Supporting Information

Transition Metal-Free Selective C-S Bond Cleavage of Ugi-Adducts for Rapid Preparation of Peptidomimetics

Chao Liu, a Liangliang Song,* b Vsevolod A. Peshkov, c,d and Erik V. Van der Eycken* a,e

a Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
b Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037, Jiangsu, China.
c College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, P. R. China.
d Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan.
e Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia.

Contents

1. General information ...S2
2. General procedure for the synthesis of Ugi adducts ..S2
3. Characterization of Ugi adducts ..S3
4. General procedure for the synthesis of products ..S6
5. Characterization of products ..S7
6. References ...S26
7. Copies of 1H NMR and 13C NMR spectra for the Ugi adducts ..S27
8. Copies of 1H NMR and 13C NMR spectra for the products ...S34
1. General information

Commercially available reagents were used without additional purification. Column chromatography was performed with silica gel (70–230 mesh). Substrates 1a-b, 1g-i, 1k-p and 1r-u were synthesized according to literature, 1w was commercially available. 1H and 13C NMR spectra were recorded on a Bruker AM (300 or 400 MHz) spectrometer at ambient temperature using CDCl$_3$ or DMSO-d_6 or MeOH-d_4 as solvent. HRMS (ESI) spectrometry data were acquired on a quadrupole orthogonal acceleration time-of-flight mass spectrometer [Synapt G2 high definition mass spectrometer (HDMS), Waters, Milford, MA]. Samples were infused at 3 μL min$^{-1}$, and spectra were obtained in the positive ionization mode with a resolution of 15000 [full width at half maximum (FWHM)] with leucine encephalin as lock mass. Melting points were recorded on a Reichert Thermovar apparatus and are uncorrected.

2. General procedure for the synthesis of Ugi adducts
To a solution of aldehyde (1.0 mmol, 1.0 equiv) in TFE (1.0 mL) were added successively ammonia solution (7 N in methanol, 2.0 equiv), acid (1.2 mmol, 1.2 equiv) and isonitrile (1.2 mmol, 1.2 equiv) in a screw capped vial equipped with a magnetic stir bar. The reaction mixture was stirred in an oil bath at 60 °C for 12 h in a closed vial. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: n-heptane/ethyl acetate = 1:4 v/v) to afford the desired Ugi products 1c-f, 1j, 1q and 1v.

3. Characterization of Ugi adducts

1c was obtained as a white solid (68%). Melting point 233 – 235 °C.

1H NMR (400 MHz, DMSO-d_6) δ 9.37 – 9.21 (m, 1H), 8.66 (d, $J = 8.1$ Hz, 1H), 7.97 – 7.81 (m, 2H), 7.60 – 7.37 (m, 5H), 7.37 – 7.28 (m, 2H), 7.21 (d, $J = 8.0$ Hz, 2H), 6.98 – 6.86 (m, 2H), 5.66 (d, $J = 8.0$ Hz, 1H), 4.85 – 4.73 (m, 1H), 4.70 – 4.57 (m, 1H), 3.78 (s, 3H), 2.28 (s, 3H).

13C NMR (101 MHz, DMSO-d_6) δ 171.1, 166.6, 159.6, 144.9, 135.0, 134.4, 132.1, 130.2, 130.1, 129.8, 129.1, 128.8, 128.4, 114.2, 60.8, 56.6, 55.8, 21.7.

HRMS (ESI) calculated for C$_{24}$H$_{23}$N$_2$O$_5$SNa$^+$ ([M+Na]$^+$): 475.1298, found 475.1303.
1d was obtained as a yellow solid (58%). Melting point 267 – 269 °C.

1H NMR (400 MHz, DMSO-d_6) δ 9.43 – 9.36 (m, 1H), 8.78 (d, $J = 8.1$ Hz, 1H), 7.90 – 7.86 (m, 2H), 7.57 – 7.43 (m, 9H), 7.22 – 7.18 (m, 2H), 5.76 – 5.71 (m, 1H), 4.86 – 4.79 (m, 1H), 4.67 – 4.59 (m, 1H), 2.29 (s, 3H).

13C NMR (101 MHz, DMSO-d_6) δ 170.4, 166.8, 145.0, 137.1, 134.9, 134.2, 133.2, 132.1, 130.3, 130.1, 129.0, 128.8, 128.4, 128.4, 60.6, 56.5, 21.7.

HRMS (ESI) calculated for C$_{23}$H$_{21}$ClN$_2$O$_4$SNa$^+$ ([M+Na]$^+$): 479.0803, found 479.0820.

1e was obtained as a white solid, Yield 85% (380 mg), Melting point 240 – 242 °C.

1H NMR (400 MHz, DMSO-d_6) δ [9.51 (t, $J = 6.6$ Hz), 9.39 (t, $J = 6.6$ Hz), 1H], [8.82 (d, $J = 8.1$ Hz), 8.03 – 7.99 (m), 1H], [7.91 – 7.86 (m), 7.74 – 7.67 (m), 2H], 7.61 – 7.37 (m, 9H), 7.22 – 7.17 (m, 2H), [6.09 (s), 5.73 (d, $J = 8.0$ Hz), 1H], 4.88 – 4.77 (m, 1H), 4.68 – 4.58 (m, 1H), 4.29 (d, $J = 24.5$ Hz, 1H), [2.31 (s), 2.29 (s), 3H]. Mixture of rotamers (~4:1).

