± 0.009^{a}

Mean values with different letters (a, b, c, etc.) within the same column are statistically different (p < 0.05) n.d.: not detected

Table S4. NMR spectroscopic data of purified [C_2 min][OAc], [Ch][OAc] and [C_2 min][DMP] precorded in chloroform- d_4 . All ¹H-NMR chemical shifts [ppm] are listed together with relative integral, multiplicity as well as coupling constants [Hz].

IL	δH (J in Hz)
[C ₂ min][OAc]	11.59 (s), 7.19 (d, 2.0, 1H), 7.17 (d, 2.0, 1H), 4.33 (q, 7.4, 2H), 4.02 (s, 3H), 1.96 (s, 3H), 1.52 (t, 7.4, 3H)
[Ch][OAc] ^b	4.13 (m, 2H), 3.75 (m, 2H), 3.37 (s, 9H), 1.94 (s, 3H)
[C ₂ min][DMP]	10.70 (s, 1H), 7.31 (m, 1H), 7.28 (1H, m), 4.33 (q, 7.4, 2H), 4.03 (s, 3H), 3.57 (d, 10.5, 6H), 1.53 (t, 7.4, 3H)

Figure S5. ¹H-NMR of purified [C₂min][OAc] in chloroform-*d*₄.

Figure S6. ¹H-NMR of purified [Ch][OAc] in chloroform-*d*₄.

Figure S7.¹H-NMR of purified [C₂min][DMP] in chloroform- d_4 .

