ESI

Strikingly High Amount of Tricin-lignin Observed from Vanilla (Vanilla planifolia) Aerial Roots

Mi Li^a, Yunqiao Pu^{*b,c,d}, Xianzhi Meng^e, Fang Chen^f, Richard A. Dixon^f, Arthur J. Ragauskas^{*}

a,b,c,d,e

^a Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee (UT), Knoxville, TN 37996
^b BioEnergy Science Center & Center for Bioenergy Innovation
^c Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831
^d UT-ORNL Joint Institute for Biological Sciences, Oak Ridge, TN 37831
^e Department of Chemical and Biomolecular Engineering, UT, Knoxville, TN 37996
^f BioDiscovery Institute and Department of Biological Sciences, University of North Texas,

Denton, TX, USA 76203

+1-(865)974-2421; aragausk@utk.edu; PO Box 2008 MS6341, Oak Ridge, TN 37831

^{*} Corresponding authors: Yunqiao Pu; +1-(865)576-1512; puy1@ornl.gov; Arthur Ragauskas;

Fig. S1. ¹³C-¹H HSQC contour relative abundance of pCA (*p*-coumarate), FA (ferulate), and I (cinnamyl alcohol) over the total aromatics (S+G+H) of lignins isolated from aerial roots, nodes, and internodes of vanilla.

Fig. S2. ¹³C-¹H HSQC 2D NMR spectra revealing polysaccharide anomerics of acetylated CEL isolated from aerial roots, nodes, internodes, and seeds of vanilla. Unlabeled contours remain uncertain or unidentified.

Fig. S3. Cellulolytic enzyme lignins (CEL) isolation from vanilla tissues. Inset pictures: vanilla tissues before (first row) and after (second row) solvent extraction.

Labels	ծ _c /ծ _н (ppm)	Assignment
B _β	53.2/3.47	C_{β}/H_{β} in β -5' phenylcoumaran substructures (B)
C _β	53.6/3.06	C_{β}/H_{β} in β - β ' resinol substructures (C)
OMe	55.5/3.71	C/H in methoxyls
Aγ	59.8/3.36 & 3.58	C_{γ}/H_{γ} in normal (γ -hydroxylated) β -O-4' substructures (A)
F _β	59.5/2.78	C_{β}/H_{β} in spirodienone substructures (F)
lγ	61.5/4.10	C_{γ}/H_{γ} in cinnamyl alcohol end-groups (I)
Βγ	62.5/3.75	C_{γ}/H_{γ} in β -5' phenylcoumaran substructures (B)
Α'γ	62.8/3.70	C_{γ}/H_{γ} in γ -acylated β -O-4' substructures (A')
Cγ	71.0/3.80 &4.17	C_{γ}/H_{γ} in β - β ' resinol substructures (C)
Α _α /Α' _α	71.5/4.75& 71.9/4.89	C_{α}/H_{α} in $\beta\text{-}O\text{-}4'$ substructures (A, A') -G&-S, respectively
K _α	75.1/5.22	C_{α}/H_{α} in benzodioxane (K)
Κ _β	75.3/4.93	C_{β}/H_{β} in benzodioxane (K)
F΄ _β	77.0/4.39	C_{β}/H_{β} in spirodienone substructures (F)
Eα	78.1/4.12	C_{α}/H_{α} in α , β -diaryl ether substructures (E)
Fα	81.3/5.07	C_{α}/H_{α} in spirodienone substructures (F)
Α' _{β(S)}	83.6/4.33	C_β/H_β in $\gamma\text{-acylated}\ \beta\text{-O-4'}$ substructures linked to an S unit (A')
Dα	83.1/4.79	C_{α}/H_{α} in 5-5' dibenzodioxocin substructures (D)
Α _{β(G)}	83.6/4.31	C_{β}/H_{β} in β -O-4' substructures linked to a G unit (A)
C _α	84.9/4.66	C_{α}/H_{α} in β - β ' resinol substructures (C)
Α _{β(S)}	86.1/4.13	C_{β}/H_{β} in β -O-4' substructures linked to an S unit (A)
Βα	86.9/5.46	C_{α}/H_{α} in β -5' phenylcoumaran substructures (B)
T ₈	94.1/6.54	C ₈ /H ₈ in tricin units (T)
T ₆	98.8/6.21	C ₆ /H ₆ in tricin units (T)
S _{2/6}	103.9/6.72	C_2/H_2 and C_6/H_6 in etherified syringyl units (S)
T _{2'/6'}	104.1/7.30	$C_{2'}/H_{2'}$ and $C_{6'}/H_{6'}$ in tricin units (T)
T ₃	104.8/7.04	C ₃ /H ₃ in tricin units (T)
J _{2/6(S)}	106.5/7.05	C_2/H_2 and C_6/H_6 in cinnamaldehyde end-groups in S units (J)
G ₂	110.9/6.99	C_2/H_2 in guaiacyl units (G)
FA ₂	111.2/7.31	C ₂ /H ₂ in ferulic acid units (FA)
pCA _β +FA _β	113.5/6.27	C_{β}/H_{β} in p-coumarate (pCA) and ferulate (FA)
G₅	115.1/6.71 & 6.97	C_5/H_5 in guaiacyl units (G)
G ₆	118.9/6.78	C_6/H_6 in guaiacyl units (G)
FA ₆	122.5/7.09	C_6/H_6 in ferulic acid units (FA)
J _β	126.2/6.77	C_{β}/H_{β} in cinnamaldehyde end-groups (J)
l _β	128.2/6.24	C_{β}/H_{β} in cinnamyl alcohol end-groups (I)
lα	128.4/6.44	C_{β}/H_{β} in cinnamyl alcohol end-groups (I)
J _α	153.1/7.59	C_{α}/H_{α} in cinnamaldehyde end-groups (J)

Table S1 Assignments of the ¹³C–¹H correlation signals in the HSQC spectra of the lignins.