13C NMR (101 MHz, DMSO-d_6) δ 170.4, 168.3, 166.8, 165.3, 145.0, 138.7, 136.1, 134.9, 134.8, 134.5, 134.2, 132.8, 132.1, 131.8, 131.7, 131.1, 130.2, 130.1, 129.5, 129.3, 129.3, 129.0, 128.8, 128.4, 122.6, 122.4, 84.0, 83.7, 82.0, 81.6, 75.1, 60.7, 56.8, 21.7. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{25}$H$_{22}$N$_2$O$_4$S ([M+Na]$^+$): 469.1192, found 469.1176.
1f was obtained as a white solid, Yield 56% (231 mg), Melting point 212 – 214 °C.

1H NMR (400 MHz, DMSO-d_6) δ 9.37 – 9.20 (m, 1H), 8.74 (d, $J = 8.2$ Hz, 1H), 7.98 – 7.87 (m, 2H), 7.68 – 7.52 (m, 5H), 7.50 – 7.43 (m, 2H), 7.27 (d, $J = 8.1$ Hz, 2H), 6.56 (d, $J = 1.8$ Hz, 1H), 5.77 – 5.58 (m, 1H), 4.89 – 4.73 (m, 1H), 4.72 – 4.57 (m, 1H), 2.29 (s, 3H).

13C NMR (101 MHz, DMSO-d_6) δ 170.8, 166.9, 145.0, 143.8, 141.4, 135.1, 134.3, 132.1, 130.2, 129.1, 128.8, 128.4, 122.4, 111.1, 60.8, 49.8, 21.7.

HRMS (ESI, m/z) calcd for C$_{21}$H$_{20}$N$_2$O$_5$S ([M+Na]$^+$): 435.0985, found 435.0970.

1j was obtained as a yellow solid, Yield 60% (202 mg), Melting point 180 – 182 °C.

1H NMR (400 MHz, DMSO-d_6) δ 9.09 – 8.93 (m, 1H), 8.63 – 8.47 (m, 1H), [7.87 – 7.83 (m, 7.63 – 7.56 (m), 1H], 7.76 – 7.66 (m, 2H), 7.43 – 7.34 (m, 2H), [7.16 – 7.11 (m, 6.78 – 6.70 (m, 1H), [6.78 – 6.70 (m, 1H), 6.65 – 6.60 (m, 1H), 4.66 (d, $J = 6.3$ Hz, 2H), 3.79 (d, $J = 6.0$ Hz, 2H), 2.37 (s, 3H). Mixture of rotamers (~3:1).

13C NMR (101 MHz, DMSO-d_6) δ 169.8, 162.1, 158.6, 148.2, 145.8, 145.1, 144.0, 135.3, 130.4, 129.1, 114.4, 113.3, 112.5, 111.6, 60.9, 42.2, 21.8. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{15}$H$_{16}$N$_2$O$_5$S ([M+Na]$^+$): 359.0672, found 359.0681.
1q was obtained as a yellow solid, Yield 75% (288 mg), Melting point 150 – 152 °C.

1H NMR (400 MHz, DMSO-d_6) δ 9.19 (s, 1H), 7.88 – 7.68 (m, 2H), 7.57 – 7.38 (m, 6H), 7.36 – 7.19 (m, 1H), 4.74 (d, $J = 6.5$ Hz, 2H), 4.06 (d, $J = 24.5$ Hz, 2H), 3.88 (d, $J = 43.3$ Hz, 2H), [3.44 (s), 3.33 (s), 1H], [2.40 (s), 2.38 (s), 3H]. Mixture of rotamers (~1.1:1).

13C NMR (101 MHz, DMSO-d_6) δ 171.2, 171.0, 168.4, 145.4, 135.6, 135.3, 135.0, 130.8, 130.7, 130.4, 129.3, 129.2, 127.4, 127.3, 79.3, 76.5, 75.9, 60.7, 50.5, 47.0, 35.0, 21.8.

HRMS (ESI, m/z) calcd for C$_{20}$H$_{20}$N$_2$O$_4$S ([M+Na]$^+$): 407.1036, found 407.1038.

1v was obtained as a white solid, Yield 80% (413 mg, dr 1:1), Melting point 88 – 90°C.

1H NMR (400 MHz, CDCl$_3$) δ 8.00 (s, 1H), 7.87 – 7.67 (m, 2H), 7.65 – 7.41 (m, 2H), 7.40 – 7.27 (m, 4H), 7.25 – 7.20 (m, 1H), 7.15 – 7.03 (m, 1H), [5.78 – 5.29 (m), 4.91 – 4.70 (m), 1H], 4.69 – 4.55 (m, 1H), 4.52 – 3.96 (m, 2H), 3.74 – 3.19 (m, 2H), [2.41 (s), 2.34 (s), 3H], [2.40 – 2.34 (m), 2.31 – 1.89 (m), 4H], [1.88 – 1.76 (m), 1.60 – 1.08 (m), 9H].

13C NMR (101 MHz, CDCl$_3$) δ 174.6, 172.6, 170.0, 165.0, 160.8, 145.6, 145.0, 133.7, 130.4, 130.0, 129.8, 128.9, 128.7, 127.4, 80.8, 63.2, 60.4, 58.9, 57.3, 47.3, 47.1, 28.5, 28.3, 24.7, 24.4, 21.8, 21.7, 20.8, 14.3.

4. General procedure for the synthesis of products
(0.1 mmol, 1.0 equiv), CsOAc (0.2 mmol, 2.0 equiv) (Note: Ugi adducts 1 are stable in this work) were placed to the screw cap vial followed by addition of alcohol (1.0 mL). The resulting mixture was sealed and stirred at 120 °C for 1 h. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: n-heptane/ethyl acetate = 1:4 v/v) to afford the desired products 2.

