Supporting Information

A CO₂-Mediated Base Catalysis Approach for Hydration of Triple Bonds in Ionic Liquids

Minhao Tang,^{a,b} Fengtao Zhang,^{a,b} Yanfei Zhao,^{*a,b} Yuepeng Wang,^{a,b} Zhengang Ke,^a Ruipeng Li,^{a,b} Wei Zeng,^{a,b} Buxing Han,^{a,b} and Zhimin Liu^{*a,b}

Abstract: Herein, we report a CO₂-mediated base catalysis approach for the activation of triple bonds in ionic liquids (ILs) with anions that can chemically capture CO₂ (*e.g.*, azolate, phenolate, acetate), which can achieve hydration of triple bonds to carbonyl chemicals. It is discovered that the anion-complexed CO₂ could abstract one proton from proton resources (*e.g.*, IL cation) and transfer it to the C \equiv N or C \equiv C bonds *via* a six-membered ring transition state, thus realizing their hydration. In particular, tetrabutylphosphonium 2-hydroxypyridine shows high efficiency for hydration of nitriles and C \equiv C bond-containing compounds under a CO₂ atmosphere, affording a series of carbonyl compounds in excellent yields. This catalytic protocol is simple, green, and highly efficient and opens a new way to access carbonyl compounds *via* triple bond hydration under mild and metal-free conditions.

Table of Contents

1. Experimental Section	S3
2. GC-MS and ¹ H NMR analysis of some products	S4
3. In-situ NMR analysis at high temperature	S6
4. ESP map of IL-CO ₂ ·······	S11
5. NMR analysis over other ILs.	S12
6. Influences of the reaction conditions on the hydration of phenylacetonitrile (1a)	S15
7. In-situ NMR analysis and proposed mechanism of propargylic amine hydration	S17
8. DFT Details	S18
9. ¹ H NMR spectra of the ILs used ······	S26
10. ¹ H and ¹³ C NMR spectra of the products	S34
11. References ·······	S62

1. Experimental Section

1.1 Materials

 CO_2 was supplied by Beijing Analytical Instrument Factory with a purity of 99.999%. Various nitrile substrates and deuterated solvents (D₂O, DMSO-d₆) were purchased from Beijing Innochem Science & Technology Co., Ltd. Tetrabutylphosphonium hydroxide ([P₄₄₄₄][OH], 40% wt.% aqueous solution), tetrabutylammonium hydroxide ([N₄₄₄₄][OH], 40 wt.% aqueous solution), tetrabutylammonium hydroxide ([N₂₂₂₂][OH], 25 wt.% aqueous solution), tetramethylammonium hydroxide ([N₁₁₁₁][OH], 25 wt.% aqueous solution), [N₂₂₂₂][C], imidazole, 2-methylimidazole, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine were obtained commercially from Tokyo chemical industry Co., Ltd. and J&K Scientific Ltd, respectively. The ILs [BMIm][NTf₂], [BMIm][PF₆], [BMIm][Ac] were provided by Centre of Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS). All chemicals were of analytical grade and used as received.

The ILs $[P_{4444}][Im]$, $[P_{4444}][2-MIm]$, $[P_{4444}][2-OP]$, $[P_{4444}][3-OP]$, $[P_{4444}][4-OP]$, $[N_{4444}][2-OP]$, $[N_{2222}][2-OP]$, $[N_{1111}][2-OP]$ were synthesized by neutralizing corresponding bases (including $[P_{4444}][OH]$, $[N_{4444}][OH]$, $[N_{2222}][OH]$, $[N_{1111}][OH]$) with proton donors (including imidazole, 2-methylimidazole, 2-hydroxypyridine, 3-hydroxypyridine and 4-hydroxypyridine), respectively, based on the reported procedures ¹

Figure S1. The cation and anion structures of ILs used in this work.

1.2 Instrumentation

NMR spectra were recorded on Bruker Avance III 400 HD or 500 WB spectrometer equipped with 5 mm pulsed-field-gradient probes, and on a Bruker Neo 700 NMR spectrometer equipped with a cryo BBO probe. Chemical shifts are given in ppm relative to tetramethylsilane (TMS). To eliminate the effects of solvents, wilmad coaxial insert NMR tube was used for ¹H NMR, ¹³C NMR, ¹⁵N NMR and ³¹P NMR analysis at 70 °C or 90 °C. DMSO-d₆ was added into the inner tube, and the sample was added into the outer tube.

