Supplementary information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

An integrated process for the valorization of corn stover promoted by NaCl in GVL/H₂O system

Yiping Luo^{a*}, Zhichen Zhao^a, Bin Jiang^a, Min Wei^a, Zheng Zhang^a, Lisha Zeng^a, James Clark^b and Jiajun Fan^{b*}

 ^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China. Email: luoyiping@cdut.edu.cn
 ^b Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK. Email:alice.fan@york.ac.uk.

I. The conversion of corn stover in different conditions

Figure S1 Effects of different reaction conditions on the conversion of corn stover:(A) Effects of GVL content in water at 160 °C for 2 h (Reaction conditions: 3 g corn stover, 60 mL GVL/H₂O with different contents of GVL); (B) Effects of NaCl content in 25%GVL/H₂O at 160 °C for 2 h (Reaction conditions: 3 g corn stover, 60 mL 25%GVL/H₂O with different contents of NaCl, the concentration of NaCl referred to that in the aqueous phase); (C) Effects of temperature in 25%GVL/H₂O-20% NaCl for 2 h (Reaction conditions: 3 g corn stover, 60 mL 25%GVL/H₂O with 20% NaCl); (D) Effects of time in 25%GVL/H₂O-20% NaCl at 170 °C (Reaction conditions: 3 g corn stover, 60 mL 25%GVL/H₂O with 20% NaCl).

II. XRD spectra of samples obtained at different temperatures

Figure S2 XRD spectra of samples obtained in 25% GVL/H₂O-20% NaCl at different temperatures for 2 h (a, 140 °C; b, 160 °C; c, 170 °C).

III. SEM microscopy of solid samples

Figure S3 SEM microscopy of corn stover (A-C) and solid residues (D-F) obtained in 25% GVL/H₂O-20% NaCl system at 170 °C for 2 h at different magnifications.

IV. FT-IR spectra of solid samples after being treated by different temperatures

Figure S4 FT-IR spectra of samples after being treated by different temperatures for 2 h in 25%GVL/H₂O-20% NaCl system (a,140 °C; b, 160 °C; c,170 °C).

V. XRD, DTG and FT-IR results of samples obtained in different GVL/H₂O ratios

Figure S5 XRD, DTG and FT-IR results of different samples obtained in co-solvents with different GVL/H₂O ratios at 160 °C for 2 h (a, CS; b, 0% GVL; c, 25%GVL; d, 50%GVL; e, 75% GVL; f, 100% GVL).

Solvent system	pН	Solvent system	pН
H ₂ O ^a	6.52	25%GVL/H ₂ O ^b	5.00
H ₂ O+10%NaCl ^a	4.62	$25\% GVL/H_2O\text{-}5\% NaCl^b$	3.83
$H_2O+15\%NaCl^a$	4.51	$25\% GVL/H_2O\text{-}15\% NaCl^b$	3.67
$H_2O\!\!+\!\!20\%NaCl^a$	4.27	25%GVL/H ₂ O-25%NaCl ^b	3.59
H ₂ O+30%NaCl ^a	3.99		

Table S1 The pH values of pure water and 25%GVL/H₂O system with increasing NaCl amount.

^a 30 mL H₂O with 5-30% NaCl; ^b 30 mL 25% GVL/H₂O (7.5 mL GVL, 22.5 mL H₂O) with 5-30% NaCl, where the concentration of NaCl referred to that in the aqueous phase (calculated based on 22.5 mL H₂O).