5. Characterization of products

2-1 was obtained as a white solid, Yield 94% (22.2 mg), Melting point 143 – 145 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.94 – 7.83 (m, 2H), 7.60 – 7.51 (m, 1H), 7.50 – 7.41 (m, 2H), 4.68 (s, 2H), 4.06 (s, 2H), 3.60 – 3.47 (m, 2H), 1.16 (t, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, MeOH-d_4) δ 172.6, 170.5, 135.0, 132.9, 129.5, 128.5, 70.7, 64.7, 44.1, 15.4.

HRMS (ESI, m/z) calcld for C_{12}H_{16}N_{2}O_{3} ([M+Na$^+$]): 259.1053, found 259.1054.

2-2 was obtained as a white solid, Yield 97% (30.3 mg), Melting point 116 – 118 °C.
1H NMR (400 MHz, MeOH-d_4) δ 7.88 – 7.85 (m, 2H), 7.57 – 7.50 (m, 3H), 7.48 – 7.46 (m, 1H), 7.45 – 7.43 (m, 1H), 7.41 – 7.31 (m, 3H), 5.65 (s, 1H), 4.72 (d, $J = 10.4$ Hz, 1H), 4.61 (d, $J = 10.4$ Hz, 1H), 3.46 – 3.40 (m, 2H), 1.08 (t, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, MeOH-d_4) δ 173.4, 169.8, 138.6, 135.1, 132.9, 129.8, 129.5, 129.0, 128.6, 70.8, 64.6, 59.5, 15.3.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{20}$N$_2$O$_3$ ([M+ Na]$^+$): 335.1366, found 335.1368.

2-3 was obtained as a white solid, Yield 94% (33.2 mg), Melting point 155 – 157 °C.

1H NMR (400 MHz, DMSO-d_6) δ 8.93 – 8.85 (m, 1H), 8.75 (d, $J = 7.7$ Hz, 1H), 7.93 – 7.88 (m, 2H), 7.57 – 7.50 (m, 1H), 7.49 – 7.41 (m, 4H), 6.92 (d, $J = 8.3$ Hz, 2H), 5.58 (d, $J = 7.6$ Hz, 1H), 4.59 – 4.47 (m, 2H), 3.74 (s, 3H), 3.39 – 3.32 (m, 2H), 1.03 (t, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, DMSO-d_6) δ 171.70, 166.73, 159.49, 134.52, 132.01, 130.64, 129.66, 128.77, 128.34, 114.32, 69.63, 63.16, 57.36, 55.77, 15.58.

HRMS (ESI, m/z) calcd for C$_{19}$H$_{22}$N$_2$O$_4$ ([M+ Na]$^+$): 365.1472, found 365.1464.

2-4 was obtained as a white solid, Yield 83% (29 mg), Melting point 163 – 165 °C.

1H NMR (300 MHz, DMSO-d_6) δ 9.03 – 8.97 (m, 1H), 8.89 (d, $J = 7.7$ Hz, 1H), 7.94 – 7.89 (m, 2H), 7.53 (d,
$J = 7.9 \text{ Hz, 3H}$, $7.49 - 7.42$ (m, 4H), 5.66 (d, $J = 7.6 \text{ Hz, 1H}$), $4.60 - 4.47$ (m, 2H), $3.40 - 3.33$ (m, 2H), 1.03 (t, $J = 7.0 \text{ Hz, 3H}$).

13C NMR (101 MHz, DMSO-d_6) δ 171.04, 166.88, 137.70, 134.35, 133.07, 132.12, 130.32, 128.90, 128.80, 128.38, 69.68, 63.24, 57.25, 15.57.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{19}$ClN$_2$O$_3$ ([M+ Na]$^+$): 369.0976, found 369.0967.

2-5 was obtained as a white solid, Yield 96% (32.3 mg), Melting point 115 – 117 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.88 – 7.85 (m, 2H), 7.67 – 7.65 (m, 1H), 7.56 – 7.51 (m, 2H), 7.48 – 7.45 (m, 1H), 7.45 – 7.43 (m, 2H), 7.39 – 7.35 (m, 1H), 5.65 (s, 1H), 4.73 (d, $J = 10.4 \text{ Hz, 1H}$), 4.61 (d, $J = 10.4 \text{ Hz, 1H}$), 3.53 (s, 1H), 3.46 – 3.41 (m, 2H), 1.09 (t, $J = 7.1 \text{ Hz, 3H}$).

13C NMR (101 MHz, MeOH-d_4) δ 172.9, 169.8, 139.2, 135.0, 133.0, 132.9, 132.5, 130.0, 129.5, 129.4, 128.6, 124.3, 83.9, 79.3, 70.9, 64.7, 59.0, 15.3.

HRMS (ESI, m/z) calcd for C$_{20}$H$_{20}$N$_2$O$_3$ ([M+ Na]$^+$): 359.1366, found 359.1365.

2-6 was obtained as a white solid, Yield 94% (28.4 mg), Melting point 148 – 150 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.89 – 7.85 (m, 2H), 7.65 – 7.64 (m, 1H), 7.57 – 7.50 (m, 2H), 7.48 – 7.43 (m, 2H), 6.57 – 6.56 (m, 1H), 5.63 (s, 1H), 4.74 (d, $J = 10.4 \text{ Hz, 1H}$), 4.64 (d, $J = 10.4 \text{ Hz, 1H}$), 3.52 – 3.47
(m, 2H), 1.14 (t, J = 7.0 Hz, 3H).