GC-MS analysis was performed using gas chromatography-mass spectrometry (GC-MS, SHIMADZU-QP2010) with a packed column DB-5 MS.

1.3 General procedure for hydration

All reactions were conducted in a sealed tube (2 mL of inner volume) equipped with a magnetic stirrer. In a typical experiment, phenylacetonitrile (1 mmol, 0.1172 g), $[P_{4444}]$ [2-OP] (1 mmol, 0.3536 g) and H₂O (1 mmol, 0.0180 g) were sequentially added into the reactor and sealed under CO₂ atmosphere. Subsequently, the reactor was moved to an oil-bath of 100°C and stirred for 12 h. After reaction, the reactor was cooled down in ice water. The quantitative analysis of the reaction solution was conducted by ¹H NMR spectroscopy using mesitylene as an internal standard. To isolate the product, water was added to the reaction solution, resulting in precipitation of the target product. The products were isolated by recrystallization from ethyl ether/water, and their isolated yields were calculated based on the masses determined by mass balance.

1.4 Computational methods

All DFT calculations in this study were performed using Gaussian 16 package.² The M06-2X functional with 6-31+g** basis set was employed, coupled with Grimme's D3 dispersion correction to perform geometry optimization.³ All calculated structures were verified with no imaginary frequency (IF). The transition state (TS) structures were verified with intrinsic reaction coordinate (IRC) path. Besides, an ultrafine integration grid (99,590) was used for numerical integrations. Thermal corrections were carried out with harmonic frequency analysis using Shermo code on optimized structures under T=298.15 K and 1 atm pressure.⁴ The binding energies were evaluated at M06-2X functional with 6-311++g** basis set according to the previous optimized structures. The VMD molecular visualizing program was employed to draw 3D molecular structures and Multiwfn program was employed to perform analysis of electrostatic potential (ESP) energy and draw pictures.⁵

2. GC-MS and ¹H NMR analysis of some products

Figure S2. GC-MS spectra of the product from phenylacetonitrile hydration in the presence of CO₂. (A) Phenylacetamide (2a). (B) CO₂. Reaction conditions: phenylacetonitrile (1a, 1 mmol), $[P_{4444}]$ [2-OP] (1 mmol), $H_2^{18}O$ (1 mmol), $100^{\circ}C$, 12 h, CO₂ atmosphere.

Figure S3. Spectra of the 1a hydration with D_2O . (A) GC-MS spectrum for 2a. (B) ¹H NMR spectra after the reaction. Reaction conditions: 1a (1 mmol), [P₄₄₄₄][2-OP] (1 mmol), H₂O/D₂O (1 mmol), 100 °C, 12 h, CO₂ atmosphere.

3. In-situ NMR analysis at high temperature

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Figure S4. ¹H and ¹³C NMR spectra of $[P_{4444}][2-OP]$, $[P_{4444}][2-OP]+CO_2$, H_2O , $[P_{4444}][2-OP]+H_2O$ and $[P_{4444}][2-OP]+CO_2+H_2O$ at 90 °C.

Molar ration of 1a to [P4444][2-OP]	C1 Chemical shift (ppm)	C2 Chemical shift (ppm)	N Chemical shift (ppm)
Neat	117.10	21.67	250.12
10:1	117.26	21.60	249.66
5:1	117.36	21.59	249.27
2:1	117.49	21.56	248.89
1:1	117.59	21.55	248.73

Table S1. NMR chemical shifts of C1, C2 and N of 1a in the mixture of 1a and [P4443][2-OP] with different molar ratios of 1a to IL at 70°C.

Figure S5. ¹³C NMR spectra of 1a and the mixtures of 1a+[P₄₄₄₄][2-OP] with different 1a: IL ratios under CO₂ atmosphere at 70 °C.

Note: The ¹³C NMR spectra of the mixtures of IL-CO₂+**1a** (with different **1a**: IL ratios) were recorded at 70°C. The peaks assigning to C1 gradually shifted from 117.10 ppm for pure **1a** to 117.59 ppm for the mixture with the **1a**: IL=1: 1, meaning that the electron density of C1 decreases.

Figure S6. ¹H-¹⁵N HMBC spectra of 1a and the mixtures of 1a+[P₄₄₄₄][2-OP] with different ratios under CO₂ atmosphere at 70 °C.

