Supplementary Information

Enabled Cellulose Nanopaper with Outstanding Water Stability and Wet Strength via Activated Residual Lignin as a Reinforcement

Jinlong Wang, ^{a,b} Wei Chen, ^{a,b} Tengteng Dong, ^{a,b} Haiqi Wang, ^{a,b} Shurun Si, ^{a,b} and Xusheng

Li ^{*a,b}

a. School of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, P.R.

China

b. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, 530004

Nanning, P.R. China

* Corresponding author at: School of Light Industrial and Food Engineering, Guangxi

University, Nanning, Guangxi, 530004, China. E-mail address: lixusheng@gxu.edu.cn.

Supplementary Note S1. Circulating reaction system for nitric acid solutions.

The bamboo powder was pretreated with HNO₃ and H₂O₂ for 24 h, and other experimental conditions were consistent with the description in the Experimental Section. After treatment, the mixture was filtered to produce a cellulose-rich solid and a filtrate containing HNO₃. The concentrations of HNO₃ and H₂O₂ in the filtrate were tested. The concentration of HNO₃ was determined by titration with 1.000 mol/L NaOH standard solution, and the concentration of H₂O₂ was determined by titration with 0.100 mol/L potassium permanganate standard solution. The concentrations of HNO₃ and H₂O₂ present during cycles of the process are shown in Table S4. The initial concentrations of HNO₃ and H₂O₂ were 2.75 mol/L and 1.03 mol/L, respectively. After the first reaction, the concentrations of HNO₃ and H₂O₂ were treatment, only a small amount of HNO₃ was consumed, which is consistent with previous studies.¹ Each treatment consumed approximately 20% of the H₂O₂. In summary, to ensure normal operation of the cyclic reaction system, only approximately 0.01 mol/g H₂O₂ must be added after every cycle, and approximately 0.006 mol/g HNO₃ must be added after every five cycles.

Fig. S1 FTIR spectra of bamboo and RL-CNFs (4000-400 cm⁻¹).

Figure. S2 (a) FTIR spectra of bamboo and RL-CNFs (1800-800 cm⁻¹); (b) Raman pattern of bamboo and RL-CNFs.

Fig. S3 Raman electron microscope image of ARL-CNP and the Raman mapping image of the location: (a) (b) RL-CNP-14, (c) (d) RL-CNP-9 and (e) (f) RL-CNP-5.

Fig. S4 Cellulose-rich fiber solution after 10 cycles of the nitric acid solution circulation reaction system (a); wet and dry tensile strengths of RL-CNP (b).

Fig. S5 Amberlite XAD16N adsorbs lignin in HNO₃.

Fig. S6 Diagram of dry and wet tensile strengths for Eucalyptus-CNPs (with 11.18% lignin content) and Pine-CNPs (with 14.36% lignin content): (a) histograms; (b) graphs.

Wavenumber (cm ⁻¹)	Assignment	Attributed
3377	O–H stretching	Cellulose
2899	C-H stretching	Cellulose
1737	C-O carbonyl band, C=O stretching vibrations of the acetyl groups of galactoglucomannan, carboxyl- and aldehydes and aromatic/conjugated aldehydes and esters	Lignin and hemicellulose
1642	O-H bending vibrations	Cellulose
1604	Aromatic skeleton vibration	Lignin
1509	C=C stretching vibration in aromatic ring	Lignin
1462	Aromatic ring C-H deformation	Lignin
1370	C-H bending, -CH ₃ (lignin), -CH ₂ (carbohydrates), lignin-carbohydrate complexes bonds	Lignin and carbohydrate
1253	C-O Stretching vibration	Hemicellulose
1215	C-O of phenol ⁵	Lignin
1160	C-O stretching	Cellulose
1067	C-O-C pyranose ring skeletal vibration	Cellulose
895	β-glycosidic bond	Cellulose
834	O-H of phenolic hydroxyl	Lignin

 Table S1. Distribution of functional groups of bamboo and ARL-CNFs in FTIR spectrum.²⁻⁴

Table S2. Distribution of the functional groups of bamboo fiber and ARL-CNFs in the Raman spectrum ⁶.