13C NMR (101 MHz, MeOH-d_4) δ 173.3, 170.0, 144.8, 142.5, 135.1, 132.9, 129.5, 128.6, 122.9, 110.7, 70.9, 64.7, 51.6, 15.3.

HRMS (ESI, m/z) calcd for C$_{16}$H$_{18}$N$_2$O$_4$ ([M+ Na]$^+$): 325.1159, found 325.1154.

2-7 was obtained as a white solid, Yield 68% (27.2 mg), Melting point 74 – 76 °C.

1H NMR (400 MHz, MeOH-d_4) δ 8.05 (d, J = 8.6 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 4.68 (s, 2H), 4.08 (s, 2H), 3.56 – 3.51 (m, 2H), 3.17 – 3.08 (m, 4H), 1.60 – 1.56 (m, 2H), 1.54 (d, J = 7.5 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.4 Hz, 6H).

13C NMR (101 MHz, MeOH-d_4) δ 172.3, 168.9, 144.3, 138.8, 129.4, 128.3, 70.7, 64.8, 64.7, 51.2, 44.1, 23.1, 15.4, 11.4.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{29}$N$_3$O$_5$S ([M+ Na]$^+$): 422.1720, found 422.1719.

2-8 was obtained as a white solid, Yield 45% (19.4 mg), Melting point 164 – 166 °C.

1H NMR (400 MHz, DMSO-d_6) δ 8.71 (t, J = 6.6 Hz, 1H), 8.41 (t, J = 5.9 Hz, 1H), 8.24 (d, J = 2.3 Hz, 1H), 8.20 – 8.15 (m, 1H), 7.38 (d, J = 9.0 Hz, 1H), 4.56 – 4.53 (m, 2H), 4.00 (d, J = 6.5 Hz, 2H), 3.88 – 3.86 (m, 2H), 3.45 – 3.40 (m, 2H), 2.63 (s, 3H), 2.15 – 2.04 (m, 1H), 1.09 (t, J = 7.0 Hz, 3H), 1.02 (d, J = 6.7 Hz, 6H).

13C NMR (101 MHz, DMSO-d_6) δ 170.1, 164.5, 162.5, 161.8, 155.7, 133.5, 131.9, 127.0, 126.1, 116.1,
114.6, 102.2, 75.7, 69.5, 63.2, 43.3, 28.2, 19.3, 17.7, 15.6.

HRMS (ESI, m/z) calcd for C_{21}H_{26}N_{4}O_{4}S ([M+ Na]^+): 453.1567, found 453.1563.

2-9 was obtained as a white solid, Yield 89% (23.4 mg), Melting point 85 – 87 °C.

1H NMR (400 MHz, MeOH-\(d_4\)) δ 7.63 – 7.44 (m, 2H), 7.42 – 7.21 (m, 3H), 5.89 (s, 1H), 5.77 (s, 1H), 4.67 (s, 2H), 3.96 (s, 2H), 3.58 – 3.45 (m, 2H), 1.16 (t, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, MeOH-\(d_4\)) δ 172.1, 171.7, 146.6, 137.9, 129.5, 129.3, 128.7, 120.3, 70.7, 64.7, 43.8, 15.4.

HRMS (ESI, m/z) calcd for C_{14}H_{18}N_{2}O_{3} ([M+ Na]^+): 285.1210, found 285.1227.

2-10 was obtained as a yellow solid, Yield 50% (11.3 mg), Melting point 98 – 100 °C.

1H NMR (400 MHz, MeOH-\(d_4\)) δ 7.75 – 7.62 (m, 1H), 7.22 – 7.07 (m, 1H), 6.68 – 6.52 (m, 1H), 4.67 (s, 2H), 4.02 (s, 2H), 3.61 – 3.45 (m, 2H), 1.16 (t, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 169.6, 158.9, 147.3, 144.7, 115.1, 112.4, 70.1, 64.3, 43.1, 15.2.

HRMS (ESI, m/z) calcd for C_{13}H_{14}N_{2}O_{4} ([M+ Na]^+): 249.0846, found 249.0862.
2-11 was obtained as a white solid, Yield 84% (27.4 mg), Melting point 82 – 84 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.56 – 7.52 (m, 1H), 7.48 – 7.43 (m, 4H), 7.38 – 7.33 (m, 3H), 7.33 – 7.27 (m, 1H), 7.21 (d, $J = 7.5$ Hz, 1H), 4.78 (s, 1H), 4.68 (s, 1H), 4.60 (d, $J = 5.7$ Hz, 2H), 4.10 (s, 1H), 3.85 (s, 1H), 3.56 – 3.40 (m, 2H), 1.16 (t, $J = 6.8$ Hz, 3H). Mixture of rotamers (~1:1).

13C NMR (101 MHz, MeOH-d_4) δ 174.9, 171.2, 137.7, 137.5, 137.0, 136.7, 131.3, 131.1, 130.0, 129.9, 129.8, 129.7, 129.4, 128.9, 128.8, 128.3, 127.9, 127.7, 70.7, 64.7, 55.3, 51.9, 50.5, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{19}$H$_{22}$N$_2$O$_3$ ([M+ Na]$^+$): 349.1523, found 349.1526.

![2-12](image)

2-12 was obtained as a yellow oil, Yield 95% (34 mg).