Note: The ¹H-¹⁵N HMBC spectra of the mixtures of IL-CO₂ +**1a** (with different **1a**: IL ratios) were recorded at 70°C. The peaks assigning to N1 gradually shifted from 250.12 ppm for pure **1a** to 248.73 ppm for the mixture with the **1a**: IL=1: 1, meaning that the electron density of N1 increases.

Figure S7. In-situ ¹³C NMR spectra of the reaction solutions of 1a hydration over [P₄₄₄₄][2-OP] at 90 °C.

Note: Each *in-situ* ¹³C NMR spectrum was recorded every 13.5 min from 0 to 12 h. The new signals with chemical shifts at δ =41.1, 124.7, 128.0, 135.5, 172.1 ppm, respectively, refer to C atoms of the final product. These peaks appeared within the first 13.5 min, which indicates that the reaction took place fast. The absence of extra peaks indicates that no by-product formed and the transformation of intermediates into product occurred quickly.

Figure S8. In-situ ¹³C NMR spectrum of the reaction system of 1a hydration over [P₄₄₄₄][2-OP] performed at 90 °C for 4 h.

Chemical shifts with low intensity at δ = 165.66, 158.29 and 40.49 ppm were observed, which are ascribed to the intermediate as shown in the figure.

4. ESP map of IL-CO₂

Figure S9. ESP map before and after the formation of 2-pyridyl carbonic acid intermediate.

5. NMR analysis over other ILs

Figure S10. In-situ ¹³C NMR spectrum for the reaction solution of 1a hydration over [P₄₄₄₄][Im] performed at 90 °C for 4 h.

Note: Chemical shifts with low intensity at δ = 164.15, 147.01 ppm were observed, which are ascribed to the intermediate as shown in the figure.

Figure S11. ¹H and ¹³C NMR spectra of [N₄₄₄₄][2-OP]+ H₂O and [N₄₄₄₄][2-OP]+ H₂O+ CO₂ at 90 °C.

Note: A wide peak at 8.37 ppm was observed in the ¹H NMR spectrum and a new peak appeared at 158.80 ppm in the ¹³C NMR spectrum of the [N₄₄₄₄][2-OP]-CO₂ system at 90 °C, which indicate the formation of anion-based carbonic acid, meanwhile both ¹H and ¹³C NMR spectra of cation have little changed. These results demonstrate that the anion-complexed CO₂ (i.e., [2-OP-COO]⁻) may attract H from H₂O to form anion-based carbonic acid.

Figure S12. ¹H NMR spectrum of the reaction solution of **1a** hydration over [Na][2-OP].

Note: No signals ascribing to the target product were observed, indicating that no reaction occurred.

Figure S13. Effects of reaction factors on the product yields. Reaction conditions: **1a** (1 mmol) and CO₂ atmosphere; (a) [P₄₄₄₄][2-OP] (1 mmol), H₂O (1 mmol), H₂O (1 mmol), 100 °C; (c) H₂O (1 mmol), 100 °C, 12 h; (d) [P₄₄₄₄][2-OP] (1 mmol), 100 °C, 12 h.

Figure S14. ¹H NMR spectrum of the product for 1a Gram-scale reaction. Reaction conditions: 1a (10 mmol), [P₄₄₄₄][2-OP] (10 mmol), H₂O (10 mmol), 100 °C, 12 h, CO₂ atmosphere.

 $\label{eq:Figure S15.} Figure S15. Recycling tests. Reaction conditions: 1a (1 mmol), [P_{4444}] [2-OP] (1 mmol), H_2O (1 mmol), 100^{\circ}C, 12 h, CO_2 atmosphere.$

7. *In-situ* NMR analysis and proposed mechanism of propargylic amine hydration

Figure S16. In-situ ¹³C NMR spectrum of the reaction solution of propargylic amine hydration over $[P_{4444}][2-OP]$ performed at 90°C for 4 h.

Note: Chemical shifts with low intensity at δ = 160.65, 156.85, 156.37, 88.80, 58.45 ppm were observed, which are ascribed to the intermediate as shown in the figure.

Figure S17. Proposed catalytic cycle for alkyne hydration.