Wavenumber (cm ⁻¹)	Assignment	Attributed
896	H-C-C and H-C-O bending at C6 ^{7, 8}	Cellulose
1096	C-C-O stretch of phenol ⁷⁻¹⁰	Lignin
1129	Coniferaldehyde/sinapaldehyde ⁷⁻¹⁰	Lignin
1194	A phenol mode ^{7, 9}	Lignin
1270	Aryl-O-CH₃ and aryl-O of aryl-OH; guaiacyl/syringyl ring (with C=O group) ^{8, 9}	Lignin
1330	Aliphatic O-H bend ⁷⁻¹¹	Cellulose
1374	C-H bend in R ₃ C-H ⁹	Cellulose
1453	CH_3 bending in OCH_3^{7-10}	Lignin and carbohydrate
1600	Aryl ring stretch, symmetric ⁷⁻¹⁰	Lignin

Ref.	Sample	strength (MPa)	Methods and Characteristics	
	LF-CNP	4.12 ± 1.54	Retained with lignin-carbohydrate	
This work	ARL-CNP with 5% lignin	41.46 ± 4.22	complex	
	ARL-CNPwith 14% lignin	68.91 ± 3.50	Solvent: water High yield (60.88%) based on biomass	
	NFC	3.1±0.1	Carboxymethylated and cross-linked	
12	NFC/CMC+(10%) GTMA	36±9	with glycidyltrimethylammonium	
	NFC/CMC+(15%) GTMA	42±13	chloride (GTMA) Post-treatment process	
13	OCNF- aldehydes	~12	Oxidized by sodium periodate and then grafted with aldehydes Post-treatment process	
	CNF	1.2±0.1	Crafted with hydrophobic alkyl	
	CNF-2 (acetic)	2.8±0.2	Dest treatment process	
	CNF-4 (butyric)	1.8±0.1	Post-treatment process	
14	CNF-6 (hexanoic) CNF-16	2.1±0.1	esterificated with acetic, butyric,	
	(2 dodecen-1-yl-succinnic anhydrides)	4.4±0.8	nexanoic and 2 dodecen-1-yi-succinnic anhydrides	
15	Unmodified CNP	2.3±1.53	Cross-linked by citric acid and sodium	
	Crosslinked CNP	13.7±6.28	hypophosphate Post-treatment process	
	TCNF-(10%) 88PVA	29.7 ± 4.7	TEMPO (NaClo evidiand and handed	
16	TCNF-(25%)88PVA	21.5 ± 2.5	with poly (vipul clockel) (D)(A)	
10	TCNF-(10%)98PVA	33.4 ± 6.0	With poly (Vinyi alconol) (PVA)	
	TCNF-(25%)98PVA	22.9 ± 5.5	Post-treatment process	
	CNF	11± 2	Grafted or bonded with aromatic mono-	
17	CNF-bonded-PGE	9± 1	epoxy (phenylglycidylether, PGE)	
	CNF-grafted-PGE	70±4	Post-treatment process	
	CNF	18.0 ± 0.5		
	CNF with 6% lignin	17.6±4.2	Residual free lignin particles were	
18	CNF with 10% lignin	19.8±1.3	dispersed using organic solvents	
	CNF with 12% lignin	44.3 ± 2.3	Solvent: dimethylacetamide (DMAC)	
	CNF with 14% lignin	83.5 ± 12		
19	CNF-Alginate	~17	Entangled with the algal polysaccharides alginate	
20	CNE	28+03	rost acument process	
		2.0 ± 0.5	Dispersed with vitrimer nanoparticles	
		22 + 1	Post-treatment process	
21	CNF	0.9+0.1	Grafted with gelatin	
	CNF-gelatin	33.0 ± 2.3	Post-treatment process	
	CNF with 5% lignin	<5		
22	CNF with 21% lignin	<10	Retained lignin	

 Table S3. Summary of published main results on wet tensile strength of CNF materials.