1H NMR (400 MHz, MeOH-d_4) δ 7.57 – 7.39 (m, 5H), 7.28 (d, $J = 8.2$ Hz, 1H), 7.11 (d, $J = 8.2$ Hz, 1H), 6.95 – 6.84 (m, 2H), [4.71 (s), 4.67 (s), 2H], [4.59 (s), 4.52 (s), 2H], [4.07 (s), 3.82 (s), 2H], [3.78 (s), 3.77 (s), 3H], 3.56 – 3.38 (m, 2H), 1.19 – 1.12 (m, 3H). Mixture of rotamers (~1:1).

13C NMR (101 MHz, MeOH-d_4) δ 174.8, 174.7, 171.3, 171.2, 160.9, 137.1, 136.8, 131.2, 131.1, 130.9, 129.8, 129., 129.5, 129.1, 127.9, 127.7, 115.3, 115.2, 70.6, 64.7, 55.7, 54.8, 51.7, 49.9, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{20}$H$_{24}$N$_2$O$_4$ ([M+ Na]$^+$): 379.1628, found 379.1628.

![2-13](image)

2-13 was obtained as a yellow oil, Yield 95% (25.2 mg).

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.39 (m, 6H), 4.73 (d, $J = 6.7$ Hz, 2H), 4.14 (s, 2H), 3.53 (d, $J = 7.0$ Hz,
2H), 3.43 – 3.37 (m, 2H), 1.19 (t, J = 7.1 Hz, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 172.9, 170.2, 135.5, 130.1, 128.7, 126.7, 69.9, 64.1, 50.1, 45.9, 15.2, 14.0.

HRMS (ESI, m/z) calcd for C$_{14}$H$_{20}$N$_2$O$_3$ ([M+ Na]$^+$): 287.1366, found 287.1371.

2-14 was obtained as a yellow oil, Yield 98% (30 mg).

1H NMR (400 MHz, MeOH-d$_4$) δ 7.49 – 7.38 (m, 5H), [4.71 (s), 4.61 (s), 2H], [4.18 (s), 3.96 (s), 2H], 3.61 – 3.50 (m, 2H), 3.48 – 3.32 (m, 2H), 1.70 – 1.52 (m, 1H), 1.50 – 1.34 (m, 2H), 1.20 – 1.12 (m, 3H), [0.98 (d, J = 6.5 Hz), 0.73 (d, J = 6.5 Hz), 6H]. Mixture of rotamers (~3:2).

13C NMR (101 MHz, MeOH-d$_4$) δ 174.6, 171.7, 171.5, 137.5, 137.2, 130.9, 129.6, 127.7, 127.6, 70.7, 53.0, 50.6, 46.7, 38.3, 36.8, 27.4, 26.9, 22.9, 22.6, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{17}$H$_{26}$N$_2$O$_3$ ([M+Na]$^+$): 329.1836, found 329.1835.

2-15 was obtained as a yellow oil, Yield 90% (34 mg).

1H NMR (400 MHz, MeOH-d$_4$) δ 7.49 – 7.39 (m, 5H), 4.71 (s, 1H), 4.61 (s, 1H), 4.18 (s, 1H), 3.96 (s, 1H), 3.60 – 3.51 (m, 2H), 3.48 – 3.31 (m, 2H), 1.75 – 1.59 (m, 3H), 1.58 – 1.43 (m, 9H), 1.42 – 1.29 (m, 4H), 1.20 – 1.13 (m, 4H). Mixture of rotamers (~3:2).

13C NMR (101 MHz, MeOH-d$_4$) δ 174.6, 171.7, 171.5, 137.5, 137.2, 130.9, 129.6, 127.7, 127.6, 70.7, 64.7, 52.9, 50.6, 46.6, 37.5, 36.5, 36.2, 36.0, 33.6, 33.0, 28.3, 27.5, 27.2, 26.6, 26.3, 15.4. Mixture of rotamers.
HRMS (ESI, m/z) calcd for C_{22}H_{34}N_{2}O_{3} ([M + Na]^{+}): 397.2462, found 397.2453.

2-16 was obtained as a green oil, Yield 86% (25 mg).

1H NMR (400 MHz, MeOH-d_4) δ 7.56 – 7.34 (m, 5H), [4.74 (s), 4.61 (s), 2H], [4.34 (s), 4.09 (s), 2H], [3.62 – 3.38 (m), 3.21 (d, $J = 6.6$ Hz), 4H], 1.21 – 0.91 (m, 4H), 0.63 – 0.46 (m, 2H), [0.30 (d, $J = 4.1$ Hz), 0.06 (d, $J = 4.0$ Hz), 2H]. Mixture of rotamers (~3:2).

13C NMR (101 MHz, MeOH-d_4) δ 174.8, 174.5, 171.7, 137.4, 137.1, 130.9, 129.6, 127.9, 127.6, 70.7, 64.8, 56.4, 52.7, 51.9, 15.4, 10.6, 9.8, 4.1. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C_{16}H_{22}N_{2}O_{3} ([M + Na]^{+}): 313.1523, found 313.1521.

2-17 was obtained as a white solid, Yield 94% (26 mg), Melting point 73 – 75 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.69 – 7.23 (m, 5H), [4.70 (s), 4.63 (s), 2H], [4.42 (s), 4.30 (s), 2H], [4.15 (s), 4.12 (s), 2H], 3.60 – 3.42 (m, 2H), [2.89 (s), 2.77 (s), 1H], 1.20 – 1.14 (m, 3H). Mixture of rotamers (~3:2).