8. DFT Details

Color Scheme: carbon (grey), oxygen (red), nitrogen (blue), hydrogen (white)

		8		
				-0
•				
Α			9	
Coordinates				
Coordinates	1 78544300	-0.04553000	0.00001200	
C	1 10403600	1 18540500	0.00001200	
C	-0 27255500	1 20282200	-0.00002100	
C	-1.02712300	-0.02690900	-0.00016300	
C	1.00150900	-1.19192300	0.00002200	
H	2.86793500	-0.10814900	0.00004600	
Н	1.65938100	2.12131200	0.00006800	
Н	-0.82599200	2.13766400	0.00003000	
Н	1.48545900	-2.16962400	0.00006200	
Ν	-0.33719900	-1.21458000	-0.00002600	
0	-2.29678100	-0.02779200	0.00009600	
			2	
			1	
$0 \equiv c \equiv 0$				
Coordinates				
C	0.00000000	0.00000000	0.00000000	
0	0.00000000	0.00000000	1.16262600	
0	0.00000000	0.00000000	-1.16262600	
		6	1	
N O	0 0		2	
		I.		
	13			
v			5	
В		<u></u>		
Coordinates				
С	2.81920100	0.22730900	0.14262700	
С	1.97181400	1.26620500	-0.25477100	
С	0.62903500	1.00006300	-0.46574700	
С	0.17743000	-0.31042300	-0.26008500	
С	2.26773600	-1.03506300	0.30736500	
Н	3.87668600	0.39192600	0.31704500	
н	2.35810100	2.2/041500	-0.40177800	
н	-0.06899000	1.76846700	-0.77704300	
H	2.88821100	-1.8/453100	0.61063400	
	0.90/20000	-1.30/80300	0.11505200	
0	-1.11313800	-0.00001000	-U.31894800	
0	-2.11049900 3.28407400	0.00730000	0.143330000	
0	-3.20407400 _1 8/587700	-0.23020100	1 06674600	
<u> </u>	-1.0-001100	0.01203000	1.00074000	

^{(C₄H₉)3} ∖ P ⁺ ∽	H -℃		
С	н		
Coordinates			
Р	0.00000000	0.00000000	0.00000000
С	-1.48928500	0.00000000	1.04021900
Н	-2.34261600	0.04312300	0.35750300
Н	-1.52050900	-0.97240800	1.54026000
С	0.00000000	-1.48928500	-1.04021900
Н	0.97240800	-1.52050900	-1.54026000
Н	-0.04312300	-2.34261600	-0.35750300
С	1.48928500	0.00000000	1.04021900
Н	2.34261600	-0.04312300	0.35750300
Н	1.52050900	0.97240800	1.54026000
С	0.00000000	1.48928500	-1.04021900
Н	-0.97240800	1.52050900	-1.54026000
Н	0.04312300	2.34261600	-0.35750300
С	-1.54085800	1.14523900	2.05758900
Н	-1.49259200	2.10660000	1.53637300
Н	-0.66774800	1.09597300	2.71585400
С	-1.14523900	-1.54085800	-2.05758900
Н	-2.10660000	-1.49259200	-1.53637300
Н	-1.09597300	-0.66774800	-2.71585400
С	1.54085800	-1.14523900	2.05758900
Н	1.49259200	-2.10660000	1.53637300
Н	0.66774800	-1.09597300	2.71585400
С	1.14523900	1.54085800	-2.05758900
Н	2.10660000	1.49259200	-1.53637300
Н	1.09597300	0.66774800	-2.71585400
С	1.09106100	2.81500700	-2.90391900
Н	1.13444100	3.68757500	-2.24208500
Н	0.12464700	2.86203100	-3.41889300
С	2.22443700	2.88531600	-3.92631100
Н	2.16745500	3.80286200	-4.51899300
Н	3.20179400	2.86666300	-3.43327400
Н	2.18434400	2.03788300	-4.61836300
С	-1.09106100	-2.81500700	-2.90391900
Н	-1.13444100	-3.68757500	-2.24208500
Н	-0.12464700	-2.86203100	-3.41889300