VII. Effects of temperature and time on the yield of small molecular products from hemicellulose

Table S2 The yield of small molecular products from hemicellulose obtained from different NaClcontents in 25% GVL/H2O system

Products		Yield /% (based on the weight of hemicellulose)					
		0% NaCl	5%NaCl	10%NaCl	15%NaCl	20%NaCl	30%NaCl
	Glucose	2.30	4.34	4.65	1.54	1.11	1.04
Monosaccharides	Xylose	2.93	6.83	9.42	9.75	12.09	10.82
wionosacenariaes	Arabinose	1.59	1.67	1.37	1.23	0.64	0.61
	Total sugars	6.82	12.84	15.44	12.52	13.84	12.47
Organic acids	Lactic acid	2.49	3.75	3.67	3.35	3.29	3.01
	Formic acid	37.51	39.34	38.93	34.80	35.43	30.10
	Acetic acid	8.47	9.10	9.52	9.22	8.99	11.06
	Levulinic acid	0.84	1.43	1.63	1.42	1.66	1.57
	Total organic acids	49.31	53.62	53.75	48.79	49.37	45.74
Furans	Furfural	2.72	5.14	5.85	8.95	7.33	16.11
Total yield/%		58.85	71.6	75.04	70.26	70.54	74.32

VIII. Effects of temperature and time on the yield of small molecular products from hemicellulose

Figure S6 Effects of temperature for 2 h (A) and time at 170 °C (B) on the yield of small molecular products from hemicellulose (the yield was based on the weight of hemicellulose in corn stover)

Table S3 The yield of small molecular products from hemicellulose obtained from different temperaturesfor 2 h in 25% GVL/H2O system

Products		The yield of products obtained from different temperatures (°C					
) for 2 h based on the weight of hemicellulose					
		120	140	160	170	180	200
	Glucose	2.04	1.89	1.11	1.88	2.40	2.94
Monosaccharides	Xylose	0.63	1.65	12.09	8.80	2.58	1.30
Wonosaccharides	Arabinose	0.04	3.09	0.64	0.16	0.15	0.01
	Total sugars	2.70	6.63	13.84	10.84	5.13	4.25
	Lactic acid	1.82	2.70	3.29	2.75	2.59	5.85
	Formic acid	2.54	2.53	35.43	32.24	25.61	2.42
Organic acids	Acetic acid	1.49	3.06	8.99	13.96	14.19	23.37
Organic acids	Levulinic acid	1.46	1.49	1.66	1.97	0.06	2.33
	Total organic acids	7.30	9.78	49.37	50.94	42.46	33.97
Furans	Furfural	0.11	0.38	7.33	23.87	18.05	16.46
Total yield/%		10.11	16.79	70.54	85.65	65.64	54.68

Table S4 The yield of small molecular products from hemicellulose obtained from different times at 170 $^{\circ}$ C in 25% GVL/H₂O system

Products		The yield of products obtained from different times (h) based					
		on the weight of hemicellulose					
		0.5	1	2	4	6	
	Glucose	2.02	1.85	1.88	2.87	1.76	
Monosaccharidas	Xylose	2.36	12.22	8.80	1.55	0.26	
Wonosaccharides	Arabinose	1.19	0.49	0.16	0.04	0.02	
	Total sugars	5.57	14.56	10.84	4.45	2.04	
Organic acids	Lactic acid	3.92	3.78	2.75	4.53	4.38	
	Formic acid	1.13	3.31	32.24	26.54	25.87	
	Acetic acid	2.96	5.93	13.96	15.72	17.91	
	Levulinic acid	0.36	0.97	1.97	1.32	1.80	
	Total organic	8 36	13.00	50.94	/8 11	49 96	
	acids	0.50	15.77	50.91	10.11	47.70	
Furans	Furfural	5.31	11.68	23.87	26.82	24.23	
Total yield/%		19.24	40.23	85.65	79.38	76.23	

IX. Effects of different inorganic salts on the yield of small molecular products

Figure S7 Effects of different inorganic salts on the yield of small molecular products from xylan in 25%GVL/H₂O system at 160 °C for 2 h (Reaction conditions: 0.5g xylan, 60 mL 25%GVL/H₂O, 20% NaCl(aq), the other sodium salts (Na₂SO₄, Na₂C₂O₄ and NaNO₃) and chlorine salts (KCl and LiCl) at the same molar concentration of Na⁺ or Cl⁻ in NaCl, respectively)

X. The yield of monophenols from lignin

Table S5 The yield of monophenols from lignin obtained from different NaCl contents in 25% GVL/H	$_2O$
system at 160 °C for 2 h	

