# Multi-step chemo-enzymatic synthesis of azelaic and pelargonic acids from the soapstock of high-oleic sunflower oil refinement 

Beatrice Casali, Elisabetta Brenna*, Fabio Parmeggiani, Francesca Tentori*, and Davide Tessaro

Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

E-mail: mariaelisabetta.brenna@polimi.it; phone: +39 0223993077
E-mail: francesca.tentori@ polimi.it; phone: +39 0223993173

## Electronic Supplementary Information

## Evaluation of the molar ratio between triglycerides and free fatty acids in samples of high-oleic sunflower oil soapstock

A suitable sample of soapstock ( 1 g ) was dispersed in distilled water $(15 \mathrm{~mL})$. The value of pH was lowered from 10 to 6 by adding a diluted solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$, then the mixture was extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The molar ratio between triglycerides and free fatty acids was estimated by ${ }^{1} \mathrm{H}$ NMR by considering the integrals of the following signals:

- 4.40-4.00 ppm, multiplet of the $2 \mathrm{CH}_{2}$ units of triglycerides;
- 2.38-2.24 ppm, multiplet of the $\mathrm{CH}_{2}$ units of triglycerides ( 3 units) and free fatty acids ( $1 \mathrm{CH}_{2}$ unit) in $\alpha$ position with respect to the carboxylic moiety. The analyzed samples always showed an equimolar quantity of triglycerides and free fatty acids.
The ${ }^{31} \mathrm{P}$ NMR spectrum recorded in $\mathrm{CDCl}_{3}$ showed the absence of phospholipids. A representative ${ }^{1} \mathrm{H}$ NMR spectrum of a sample of high oleic sunflower oil soapstock is shown below.


## Representative ${ }^{1} \mathrm{H}$ NMR of high-oleic sunflower oil soapstock



## Evaluation of the molar distribution of the main fatty acids in the mixtures obtained by enzymatic splitting of samples of high-oleic sunflower oil soapstock

A suitable sample of soapstock was submitted to enzymatic hydrolysis according to the procedure reported in the main text. The molar distribution of the most abundant fatty acids contained in each sample was estimated by ${ }^{1} \mathrm{H}$ NMR by considering the integrals of the following signals:

- 2.83-2.71 ppm, $1 \mathrm{CH}_{2}$ unit between the two $\mathrm{C}=\mathrm{C}$ double bonds of polyunsaturated acids (mainly linoleic acid);
- 2.41-2.23 ppm, $1 \mathrm{CH}_{2}$ unit in $\alpha$ position with respect to the carboxylic moiety of all free fatty acids;
- 2.09-2.14 ppm, $2 \mathrm{CH}_{2}$ units in allylic position with respect to the $\mathrm{C}=$ double bond of monounsaturated fatty acids (mainly oleic acid) and polyunsaturated acids (mainly linoleic acid).
The following distributions were obtained: 80-87\% monounsaturated fatty acids (mainly oleic acid), $9 \%$ polyunsaturated fatty acids (mainly linoleic acid), $4-11 \%$ saturated acids (mainly palmitic and stearic acids). These results were confirmed by GC/MS analysis of the corresponding mixture of methyl esters.
A representative example of ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of free fatty acids recovered from high oleic sunflower oil soapstock is shown below.

> Representative ${ }^{1} \mathrm{H}$ NMR of the mixture of FFAs obtained by enzymatic hydrolysis of high-oleic sunflower oil soapstock


