SUPPLEMENTARY INFORMATION

Furandicarboxylic acid methyl ester from galactaric acid via dimethyl carbonate chemistry

Giacomo Trapasso, Mattia Annatelli, Davide Dalla Torre and Fabio Aricò

CONTENTS

Purolite and Amberlyst catalysts properties	2
Compounds synthesis	3
Synthesis of FDME starting from dimethyl galactarate with different solvents	4
¹ H-NMR and ¹³ C-NMR	5
Hi-Res MS spectra of mixture samples collected at different reaction times in DMSO	8

Table S1. Purolite and Amberlyst catalysts properties.

	CT275	CT269	CT151	Amb-15	Amb-36				
Polymer structure	Macroporous polystyrene crosslinked with divinylbenzene								
Appearence	Spherical Beads								
Functional Group	Sulfonic Acid								
Ionic Form			H⁺ form						
Particle Size Range		425 - 1200 μm		< 300 µm	600 – 850 µm				
Dry Weight Capacity	5.2 eq/kg	5.2 eq/kg	5.1 eq/kg	≥ 4.7 eq/kg	≥ 5.4 eq/kg				
	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)				
Moisture Retention	51 - 59 %	51 - 57 %	54 - 59 %	≤ 1.6%	51 - 57 %				
	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)				
Surface Area	20 - 40 m²/g	35 - 50 m²/g	15 - 25 m²/g	53 m²/g	33 m² /g				
Pore Volume	0.40 - 0.60	0.30 - 0.50	0.15 - 0.30	0.40	0.20				
	mL/g	mL/g	mL/g	mL/g	mL/g				
Average Pore	400 - 700 Å	250 - 425 Å	250 - 400 Å	300 Å	210 Å				
Diameter	400 - 700 A	200 - 420 A	230 - 400 A	300 A	240 A				
Temperature Limit	130 °C	130 °C	150 °C	120 °C	150 °C				

a) All information is available on the Purolite[®] website (https://www.purolite.com/index). All Amberlyst-15 information are available on the DuPont (https://www.dupont.com/content/dam/dupont/amer/us/en/watersolutions/public/documents/en/45-D00927-en.pdf) and Lenntech websites (https://www.lenntech.com/Data-sheets/Dow-Amberlyst-36-wet-L.pdf).

Compound synthesis

Synthesis of 2,5-furandicarboxylic acid dimethyl ester – FDME

Galactaric acid (1.0 g, 4.7 mmol, 1 mol eq.), Amberlyst-36 (0.5 g, 50 wt. %) and DMC (35 mL, 416 mmol, 88 mol eq.) were added in a 220 mL stainless steel autoclave at 200 °C for 2 h under stirring at 600 rpm. The autoclave was washed with dichloromethane and the reaction mixture filtered under vacuum with a small amount of celite. The resulting liquid was dried until the formation of a pale yellow solid. To further purify the product, the solid was dissolved in 20 mL of diethyl ether with a small amount of charcoal. The solution was heated at 35-40 °C and stirred for 30 minutes. The mixture was filtered through a paper filter and the transparent liquid was dried under vacuum. The pure FDME was isolated as a white powder with a yield of 70%. The product formation was confirmed through proton and carbon NMR.

¹H NMR (400 MHz CDCl₃) δ ppm = 3.96 (s, 6H), 7.24 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm = 52.4, 118.5, 146.7, 158.4.

Synthesis of 2,5-furandicarboxylic acid diethyl ester – FDEE

Dimethyl galactarate (1 g, 4.2 mmol, 1 mol. eq.), Amberlyst-36 (0.5 g, 50 wt. %) and DEC (35 mL, 289 mmol, 69 mol. eq.) were added in a 220 mL stainless steel autoclave at 200 °C for 2 h under stirring at 600 rpm. The autoclave was washed with dichloromethane and the reaction mixture filtered under vacuum with a small amount of celite. The brown oil was purified via silica column chromatography with a mixture of hexane:ethyl acetate 7:3 as mobile phase. The pure FDEE was isolated as a light yellow liquid with a 38 % yield. The product formation was confirmed through proton and carbon NMR.

¹H NMR (400 MHz CDCl₃) δ ppm = 1.40-1.44 (t, 6H), 4.40-4.45 (q, 4H), 7.22 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm = 14.3, 61.6, 118.2, 147.0, 158.1.

Synthesis of dimethyl galactarate- Me-Gal

Me-Gal was synthesized according to the procedure already reported in the literature.¹

Blank experiment - DMC and Amberlyst-36

Dried Amberlyst-36 (0.5 g – 50 wt. %) and 35 mL of DMC were added to a 220 mL stainless steel autoclave. The mixture was heated at 200 °C for 2 h under stirring reaching a maximum value of autogenous pressure of 90 bar. The solution was filtered on a paper filter to remove the solid catalyst and the amount of the residual liquid was 10 mL.

¹ M. E. Davis, H. Han, JP2019/108372, California Institute of Technology, 2019, A Location in patent: Paragraph 0230; 0231.

