Supporting Information

Choline Hydroxide Based Deep Eutectic Solvent for Dissolving

Cellulose†

Yinglin Zhong, ab Jingwei Wu, ab Hongliang Kang a and Ruigang Liu *abc

^a Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: rgliu@iccas.ac.cn

^b College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.

^c Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China..

HBA	HBD	Ratio	Temp	Dissolution time	Photo	Solubility	
ChCl	Urea	1:2	100°C	24h	fet -	non	
	Thiourea	1:2	100°C	24h		non	
	Resorcinol	1:1	100°C	24h	$\Delta $	non	
	Imidazole	3:7	100°C	24h	XX	non	
	Acetic acid	1:1	60°C	24h		non	
	KOH ^a	1:4	100°C	-	-	-	
	<i>l</i> -Histidine ^b	1:1	100-140°C	-	-	-	
ChOH	Thiourea	1:2	70°C	2h	A.	non	
	Resorcinol	1:1	100°C	2h		non	
	Imidazole	3:7	100°C	2h		non	
	<i>l</i> -Histidine	1:1	100°C	2h	X	non	
	Serine	1:1	100°C	2h		non	

Table S1. POM images obtained by polarizing microscope.

Figure S1. POM images of MCC (2 wt.%)/ChOH/Ur mixture sandwiched between two glass slides for (a) 0 min, (b) 15min, (c) 20min, and (d) 30min at 45°C.

Figure S2. POM images of cellulose (DP = 926, 1 wt.%)/ChOH/Urea mixture sandwiched between two glass slides for (a) 0 min, (b) 1 min, (c) 10 min, and (d) 20 min at 70°C.

Figure S3. POM images of cellulose (DP = 926, 1 wt.%)/ChOH/Urea mixture stirring at 70°C for (a) 0 min, (b) 5 min and (c) 10 min.

Figure S4. ATR-FTIR spectra of cellulose/ChOH/Ur mixture (a) before and (b) after kept at 100 °C for 15 hrs.

Figure S5. Scanning electron microscope (SEM) photos of Pulp and RePulp, a) pulp with 300x; b) regenerated pulp with 300x; c) pulp with 2500x; d) regenerated pulp with 2500x.

Figure S6. ¹H NMR spectra of ChOH/urea DES, deuterium oxide as external reference.

Table S2. The data obtained from Ubbelohde viscosity experiment

Time (day)	0	1	3	5	7			
$[\eta]^{a} (ml \cdot g^{-1})$	458.3	388.2	375.0	371.7	377.0			
DP	926	770	741	734	745			
Extend of degradation (%)	-	16.8	19.9	20.7	19.5			

 $^{a}\left[\eta\right]$ was the average of $\left[\eta1\right]$ and $\left[\eta2\right]$ acquired from the intercepts in figure S4.

Figure S7. Relationship between $[\eta]$ and concentration of cotton linter pulp in CED (0.5M; 25°C).

Figure S8. Images of MCC (8 wt.%) dissolved in recycled-3 ChOH/Urea mixture under (a) normal light, (b) orthogonal polarized light.