## 1. Factorial design - Enzymatic epoxidation of hydrolyzed soapstock

| $\mathbf{n}^{\circ}$ run | X1 | X2 | X3 | X4 | Y |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Oleic acid [g L ${ }^{-1}$ ] | $\mathrm{N} 435\left[\mathrm{~L} \mathrm{~L}^{-1}\right]$ | $\mathbf{H}_{2} \mathbf{O}_{2}[\% \mathrm{v} / \mathrm{v}]$ | $\mathbf{T}\left[{ }^{\circ} \mathbf{C}\right]$ | Conversion to oleic acid epoxide [\% by GC-MS] |
| 1 | 10 | 2 | 1 | 30 | 12 |
| 2 | 10 | 1 | 4 | 30 | 3 |
| 3 | 50 | 1 | 4 | 30 | 17 |
| 4 | 50 | 1 | 4 | 30 | 21 |
| 5 | 10 | 1 | 1 | 30 | 5 |
| 6 | 10 | 1 | 4 | 50 | 21 |
| 7 | 10 | 1 | 1 | 50 | 15 |
| 8 | 10 | 1 | 4 | 30 | 5 |
| 9 | 10 | 2 | 4 | 50 | 25 |
| 10 | 50 | 2 | 1 | 50 | 36 |
| 11 | 50 | 1 | 1 | 50 | 24 |
| 12 | 10 | 1 | 4 | 50 | 20 |
| 13 | 50 | 1 | 4 | 50 | 18 |
| 14 | 10 | 2 | 4 | 50 | 16 |
| 15 | 50 | 2 | 1 | 50 | 41 |
| 16 | 10 | 1 | 1 | 50 | 10 |
| 17 | 10 | 2 | 1 | 30 | 10 |
| 18 | 50 | 1 | 1 | 50 | 30 |
| 19 | 10 | 2 | 4 | 30 | 7 |
| 20 | 50 | 2 | 4 | 30 | 39 |
| 21 | 50 | 1 | 1 | 30 | 14 |
| 22 | 50 | 1 | 4 | 50 | 30 |
| 23 | 10 | 2 | 4 | 30 | 3 |
| 24 | 50 | 2 | 4 | 50 | 34 |
| 25 | 10 | 2 | 1 | 50 | 30 |
| 26 | 50 | 2 | 1 | 30 | 32 |
| 27 | 50 | 2 | 4 | 30 | 42 |
| 28 | 10 | 1 | 1 | 30 | 5 |
| 29 | 50 | 1 | 1 | 30 | 23 |
| 30 | 50 | 2 | 1 | 30 | 39 |
| 31 | 10 | 2 | 1 | 50 | 30 |
| 32 | 50 | 2 | 4 | 50 | 38 |

A four-variables (oleic acid and $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations, temperature, and enzyme amount) factorial design, with a replicate for each point, was designed and analyzed through Minitab. we considered a range of $10-50 \mathrm{~g} \mathrm{~L}^{-1}$ of oleic acid concentration that corresponded to $12-60 \mathrm{~g} \mathrm{~L}^{-1}$ of hydrolyzed mixture. As for the other conditions, we chose to evaluate system response to temperature ( $30-50^{\circ} \mathrm{C}$ ), hydrogen peroxide concentration ( $1-4 \% \mathrm{v} / \mathrm{v}$ referred to $35 \% \mathrm{w} / \mathrm{w}$ aq. solution), Novozym ${ }^{\circledR} 435$ (1-2 $\mathrm{g} \mathrm{L}^{-1}$ ). The final reaction volume was 15 mL . All the 32 reactions were left in a thermoshaker at a certain temperature for 5 h . The reactions were quenched with a saturated solution of $\mathrm{NaHSO}_{3}$, extracted with EtOAc and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Conversion of oleic acid into the corresponding epoxide was analyzed as system response and was evaluated by GC-MS analysis after treating samples with MeOH and trimethylsilyldiazomethane.


Figure S1. Contour plot of conversion [\%] as a function of oleic acid and Novozym 435 concentration [ $\mathrm{g} \mathrm{L}^{-1}$ ] evaluated at a temperature of $30^{\circ} \mathrm{C}$. Lines refer to constant conversion, and the value is reported in the labels.


Figure S2. Contour plot of conversion [\%] as a function of oleic acid and Novozym 435 concentration [ $\mathrm{g} \mathrm{L}^{-1}$ ] evaluated at a temperature of $50^{\circ} \mathrm{C}$. Lines refer to constant conversion, and the value is reported in the labels.