13C NMR (101 MHz, MeOH-d_4) δ 174.2, 174.0, 171.1, 136.5, 135.9, 131.7, 131.4, 129.7, 128.1, 127.8, 79.0, 75.2, 74.5, 70.7, 64.8, 51.8, 41.7, 36.5, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C_{15}H_{18}N_{2}O_{3} ([M + Na]^{+}): 297.1210, found 297.1202.
2-18 was obtained as a yellow oil, Yield 96% (28 mg).

1H NMR (400 MHz, MeOH-d$_4$) δ 7.49 – 7.36 (m, 5H), [5.94 – 5.82 (m), 5.68 – 5.53 (m), 1H], 5.19 – 4.95 (m, 2H), [4.71 (s), 4.61 (s), 2H], [4.20 (s), 3.98 (s), 2H], 3.63 – 3.51 (m, 2H), 3.46 – 3.35 (m, 2H), [2.48 – 2.39 (m), 2.34 – 2.25 (m), 2H], 1.21 – 1.11 (m, 3H). Mixture of rotamers (~1:1).

13C NMR (101 MHz, MeOH-d$_4$) δ 174.8, 171.6, 171.5, 137.4, 136.6, 135.6, 130.9, 129.6, 127.8, 127.6, 117.8, 117.3, 70.7, 64.7, 53.3, 51.5, 47.6, 33.9, 32.6, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{16}$H$_{22}$N$_2$O$_3$ ([M+ Na]$^+$): 313.1523, found 313.1518.

2-19 was obtained as a yellow solid, Yield 90% (28.5 mg), Melting point 86 – 88 °C.

1H NMR (400 MHz, MeOH-d$_4$) δ 7.63 – 7.58 (m, 1H), 7.53 – 7.39 (m, 5H), [6.42 – 6.37 (m), 6.33 – 6.28 (m), 2H], [4.77 (s), 4.68 (s), 2H], [4.60 (s), 4.52 (s), 2H], [4.13 (s), 3.92 (s), 2H], [3.59 – 3.50 (m), 3.47 – 3.40 (m), 2H], 1.21 – 1.13 (m, 3H). Mixture of rotamers (~7:3).

13C NMR (101 MHz, MeOH-d$_4$) δ 174.6, 171.2, 151.2, 150.8, 144.5, 144.1, 136.5, 131.3, 129.7, 128.3, 127.7, 111.5, 110.5, 70.7, 64.7, 52.0, 43.4, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{17}$H$_{20}$N$_2$O$_4$ ([M+ Na]$^+$): 339.1315, found 339.1312.

2-20 was obtained as a yellow oil, Yield 78% (26 mg).

1H NMR (400 MHz, MeOH-d$_4$) δ 7.60 – 7.54 (m, 1H), 7.50 – 7.41 (m, 4H), 7.39 – 7.37 (m, 1H), [7.13 – 7.05 (m), 7.00 – 6.96 (m), 2H], [4.92 (s), 4.74 (s), 2H], [4.69 (s), 4.62 (s), 2H], [4.14 (s), 3.89 (s), 2H], 3.57 – 3.43 (m, 2H), 1.20 – 1.15 (m, 3H). Mixture of rotamers (~1:1).
13C NMR (101 MHz, MeOH-d_4) δ 174.4, 171.2, 140.1, 139.9, 136.7, 136.5, 131.3, 129.8, 128.9, 128.2, 128.1, 128.0, 127.7, 127.4, 127.0, 70.7, 64.8, 51.7, 50.4, 45.5, 15.4. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{17}$H$_{20}$N$_2$O$_3$ $([M+Na]^+)$: 355.1087, found 355.1083.

2-21 was obtained as a white solid, Yield 75% (30 mg), Melting point 126 – 128 °C

1H NMR (400 MHz, MeOH-d_4) δ 7.38 – 7.34 (m, 5H), 4.58 (s, 2H), 3.99 (s, 2H), 3.47 – 3.41 (m, 2H), 2.19 (s, 3H), 2.03 – 1.92 (m, 4H), 1.47 – 1.41 (m, 2H), 1.36 – 1.31 (m, 2H), 1.20 – 1.18 (m, 2H), 1.14 (t, J = 7.0 Hz, 3H), 0.88 (s, 6H).

13C NMR (101 MHz, MeOH-d_4) δ 176.0, 173.0, 140.5, 130.2, 129.6, 126.9, 70.6, 64.7, 62.5, 51.6, 50.8, 46.3, 43.7, 38.8, 33.9, 32.2, 31.0, 15.4.

HRMS (ESI, m/z) calcd for C$_{24}$H$_{34}$N$_2$O$_3$ $([M+Na]^+)$: 421.2462, found 421.2454.

2-22 was obtained as a white solid, Yield 92% (20.5 mg), Melting point 137 – 139 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.86 – 7.81 (m, 2H), 7.55 – 7.50 (m, 1H), 7.48 – 7.41 (m, 3H), 7.37 – 7.32 (m, 1H), 4.71 (d, J = 6.7 Hz, 2H), 4.21 (d, J = 5.2 Hz, 2H), 3.33 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 170.3, 168.1, 133.4, 132.2, 128.8, 127.3, 71.6, 56.2, 44.0.