-2.22443700

-2.16745500

-3.20179400

-2.18434400

2.81500700

3.68757500

2.86203100

2.88531600

2.86666300

3.80286200

2.03788300

-2.88531600

-3.80286200

-2.86666300

-2.03788300

-1.09106100

-1.13444100

-0.12464700

-2.22443700

-3.20179400

-2.16745500

-2.18434400

С

Н

Н

Н

С

н

н

С

н

н

н

-3.92631100

-4.51899300

-3.43327400

-4.61836300

2.90391900

2.24208500

3.41889300

3.92631100

3.43327400

4.51899300

4.61836300

С	-2.81500700	1.09106100	2.90391900
н	-3.68757500	1.13444100	2.24208500
Н	-2.86203100	0.12464700	3.41889300
С	-2.88531600	2.22443700	3.92631100
Н	-2.86666300	3.20179400	3.43327400
Н	-3.80286200	2.16745500	4.51899300
Н	-2.03788300	2.18434400	4.61836300

Coordinates			
С	2.80262800	-0.29373300	0.18529200
С	2.34255400	1.01395900	0.33256900
С	1.00874100	1.29655700	0.05685700
С	0.21850200	0.23240000	-0.35559100
С	1.90639800	-1.26982800	-0.23942900
Н	3.83459500	-0.55507200	0.39044700
Н	3.01071500	1.80430600	0.65927000
Н	0.58736700	2.29060900	0.15245800
Н	2.22566600	-2.29952900	-0.37128600
Ν	0.62066800	-1.01191200	-0.51469200
0	-1.10375300	0.50227400	-0.70806900
С	-2.11323100	0.01345800	0.03088900
0	-3.25467900	0.09408300	-0.34540100
0	-1.70588900	-0.50613400	1.18339200
Н	-2.48200800	-0.83560200	1.66906400

Coordinates			
Р	-0.20686600	-0.04994600	0.06124800
С	-1.14739300	-1.33484800	0.67647300
Н	-1.52552700	-1.11401100	1.67653000
С	0.87837900	0.61371800	1.37876100
Н	1.28182400	1.56605600	1.02268800
Н	0.22562700	0.84148700	2.22699400
С	-1.03885900	1.46190600	-0.63062700
Н	-0.28076600	2.18323400	-0.95066100
Н	-1.57340400	1.12956900	-1.52811500
С	0.85519400	-0.61306700	-1.32550400
Н	1.41086800	-1.47309600	-0.94317600
Н	0.18312100	-0.99212600	-2.10174700
С	-2.10563300	-2.09161500	-0.22940800
Н	-1.70344400	-2.13695300	-1.25020200
Н	-3.08875100	-1.59729200	-0.32943000

С	2.00804200	-0.32283900	1.81468200
Н	1.58438300	-1.27907200	2.13547100
Н	2.65857900	-0.54008400	0.96078500
С	-2.01473400	2.10264900	0.35778900
Н	-1.46688600	2.46686600	1.23456200
Н	-2.71241700	1.34099800	0.72476100
С	1.81153500	0.43043000	-1.91026800
Н	1.24390600	1.24885300	-2.36327600
Н	2.41523400	0.87369700	-1.11058700
С	2.74614500	-0.17182400	-2.96318700
Н	2.14488000	-0.62295300	-3.76115100
Н	3.31857900	-0.98840600	-2.50820600
С	3.70461600	0.85816500	-3.55993700
Н	4.36372900	0.40504600	-4.30605600
Н	3.15660200	1.67016400	-4.04879300
Н	4.33623400	1.30393400	-2.78460000
С	2.84853900	0.27268400	2.94702300
Н	2.19751700	0.48587800	3.80294800
Н	3.25912100	1.23659200	2.62335400
С	3.98659200	-0.64930600	3.38373000
Н	4.57151400	-0.20557200	4.19463200
Н	3.60025100	-1.61034500	3.73797900
Н	4.66968900	-0.85284500	2.55265100
С	-2.80740300	3.26101300	-0.25362200
Н	-2.10916600	4.02181000	-0.62206700
Н	-3.35553300	2.89519600	-1.12984300
С	-3.78462700	3.89664000	0.73510300
Н	-3.25801000	4.29728800	1.60742600
Н	-4.34071000	4.71889300	0.27535500
Н	-4.51233500	3.16258400	1.09598000
С	-2.36293500	-3.53193900	0.23832100
Н	-1.40547900	-4.06398800	0.27762500
Н	-2.74068300	-3.50726400	1.26817800
С	-3.34899100	-4.29113800	-0.65045800
Н	-2.98058800	-4.35751900	-1.68002700
Н	-3.51366100	-5.31169400	-0.29124000
Н	-4.32211700	-3.78949700	-0.68069900