Table S2. Synthesis of FDME starting from dimethyl galactarate (Me-Gal) with different solvents

#	Me-Gal (g)	Solvent	T (°C)	Time (h)	P (bar)	Solv.polarity	Conv. (%)	FDME Yield (%)
3	1.0	DMC	200	2	95	0.232 ^a	99	60
4	1.0	CH₃CN	200	2	20	0.460 ^b	<5	0
5	1.0	Dioxane	200	2	10	0.164 ^b	<5	0
6	1.0	Tert-butanol	200	2	55	0.389 ^b	<5	0
7	1.0	Me-lactate	200	2	25	/	<5	traces
8	1.0	H ₂ O	200	2	20	1.00 ^b	<5	0
0	10	DEC	200	2	75	0 182p	00	30 0

91.0DEC2002750.185b9938cReaction conditions: 50 wt. % of Amb-36, 35 mL of solvent in a stainless steel autoclave under pressure. ªW. Li, F. Galiano, J. Estager, J. M. Monbaliu,
D. P. Debecker, A. Figoli, P. Luis; Journal of Membrane Sciences, 2018, 567, 303-310; ^bC. Reichardt, Chem. Rev, 1994, 94, 2319; ^c FDEE.

Catalyst recycling

Reaction conducted without stirring (#2; Table S3) Galactaric acid (Gal; 1.0 g), dried Amberlyst-36 (0.5 g; 50 wt. %) and 35 mL of DMC were added to a 220 mL stainless steel autoclave. The mixture was heated at 180 °C for 4 h without stirring, then the reaction mixture was worked up as previously reported and FDME was isolated in 60% yield.

First recycle (#3, Table S3): The recovered catalyst was washed three times with methanol, oven dried at 100 °C overnight and reused in the next trial. FDME was isolated in 5% yield via column chromatography using a 7:3 hexane:ethyl acetate mixture as eluent phase.

Catalyst reactivation (#4, Table S3): To the Amberlyst-36 recovered from the first recycle experiment (#3, Table S3) was added 30 mL of methanol and 1.5 mL of H_2SO_4 . The solution was left overnight at room temperature, thus the catalyst beads were filtered, washed several times with methanol and dried at 100 °C. The dried Amb-36 was employed in the entry 4 Table S3 experiment. Both NMR spectroscopy and analysis via TLC did not show the presence of FDME.

	#	Gal. (q)	T (°C)	P (bar)	FDME isolated Yield (%)
Stirring	1 ^a	1	180	95	71
No stirring	2 ^b	1	180	90	60
First recycle	3 ^b	1	180	60	5 ^c
Catalyst reactivation	4	1	180	20	n.d.

Table S3. Synthesis of FDME. Investigation on catalyst recycling and blank experiment

^aReaction conducted as #8, Table 2; ^b mixture filtered on a paper filter to recover the catalyst, solution purified with diethylether and charcoal; ^c FDME isolated through silica gel column chromatography using an 7:3 hexane:ethyl acetate mixture as eluent phase.

¹H and ¹³C NMR spectra

2,5-Furandicarboxylic acid dimethyl ester (FDME)

Dimethyl galactarate (Me-Gal)

2,5-Furandicarboxylic acid diethyl ester (FDEE)

Hi-Res MS spectra of crude reaction mixtures at different reaction times in DMSO

Table S3. List of reaction intermediates detected through Hi-Res MS analysis employing positive (X) and (X) negative potential. Crosses represent the time at which each compound was detected.

		T<200 °C			T =200 °C	T=200 °C		
#	Structure	-35 min (82°C) 1 bar	-20 min (160°C) 6 bar	-10 min (184°C) 12 bar	0 (200°C) 25 bar	30 min (200°C) 65 bar	1 h (200°C) 80 bar	2h (200°C) 95 bar
2	ОНОНО НО Т. С. ОН О ОНОН 210.138	ХХ	ХХ	ХХ	Х	X		
7	$H_{3}CO_{2}CO OCO_{2}CH_{3}$ $HO O OH OCO_{2}CH_{3}$ $OH OH O$	X	Х					
10	но о но он 192.123	XX	ХХ	ХХ	х			
15	HO - O - O - O - O - O - O - O - O - O -	X	х	х	х	Х		
21	но со	x	Х	Х	Х	Х	ХХ	ХХ
18	HO HO U U U U U U U U U O HO O O HO O U O O HO O U O O HO O ZCH ₃ 232.144	X	Х					
6	H ₃ CO ₂ CO OH O HO HO HO H H ₃ CO ₂ CO 326.210		Х	Х				
14	$H_3CO_2CO OH OCO_2CH_3$		x					

	202.162					
20	но со			Х	X	X
8	H ₃ CO ₂ CO OCO ₂ CH ₃ O O O O O OCO ₂ CH ₃ O O O O O O O O O O O O O O O O O O O				X	
12	но но н ₃ со ₂ со он 250.159				X	
24	126.111				X	X
23	О О ОН 112.084					х

t = -35 minutes, T<200 °C (positive and negative potential)

t = -20 minutes, T<200 °C (positive and negative potential)

t = 0 minutes, T = 200 °C (positive and negative potential)

t = 30 minutes (T=200 °C) (positive and negative potential)

t = 1 hour (T=200 °C) (positive and negative potential)

t = 2 hours (T=200 °C) (positive and negative potential)