HRMS (ESI, m/z) calcd for C$_{11}$H$_{14}$N$_2$O$_3$ $([M+Na]^+)$: 245.0897, found 245.0909.
2-23 was obtained as a white solid, Yield 90% (24 mg), Melting point 128 – 130 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.86 (m, 2H), 7.58 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 4.67 (s, 2H), 4.06 (s, 2H), 3.48 (t, $J = 6.5$ Hz, 2H), 1.57 – 1.48 (m, 2H), 1.43 – 1.31 (m, 2H), 0.92 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, MeOH-d_4) δ 172.6, 170.5, 135.0, 132.9, 129.5, 128.5, 70.9, 69.1, 44.1, 32.8, 20.3, 14.2.

HRMS (ESI, m/z) calcd for C$_{14}$H$_{20}$N$_2$O$_3$ ([M+Na]$^+$): 287.1366, found 287.1368.

2-24 was obtained as a white solid, Yield 93% (23.3 mg), Melting point 120 – 122 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.86 – 7.81 (m, 2H), 7.54 – 7.49 (m, 1H), 7.46 – 7.40 (m, 2H), 7.38 – 7.27 (m, 2H), 4.77 (d, $J = 6.6$ Hz, 2H), 4.19 (d, $J = 5.1$ Hz, 2H), 3.77 (p, $J = 6.1$ Hz, 1H), 1.16 (d, $J = 6.1$ Hz, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 169.8, 168.0, 133.5, 132.1, 128.8, 127.3, 69.7, 68.1, 44.0, 22.4.

HRMS (ESI, m/z) calcd for C$_{13}$H$_{18}$N$_2$O$_3$ ([M+Na]$^+$): 273.1210, found 273.1223.

2-25 was obtained as a white solid, Yield 70% (18.5 mg), Melting point 101 – 103 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.84 – 7.81 (m, 2H), 7.54 – 7.49 (m, 1H), 7.46 – 7.41 (m, 2H), 7.22 – 7.18 (m, 1H), 7.00 – 6.94 (m, 1H), 4.79 (d, $J = 6.4$ Hz, 2H), 4.15 (d, $J = 5.0$ Hz, 2H), 1.24 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 169.1, 167.9, 133.6, 132.0, 128.8, 127.3, 74.3, 64.5, 44.0, 28.1.

HRMS (ESI, m/z) calcd for C$_{14}$H$_{20}$N$_2$O$_3$ ([M+Na]$^+$): 287.1366, found 287.1387.
2-26 was obtained as a green solid, Yield 58% (16.3mg), Melting point 96 – 98 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.90 – 7.86 (m, 2H), 7.58 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 4.70 (s, 2H), 4.04 (s, 2H), 1.58 – 1.50 (m, 2H), 1.19 (s, 6H), 0.89 (t, $J = 7.5$ Hz, 3H).

13C NMR (101 MHz, MeOH-d_4) δ 171.9, 170.4, 135.1, 132.9, 129.5, 128.5, 128.2, 77.2, 64.7, 44.1, 34.2, 25.8, 8.6.

HRMS (ESI, m/z) calcd for $C_{15}H_{22}N_2O_3$ ([M+Na$^+$]): 301.1523, found 301.1525.

2-27 was obtained as a white solid, Yield 45% (15.3 mg), Melting point 111 – 113 °C.

1H NMR (300 MHz, MeOH-d_4) δ 7.90 – 7.86 (m, 2H), 7.59 – 7.53 (m, 1H), 7.47 (t, $J = 7.4$ Hz, 2H), 7.34 – 7.26 (m, 1H), 7.25 – 7.20 (m, 3H), 7.19 – 7.14 (m, 1H), [4.80 (s), 4.55 (s), 2H], [4.07 (s), 4.04 (s), 2H], 2.80 (s, 2H), 1.19 (s, 6H). Mixture of rotamers (~4:1).

13C NMR (101 MHz, MeOH-d_4) δ 171.9, 170.5, 139.4, 135.1, 132.9, 131.7, 129.6, 129.3, 128.9, 128.8, 128.5, 128.5, 127.2, 77.5, 71.2, 70.5, 65.0, 48.3, 44.2, 26.0. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $C_{20}H_{24}N_2O_3$ ([M+Na$^+$]): 363.1679, found 363.1668.

2-28 was obtained as a yellow solid, Yield 84% (21 mg), Melting point 133 – 135 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.90 – 7.87 (m, 2H), 7.58 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 4.76 (s, 2H), 4.17 (d, $J = 2.4$ Hz, 2H), 4.06 (s, 2H), 2.82 (t, $J = 2.4$ Hz, 1H).

13C NMR (101 MHz, MeOH-d_4) δ 172.8, 170.5, 135.0, 132.9, 129.5, 128.5, 128.0, 80.5, 75.6, 69.8, 56.1, 44.1.

HRMS (ESI, m/z) calcd for $C_{13}H_{14}N_2O_3$ ([M+Na$^+$]): 269.0897, found 269.0908.
2-29 was obtained as a yellow solid, Yield 82% (21.4 mg), Melting point 144 – 146 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.86 (m, 2H), 7.58 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 4.71 (s, 2H), 4.06 (s, 2H), 3.60 (t, $J = 6.9$ Hz, 2H), 2.44 – 2.39 (m, 2H), 2.24 (t, $J = 2.7$ Hz, 1H).

13C NMR (101 MHz, MeOH-d_4) δ 172.5, 170.3, 134.8, 132.7, 129.3, 128.3, 81.7, 70.6, 70.2, 67.5, 43.9, 20.2.

HRMS (ESI, m/z) calcd for C$_{14}$H$_{16}$N$_2$O$_3$ ([M+Na]$^+$): 283.1053, found 283.1058.