•
•
•

С	-0.52173800	1.20552100	0.24981900
С	-1.84498700	1.20902900	-0.19025500
С	-2.51031500	0.00361300	-0.41497700
С	-1.84883000	-1.20516900	-0.19679700
С	-0.52562700	-1.20832000	0.24326200
С	0.14312200	-0.00304500	0.46770700
Н	-0.00261000	2.14431900	0.42619200
Н	-2.35568600	2.15292700	-0.35528600
Н	-3.54096700	0.00606900	-0.75638300
Н	-2.36267200	-2.14644900	-0.36699200
Н	-0.00929200	-2.14955800	0.41465400
С	1.58851400	-0.00681200	0.93209100
Н	1.80666800	-0.89603000	1.53106000
Н	1.80751600	0.87403300	1.54298000

C N	2.51637200 3.23971000	0.00047600 0.00613500	-0.20475400 -1.10754200
	+ -H - N -C		
C	-5 34393300	0 90553200	0.58380100
C	-5 23336300	0.07296700	-0.52895700
C	-3 97059200	-0 20504800	-1.04119000
C	-2.88835100	0.37976000	-0.39616300
C	-4.18085300	1.43207100	1.13695900
H	-6.30905800	1.14611400	1.01521600
Н	-6.11644900	-0.35646600	-0.99126400
Н	-3.81514100	-0.84578400	-1.90162600
Н	-4.22360200	2.08809300	2.00165400
Ν	-2.95817400	1.17683200	0.65167200
0	-1.61665900	0.17099800	-0.92251900
С	-0.79725100	-0.67695900	-0.25884800
0	0.37154000	-0.73351900	-0.72106800
0	-1.25399500	-1.33060600	0.71490000
С	1.48578400	-1.95878100	0.24783300
С	2.73120400	-1.74089200	-0.50564400
Н	2.52064100	-1.89344500	-1.56657700
Н	3.41545100	-2.52602900	-0.16587000
N	0.87641500	-2.48037600	1.12658300
С	3.30892500	-0.36217700	-0.25082800
С	3.83730400	-0.04774400	1.00413200
С	3.31553300	0.59878200	-1.26212700
С	4.36844300	1.21801100	1.24453900
Н	3.83120000	-0.79605900	1.79358700
	3.85070800	1.86476500	-1.02312700
H C	2.89030300	0.33717300	-2.23522000
	4.37008300	2.17001000	0.23005700
н	3 85280000	2 60675400	1 81588000
н	4 79166300	3 16254000	0.41641500
Н	-0.21733000	-2 06927700	1 12643300
	NH G		

Coordinates			
С	-6.10547500	-0.23425500	-0.36967600
С	-5.63182100	1.06851300	-0.22407700
С	-4.31068200	1.26800200	0.16430300
С	-3.55071500	0.12883500	0.38513300
С	-5.23664500	-1.29132200	-0.11563000
Н	-7.12776500	-0.43166200	-0.67177400
Н	-6.27899700	1.91910800	-0.41208100
Н	-3.87850400	2.25351800	0.29409000

Н	-5.56737700	-2.32092500	-0.21490900
Ν	-3.96366900	-1.11493600	0.26397700
0	-2.23733700	0.29370900	0.83500300
С	-1.27027300	0.02051900	-0.05065400
0	-0.10768800	0.13480100	0.60460700
0	-1.43631800	-0.25217700	-1.21063600
С	1.14478900	-0.05402800	-0.01120900
С	2.18909500	0.28703000	1.01626000
Н	2.02070400	-0.36695300	1.87974700
Н	1.99251100	1.31112100	1.35330800
Ν	1.36489500	-0.44103800	-1.18415500
С	3.59764900	0.15070800	0.50154000
С	4.26887700	-1.07195000	0.58745900
С	4.24537400	1.24129500	-0.08479200
С	5.56637400	-1.20421900	0.09418700
Н	3.77042000	-1.92439400	1.04311700
С	5.54319700	1.11306100	-0.57891200
Н	3.72866700	2.19563400	-0.15432600
С	6.20677000	-0.11102900	-0.49059600
Н	6.07758300	-2.15949100	0.16842800
Н	6.03601700	1.96881400	-1.03085700
Н	7.21815400	-0.21199100	-0.87280800
Н	0.51167000	-0.61857700	-1.71250000