	HNO₃	H_2O_2	H_2O_2	HNO ₃		
Times	concentration	concentration	supplementation	supplementation		
	mol/L	mol/L	mol/g	mol/g		
0	2.75	1.03				
1	2.73	0.82	0.0097			
2	2.70	0.76	0.0125			
3	2.67	0.73	0.0138			
4	2.67	0.76	0.0125			
5	2.63	0.77	0.0120	0.0055		
6	2.76	0.75	0.0129			
7	2.72	0.76	0.0125			
8	2.68	0.80	0.0106			
9	2.64	0.78	0.0115			
10	2.59	0.75	0.0129			

Table S4. Concentrations and amounts used for supplementation of HNO_3 and H_2O_2 levels in the nitric acid solution circulation reaction system.

REFERENCES

- 1. J. Wang, X. Li, J. Song, K. Wu, Y. Xue, Y. Wu and S. J. N. Wang, 2020, **10**, 943.
- B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A. P. Mathew, K. Oksman, M. Faria, S. Thomas and L. A. Pothan, *Cellulose*, 2015, 22, 1075-1090.
- 3. M. Sain and S. Panthapulakkal, *Ind Crop Prod*, 2006, **23**, 1-8.
- 4. X. Song, Y. Jiang, X. Rong, W. Wei, S. Wang and S. Nie, *Bioresource Technology*, 2016, **216**, 1098-1101.
- 5. J. I. Morán, V. A. Alvarez, V. P. Cyras and A. Vázquez, *Cellulose*, 2008, **15**, 149-159.
- Ö. Özgenç, S. Durmaz, I. H. Boyaci and H. Eksi-Kocak, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 395-400.
- C.-M. Popescu and M.-C. Popescu, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 227-233.
- 8. S. Yamauchi, Y. lijima and S. Doi, *Journal of Wood Science*, 2005, **51**, 498-506.
- 9. S. Yamauchi and Y. Kurimoto, *Journal of wood science*, 2003, 49, 235-240.
- 10. E. Windeisen, C. Strobel and G. Wegener, *Wood science and technology*, 2007, **41**, 523-536.
- 11. O. Faix, in *Methods in lignin chemistry*, Springer, 1992, pp. 83-109.
- N. Pahimanolis, A. Salminen, P. A. Penttilä, J. T. Korhonen, L.-S. Johansson, J. Ruokolainen, R. Serimaa and J. Seppälä, *Cellulose*, 2013, **20**, 1459-1468.
- 13. P. A. Larsson, L. A. Berglund and L. Wågberg, *Cellulose*, 2014, **21**, 323-333.
- 14. H. Sehaqui, T. Zimmermann and P. Tingaut, *Cellulose*, 2014, **21**, 367-382.
- 15. A. Quellmalz and A. Mihranyan, ACS Biomaterials Science & Engineering, 2015, 1, 271-276.
- 16. M. Hakalahti, A. Salminen, J. Seppälä, T. Tammelin and T. Hänninen, *Carbohydrate polymers*, 2015, **126**, 78-82.
- 17. F. Ansari, E. L. Lindh, I. Furo, M. K. Johansson and L. A. Berglund, *Composites Science and Technology*, 2016, **134**, 175-183.
- 18. Q. Wang, H. Du, F. Zhang, Y. Zhang, M. Wu, G. Yu, C. Liu, B. Li and H. Peng, *Journal of Materials Chemistry A*, 2018, **6**, 13021-13030.
- 19. T. Benselfelt, J. Engström and L. Wågberg, *Green Chemistry*, 2018, **20**, 2558-2570.
- 20. F. Lossada, J. Guo, D. Jiao, S. Groeer, E. Bourgeat-Lami, D. Montarnal and A. Walther, *Biomacromolecules*, 2018, **20**, 1045-1055.
- 21. K. Kriechbaum and L. Bergström, *Biomacromolecules*, 2020, **21**, 1720-1728.
- 22. S. S. Nair and N. Yan, *Cellulose*, 2015, **22**, 3137-3150.