Products	Yield/% (based on the weight of lignin)						
Troducts	0% NaCl	5% NaCl	15% NaCl	20% NaCl	30% NaCl		
o-cresol	0.287	0.315	0.234	0.180	0.230		
4-vinylphenol	1.361	3.029	2.120	6.957	4.884		
4-propyl phenol	0.035	0.078	0.054	0.060	0.062		
4-ethyl guaiacol	0.021	0.051	0.034	0.036	0.038		
4-vinyl guaiacol	0.875	2.859	2.358	4.642	4.667		
Syringol	0.000	0.088	0.098	0.170	0.155		
Eugenol	0.000	0.000	0.000	0.000	0.000		
4-propyl guaiacol	0.057	0.180	0.130	0.068	0.066		
Isoeugenol	0.515	1.165	0.985	2.491	2.320		
4-Hydroxy-3- methoxybenzoic acid	0.108	0.206	0.266	0.612	0.482		
4-allyl genol	0.000	0.000	0.000	0.043	0.044		
3-(4-Hydroxy-3- methoxyphenyl)-1-propanol	0.389	0.973	0.680	0.551	0.578		
Syringaldehyde	0.106	0.273	0.303	0.395	0.378		
Syringic acid	0.061	0.159	0.194	0.182	0.194		
4-(3-Hydroxypropyl)-2,6- dimethoxyphenol	0.048	0.178	0.132	0.090	0.081		
Total yield	3.863	9.554	7.588	16.477	14.179		

XI. ESI-MS analysis

Figure S8 ESI-MS results of liquid products obtained from 25% GVL/H₂O system (A-D) and GVL-rich phase in 25%GVL/H₂O-20%NaCl system (E-F).

The lignin derived oligomers according to the molecular weights described in Figure S8 were listed below:

139.02=M(138.16)+H⁺

155.07=(M(4-vinyl guaiacol)-H₂O+Na⁺=M(150.17)-H₂O+Na⁺

 $182.06=M(p-coumarate)+H_2O=M(164.19)+H_2O$

186.07=M(168.19)+H₂O

 $205.07=M(isoeugenol)+H_2O+Na^+=M(164.20)+H_2O+Na^+$

241.09=M(4-vinyl phenol) 2+H+=M(120.15) 2+H+

283.16=M(260.1)+Na+

318.30=M(300.31)+H₂O

Molecular weight	Chemical structure	Molecular weight	Chemical structure
138.16	но	120.15	ОН
150.17	OH (OCH3)	164.20	HO (H ₃ CO) β
164.19		260.10	$HO \qquad \beta O 4 \qquad \qquad$
168.19		274.27	
300.31			

Table S6 Possible chemical structures of oligomers

XII. 2D HSQC NMR assignment

Lables δ_C / δ_H Assignment C_{γ} -H_{γ} in β -O-4' structure(A) 59.8/3.61 A_{γ} γ-Est 63.97/4.36 γ-ester A_{5ax} 60.8/3.67 C_{5ax} -H_{5ax} in α -L-Araf H'2,6 C_{2,6}-H_{2,6} in oxidized(C=O) p-hydroxyphenyl units(H') 130.8/7.56 C_{2.6}-H_{2.6} in p-hydroxyphenyl units(H) $H_{2,6}$ 128.2/7.19 C_5 - H_5 in guaiacyl units(G) G_5 115.3/6.80 118.3/6.79 C₅-H₅ in etherified guaiacyl units(G) G_{5e} MeO C-H in methoxyls 56.0/3.71 130.1/7.15 C_2 -H₂ and C_6 -H₆ in p-coumarate structure (PCA) PCA_{2.6} C_3 - H_3 and C_5 - H_5 in p-coumarate structure (PCA) PCA_{3.5} 115.5/6.77 C_{β} -H_{β} in p-coumarate structure (PCA) and ferulate (FA) PCA_{β}/FA_{β} 113.5/6.27 PCA_{α}/FA_{α} 144.4/7.51 C_{α} -H_{α} in p-coumarate structure (PCA) and ferulate (FA) R₂.,_β 30.8/1.59 C_{β} - H_{β} in β - β' (resinol) substructures($R_{2''}$) C_{α} -H_{α} in β - β ' (resinol) substructures(R₂) $R_{2'\alpha}$ 40.5/2.63 S_{2.6} 104.4/6.72 C_{2.6}-H_{2.6} in syringyl units(S) 104.7/7.30 C_{2,6}-H_{2,6} in (carboxylic group) syringyl units(S) S''_{2,6}