		2
0.00000000	0.00000000	0.11736200
0.00000000	0.76690300	-0.46944700
0.00000000	-0.76690300	-0.46944700
	0.00000000 0.00000000 0.00000000	0.000000000.000000000.000000000.766903000.00000000-0.76690300

	•		
Coordinates			
С	-6.14859100	0.17083600	0.07719400
С	-5.74396900	-1.14417000	-0.18621000
С	-4.39698700	-1.42723600	-0.31104600
С	-3.47530400	-0.37059200	-0.17649000
С	-5.16267300	1.13717000	0.19464100
Н	-7.19434300	0.43421500	0.18722500
Н	-6.47792900	-1.93867700	-0.28543100
Н	-4.02977500	-2.42896100	-0.50479900
Н	-5.42477400	2.17276600	0.39742900
Ν	-3.84966500	0.88519900	0.06681900
0	-2.18086700	-0.67575100	-0.33951000
С	-1.15901400	0.26618000	0.22423300
0	0.01262800	-0.45257800	-0.29522200
0	-1.22503500	0.40335400	1.47588200
С	1.24224400	0.00695000	0.01884700
С	2.27813000	-0.87378300	-0.64841500
Н	2.08965900	-0.83668800	-1.72727900
Н	2.07916000	-1.90342100	-0.33001700
Ν	1.54906400	1.00712300	0.74243900
			22

С	3.70158600	-0.49129200	-0.34558000
С	4.40023300	0.38150100	-1.18462800
С	4.34502800	-0.99242800	0.79030000
С	5.71395900	0.75037700	-0.89452900
Н	3.90787600	0.77735700	-2.06991300
С	5.65787800	-0.62663800	1.08496600
Н	3.80902800	-1.67107300	1.44993700
С	6.34696900	0.24663500	0.24205600
Н	6.24259700	1.43031900	-1.55644100
Н	6.14315700	-1.02414400	1.97174000
Н	7.37008100	0.53141600	0.46920700
Н	0.70258900	1.44197200	1.11326500
0	-1.19527300	1.43430700	-0.56789400
Н	-2.00167000	1.89294300	-0.27781900

Coordinates			
С	-0.80870200	-1.22575100	-0.17556900
С	-2.10508100	-1.28871100	0.33346800
С	-2.86216600	-0.12354200	0.46596900
С	-2.31540800	1.10216800	0.08654000
С	-1.01770800	1.16207700	-0.42262700
С	-0.25383000	-0.00002900	-0.55875400
Н	-0.21951700	-2.13420400	-0.27970600
Н	-2.52523100	-2.24719000	0.62384100
Н	-3.87294600	-0.17165100	0.85987500
Н	-2.89861600	2.01309300	0.18490800
Н	-0.59239800	2.11824800	-0.71749500
С	1.16631700	0.05527100	-1.08339200
Н	1.32311700	0.98723900	-1.63631800
Н	1.36596800	-0.78690200	-1.74823100
С	2.16526000	-0.00008600	0.04148800
0	2.07362900	1.09653300	0.82919600
Ν	2.96451600	-0.97641100	0.19635000
Н	3.56497500	-0.84619700	1.01484900
н	2 7010000	1 0/180300	1 56751800

2.11216800

2.74882100

Н

24

-0.34543000

н	0.44391300	2.11731200	0.56355200
С	-1.16782800	-0.02295200	1.06983200
Н	-1.32115400	0.81808900	1.75099000
Н	-1.37825700	-0.95275000	1.60507900
С	-2.13905400	0.15892500	-0.08812300
0	-2.31538300	1.25863800	-0.61300700
Ν	-2.76241700	-0.95643100	-0.51578900
Н	-3.38470600	-0.90430600	-1.31200900
Н	-2.60643300	-1.85321500	-0.07879300

9. ¹H NMR spectra of the ILs used

10. ¹H and ¹³C NMR spectra of the products

11. References

- (a) C. Wang, H. Luo, D.-e. Jiang, H. Li and S. Dai, Angew. Chem. Int. Edit., 2010, 49, 5978-5981. (b) Y. Tsuji, T. Mizumo and H. Ohno, Chem. Commun., 2011, 47, 3132-3134.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 3. E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112.
- 4. T. Lu and Q. Chen, Shermo: A General Code for Calculating Molecular Thermochemistry Properties, 2020.
- 5. (a) W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38. (b) T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.