Figure S3. Coefficient plot of variable effects (first and second order); red = positive effect; light blue $=$ negative effect.

## 2. Factorial design - Oxidative cleavage of oleic acid diol

For all the experiments we submitted 50 mg of oleic acid diol and 1 mg of Triton-X-100 in 5 mL EtOAc. The reactions were run in triplicates. All the 24 reactions were incubated in a thermoshaker $(170 \mathrm{rpm})$ at $45^{\circ} \mathrm{C}$ or $55^{\circ} \mathrm{C}$ for 24 h .

|  | T $\left[{ }^{\circ} \mathrm{C}\right]$ | $\underset{\underset{\mathrm{NaClOl}_{\text {diol }}{ }^{-1}}{\mathrm{NaClO}} \mathrm{~mol} /}{ }$ | $\mathrm{V}_{\mathrm{aq}}[\mathrm{mL}]$ | Pelargonic acid (\%) | Hydroxy-oxostearic acid isomers(\%) | Total conversion (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 45 | 5 | 3 | 16 | 11 | 27 |
| 2 | 45 | 5 | 5 | 5 | 10 | 15 |
| 3 | 45 | 7.5 | 3 | 34 | 10 | 44 |
| 4 | 55 | 5 | 3 | 14 | 18 | 32 |
| 5 | 55 | 5 | 5 | 6 | 19 | 25 |
| 6 | 55 | 7.5 | 3 | 30 | 17 | 47 |
| 7 | 45 | 5 | 3 | 24 | 6 | 30 |
| 8 | 45 | 5 | 5 | 10 | 6 | 16 |
| 9 | 55 | 5 | 3 | 16 | 26 | 42 |
| 10 | 45 | 7.5 | 3 | 32 | 22 | 54 |
| 11 | 45 | 7.5 | 5 | 17 | 27 | 44 |
| 12 | 55 | 7.5 | 3 | 31 | 24 | 55 |
| 13 | 55 | 7.5 | 5 | 14 | 40 | 54 |
| 14 | 55 | 7.5 | 3 | 38 | 16 | 54 |
| 15 | 45 | 7.5 | 3 | 47 | 14 | 61 |
| 16 | 45 | 7.5 | 5 | 16 | 17 | 33 |
| 17 | 45 | 7.5 | 5 | 17 | 14 | 31 |
| 18 | 55 | 5 | 5 | 9 | 27 | 36 |
| 19 | 55 | 7.5 | 5 | 19 | 26 | 45 |
| 20 | 55 | 5 | 5 | 9 | 37 | 46 |
| 21 | 55 | 7.5 | 5 | 15 | 29 | 44 |
| 22 | 45 | 5 | 3 | 19 | 22 | 41 |
| 23 | 45 | 5 | 5 | 11 | 18 | 29 |
| 24 | 55 | 5 | 3 | 35 | 23 | 58 |



Figure S4. Contour plot at $45^{\circ} \mathrm{C}$ of conversion [\%] as a function of the total volume [ mL ] of the aqueous phase ( $\mathrm{V}_{\mathrm{aq}}$ ) and the amount of $\mathrm{NaClO}(\mathrm{NaClO})$, expressed as the molar ratio [ $\mathrm{mol} / \mathrm{mol}$ diol] between NaClO and diol 4 . Lines refer to constant conversion, and the value is reported in the labels.


Figure S5. Contour plot at $55^{\circ} \mathrm{C}$ of conversion [\%] as a function of the total volume [mL] of the aqueous phase ( $\mathrm{V}_{\text {aq }}$ ) and the amount of $\mathrm{NaClO}(\mathrm{NaClO})$, expressed as the molar ratio [ $\mathrm{mol} / \mathrm{mol}$ diol] between NaClO and diol 4 . Lines refer to constant conversion, and the value is reported in the labels.


Figure S6. Coefficient plot of variable effects (first, second and third order); red = positive effect; light blue $=$ negative effect .