Table S7 Assignment of main lignin ¹³C-¹H correlation signals in 2D HSQC NMR spectra

XIII. The distribution of products derived from hemicellulose in GVL-rich phase and waterrich phase

Table S8 The distribution of products derived from hemicellulose in the GVL-rich phase and water-rich phase

Solvent system			Ra	tio
			Sugars	Organic acids
25% GVL/H ₂ O-20%NaCl	160 °C, 2 h	Water-rich phase	80.8%	76.5%
		GVL-rich phase	19.2%	23.5%
25% GVL/H ₂ O-30%NaCl	160 °C, 2 h	Water-rich phase	94.4%	70.0%
		GVL-rich phase	5.6%	30.0%
25% GVL/H ₂ O-30%NaCl	170 °C, 2 h	Water-rich phase	93.1%	76.9%
		GVL-rich phase	6.9%	23.1%

Please do not adjust margins

Journal Name

XIV. The classification of thermochemical processes

Technological solutions	Final products	Notes	Ref.
Gasification	Syngas (H ₂ , CH ₄ , CO, and CO ₂), process, heat, electric energy, transportation fuels, steam	Harsh reaction conditions, high temperature, high energy consumption, and a large amount of tar as by products, less economic, less eco-friendly	[1-3]
Direct combustion	Stem, process heat, electric energy	Low conversion efficiency (20~40%), high temperature	[2-4]
Pyrolysis	Bio-oils, charcoal, Fuel gas	high temperature, complex products limited the use and difficulty in downstream processing	[4-6]
"One-pot" transformation	Chemicals	Low temperature, complex products that limited the use and difficulty in downstream processing	[7-9]
Solvothermal selective transformation	Chemicals	Low temperature, high selectivity to products	[10-12]

Table S9 The classification of thermochemical processes

References

- [1] A.S. El-Shafay, A.A. Hegazi, S. H. El-Emam, F. M. Okasha, *International Journal of Scientific & Engineering Research*, 2019, **10**, 266.
- [2] S. K. Sansaniwal, K. Pal, M.A. Rosen, S.K. Tyagi, *Renewable and Sustainable Energy Reviews*, 2017, 72, 363.
- [3] A. C. Caputo, M. Palumbo, P.M. Pelagagge, F. Scacchia, *Biomass and Bioenergy*, 2005, 28, 35.
- [4] T.Y.A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, R.E. Abou-Zeid, Environment, Development and Sustainability, 2018, 22, 17.
- [5] J. Akhtar, N. Saidina Amin, *Renewable and Sustainable Energy Reviews*, 2012, **16**, 5101.
- [6] T. Kan, V. Strezov, T.J. Evans, Renewable and Sustainable Energy Reviews, 2016, 57, 1126.
- [7] J. S. Luterbacher, J. M. Rand, D. M. Alonso, J. Han, J. T. Youngquist, C. T. Maravelias, B. F. Pfleger,
 J. A. Dumesic, *Science*, 343, 277.
- [8] C. Li, M. Zheng, A. Wang, T. Zhang, Energy&Environmental Science, 2012, 5, 6383.
- [9] Y. Luo, Z. Li, X. Li, X. Liu, J. Fan, J.H. Clark, C. Hu, Catalysis Today, 2019, 319, 14.
- [10] S.K. Maity, Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.
- [11] W. Fang, H. Sixta, ChemSusChem, 2015, 8, 73.
- [12] Q. Zhai, C.-y. Hse, F. Long, F. Wang, T.F. Shupe, J. Xu, Energy Technology, 2019, 1900949, 1.