## Calculation of the Simplified Environmental Factors (sE-Factors)

The values of the simplified Environmental Factors (sE-Factors) for the procedure described in this work and for those reported in Scheme 5 were calculated under the hypothesis of completely recycling reaction and post-reaction solvents and water, according to the formula suggested by Roschangar et al. (F. Roschangar, R. A. Sheldon, C. H. Senanayake Green Chem., 2015, 17, 752 - 768.). The quantities of additives for reaction work-up (acid, base, and reductants) were not reported in the corresponding literature for processes (b)-(e), so the amount of sulfuric acid and sodium bisulfite (the only work-up additives of our procedure) were not considered.
$\underline{\text { Environmental Impact Factor }}=\frac{\text { mass of total waste }}{\text { mass of target product }}$
Mass of total waste $=$ sum of masses of raw materials + sum of masses of reactants - mass of target product


| Process (b) ref. U.S. Patent 2013/0131379 A1, 23 May 2013 |  |  |  | production of $1 \mathbf{k g}$ of the mixture $2+3$ | sE-Factor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1st step | raw materials and reactants (g) |  |  | raw materials and reactants | 2.31 |
|  | oleic acid (g) (90\%) | mol oleic acid | MM Oleic acid | oleic acid (kg) (90\%) |  |
|  | 50.000 | 0.177 | 282 | 0.77 |  |
|  | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})$ | $\mathrm{MM} \mathrm{H} \mathrm{L}^{(2)}$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~kg})$ |  |
|  | 8.432 | 0.248 | 34 | 0.13 |  |
|  | $\mathrm{HCOOH}(\mathrm{g})$ | mol HCOOH | MM HCOOH | $\mathrm{HCOOH}(\mathrm{kg})$ |  |
|  | 111.320 | 2.420 | 46 | 1.72 |  |
|  | sum of raw materials and reactants (g) |  |  | sum of raw materials and reactants (kg) |  |
|  | 161.320 |  |  | 2.63 |  |
|  | products |  |  | products (kg) |  |
|  | diol 4 (g) as an oil | isolated mol diol 4 | MM diol 4 | diol 4 (kg) as an oil |  |
|  | 59.000 |  | 316 | 0.91 |  |
|  | sum of total waste (g) |  |  | sum of total waste (kg) |  |
|  | 102.320 |  |  | 1.71 |  |
| 2nd step | raw materials and reactants (g) |  |  | raw materials and reactants |  |
|  | diol 4 (g) | mmol diol 4 | MM diol 4 | diol 4 (kg) |  |
|  | 1.580 | 0.005 | 316 | 0.91 |  |
|  | $\mathrm{NaClO}(\mathrm{g})$ | mmol NaClO | MM NaClO | NaClO (kg) |  |
|  | 1.173 | 0.016 | 74.45 | 0.68 |  |
|  | sum of raw materials and reactants ( g ) |  |  | sum of raw materials and reactants (kg) |  |
|  | 2.753 |  |  | 1.59 |  |
|  | products (mixture not submitted to separation) |  |  |  |  |
|  | acid 2 (g) | mol acid 2 | MM acid 2 |  |  |
|  |  |  | 158 |  |  |
|  | acid 3 (g) | mol acid 3 | MM acid 3 |  |  |
|  |  |  | 188 |  |  |
|  | sum of products (g) |  |  | sum of products (kg) |  |
|  | 1.730 |  |  | 1.00 |  |
|  | sum of total waste (g) |  |  | sum of total waste (kg) |  |
|  | 1.023 |  |  | 0.59 |  |


| Process (c) ref. J. Am. Oil Chem. Soc. 2015, 9, 1701-1707 |  |  | production of <br> 1 kg of the mixture $2+3$ | sE-Factor |
| :---: | :---: | :---: | :---: | :---: |
| raw materials and reactants (g) |  |  |  | 0.99 |
| oleic acid (g) | mol oleic acid | MM Oleic acid |  |  |
| 31.866 | 0.113 | 282 |  |  |
| $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})$ | $\mathrm{MM} \mathrm{H} \mathrm{L}^{(2)}$ |  |  |
| 30.736 | 0.904 | 34 |  |  |
| $\mathrm{H}_{2} \mathrm{WO}_{4}(\mathrm{~g})$ <br> no catalyst recovery |  |  |  |  |
| 0.283 |  |  |  |  |
| sum of raw materials and reactants (g) |  |  |  |  |
| 62.885 |  |  |  |  |
| products (oily mixture, \% obtained by GC analysis) |  |  |  |  |
| acid 2 (g) | mol acid 2 | MM acid 2 |  |  |
| 12.319 | 0.078 | 158 |  |  |
| acid 3 (g) | mol acid 3 | MM acid 3 |  |  |
| 19.332 | 0.103 | 188 |  |  |
| sum of products (g) |  |  | sum of products (kg) |  |
| 31.651 |  |  | 1.00 |  |
| sum of total waste (g) |  |  | sum of total waste (kg) |  |
| 31.234 |  |  | 0.99 |  |


| Process (d) ref. J. Am. Oil Chem. Soc. 2013, 90, 133-140 |  |  | production of $1 \mathbf{k g}$ <br> of the mixture $2+3$ | sE-Factor |
| :---: | :---: | :---: | :---: | :---: |
| raw materials and reactants (g) |  |  |  | 0.69 |
| oleic acid (g) | mol oleic acid | MM Oleic acid |  |  |
| 18.330 | 0.065 | 282 |  |  |
| $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})$ | MM H2O2 |  |  |
| 11.050 | 0.325 | 34 |  |  |
| catalyst B (g) <br> recovered, not reused | mol catalyst B | MM catalyst B |  |  |
| 2.474 | 0.001 | 2062 |  |  |
| sum of raw materials and reactants (g) |  |  |  |  |
| 31.854 |  |  |  |  |
| products (oily mixture, \% obtained by GC analysis) |  |  |  |  |
| acid 2 (g) | mol acid 2 | MM acid 2 |  |  |
| 8.370 | 0.053 | 158 |  |  |
| acid 3 (g) | mol acid 3 | MM acid 3 |  |  |
| 10.521 | 0.056 | 188 |  |  |
| sum of products (g) |  |  | sum of products (kg) |  |
| 18.891 |  |  | 1.00 |  |
| sum of total waste (g) |  |  | sum of total waste (kg) |  |
| 12.963 |  |  | 0.69 |  |


| Process (e) ref. J. Am. Oil Chem. Soc. 2017, 94, 1451-1461 |  |  |  |  | production of $1 \mathbf{k g}$ of the mixture 2+3 | sE-Factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | raw materials and reactants ( g ) |  |  |  |  | 1.52 |
|  | oleic acid (g) | mol oleic acid | MM Oleic acid |  |  |  |
|  | 1.000 | 0.004 | 282 |  |  |  |
| $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mL})$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$ | $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})$ | $\mathrm{MM} \mathrm{H} \mathrm{O}_{2}$ | d $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g} / \mathrm{mL})$ |  |  |
| 4.000 | 1.356 | 0.040 | 34 | 1.13 |  |  |
|  | catalyst reused 4 times |  |  |  |  |  |
|  | sum of raw materials and reactants (g) |  |  |  |  |  |
|  | 2.356 |  |  |  |  |  |
|  | products (oily mixture, \% obtained by GC analysis) |  |  |  |  |  |
|  | acid 2 (g) | mol acid 2 | MM acid 2 |  |  |  |
|  | 0.381 | 0.002 | 158 |  |  |  |
|  | acid 3 (g) | mol acid 3 | MM acid 3 |  |  |  |
|  | 0.553 | 0.003 | 188 |  |  |  |
|  | sum of products (g) |  |  |  | sum of products (kg) |  |
|  | 0.934 |  |  |  | 1.00 |  |
|  | sum of total waste (g) |  |  |  | sum of total waste (kg) |  |
|  | 1.422 |  |  |  | 1.52 |  |