2-30 was obtained as a white solid, Yield 80% (21 mg), Melting point 118 – 120 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.86 (m, 2H), 7.58 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 5.89 – 5.68 (m, 1H), [5.28 – 5.10 (m), 5.10 – 4.97 (m), 2H], [4.69 (s), 4.68 (s), 2H], [4.06 (s), 4.05 (s), 2H], 3.53 (t, $J = 6.7$ Hz, 2H), 2.35 – 2.22 (m, 2H). Mixture of rotamers (~4:1).

13C NMR (101 MHz, MeOH-d_4) δ 172.7, 170.5, 141.1, 136.4, 135.0, 135.0, 132.9, 129.6, 129.6, 128.5, 116.7, 116.5, 75.6, 70.8, 68.8, 68.7, 44.1, 35.1, 21.6. Mixture of rotamers.

HRMS (ESI, m/z) calcd for C$_{14}$H$_{18}$N$_2$O$_3$ ([M+Na]$^+$): 285.1210, found 285.1214.

2-31 was obtained as a white solid, Yield 78% (25 mg), Melting point 103 – 105 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.87 (m, 2H), 7.57 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 4.67 (s, 2H), 4.06 (s, 2H), 3.51 (t, $J = 6.6$ Hz, 2H), 1.74 – 1.69 (m, 2H), 1.68 – 1.61 (m, 2H), 1.46 – 1.40 (m, 2H), 1.39 –
1.31 (m, 1H), 1.30 – 1.04 (m, 4H), 0.97 – 0.85 (m, 2H).

1H NMR (101 MHz, MeOH-d_4) δ 7.90 – 7.86 (m, 2H), 7.57 – 7.52 (m, 1H), 7.49 – 7.44 (m, 2H), 7.26 – 7.22 (m, 1H), 7.22 – 7.19 (m, 3H), 7.18 – 7.13 (m, 1H), 4.68 (s, 2H), 4.04 (s, 2H), 3.69 (t, J = 7.0 Hz, 2H), 2.83 (t, J = 7.1 Hz, 2H).

13C NMR (101 MHz, MeOH-d_4) δ 172.7, 170.5, 140.2, 135.0, 132.9, 129.9, 129.5, 129.3, 128.5, 127.1, 70.8, 70.3, 44.1, 37.1.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{20}$N$_2$O$_3$ ([M+Na]$^+$): 335.1366, found 335.1359.

2-33 was obtained as a white solid, Yield 74% (23 mg), Melting point 117 – 119 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.87 (m, 2H), 7.57 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 4.67 (s, 2H), 4.05 (s, 2H), 3.62 – 3.56 (m, 2H), 0.93 – 0.88 (m, 2H), 0.01 (s, 9H).

13C NMR (101 MHz, MeOH-d_4) δ 172.6, 170.4, 135.0, 132.9, 129.5, 128.5, 70.3, 66.6, 44.1, 18.8, -1.3.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{20}$N$_2$O$_3$Si ([M+Na]$^+$): 331.1448, found 331.1448.
2-34 was obtained as a white solid, Yield 46% (15 mg), Melting point 111 – 113 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.91 – 7.86 (m, 2H), 7.59 – 7.52 (m, 1H), 7.51 – 7.44 (m, 2H), 7.28 – 7.21 (m, 2H), 6.94 – 6.88 (m, 3H), 4.78 (s, 2H), 4.11 – 4.06 (m, 4H), 3.86 – 3.83 (m, 2H).

13C NMR (101 MHz, MeOH-d_4) δ 172.79, 170.53, 160.24, 135.01, 132.93, 130.44, 129.56, 128.50, 121.86, 115.61, 71.21, 68.34, 68.11, 44.16.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{20}$N$_2$O$_4$ ([M+Na]$^+$): 351.1315, found 351.1306.

![2-35](image)

2-35 was obtained as a white solid, Yield 56% (22 mg), Melting point 95 – 97 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.90 – 7.86 (m, 2H), 7.58 – 7.44 (m, 4H), 7.34 – 7.30 (m, 1H), 7.26 – 7.21 (m, 1H), 7.12 – 7.06 (m, 1H), 4.70 (s, 2H), 4.05 (s, 2H), 3.71 (t, $J = 7.1$ Hz, 2H), 3.00 (t, $J = 7.1$ Hz, 2H).

13C NMR (101 MHz, MeOH-d_4) δ 172.7, 170.5, 139.3, 135.0, 133.7, 132.9, 132.4, 129.5, 129.2, 128.6, 128.5, 125.4, 70.9, 68.5, 44.1, 37.2.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{19}$BrN$_2$O$_3$ ([M+Na]$^+$): 413.0471, found 413.0458.

![2-36](image)

2-36 was obtained as a yellow solid, Yield 93% (23.5 mg), Melting point 115 – 117 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.86 – 7.82 (m, 2H), 7.55 – 7.50 (m, 1H), 7.47 – 7.41 (m, 2H), 7.38 – 7.33 (m, 1H), 7.24 (d, $J = 7.0$ Hz, 1H), 4.42 (d, $J = 6.2$ Hz, 2H), 4.20 (d, $J = 5.1$ Hz, 2H), 2.64 – 2.58 (m, 2H), 1.26 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 169.2, 168.1, 133.4, 132.2, 128.8, 127.3, 44.1, 40.9, 25.3, 14.9.

HRMS (ESI, m/z) calcd for C$_{12}$H$_{16}$N$_2$O$_2$S ([M+Na]$^+$): 275.0825, found 275.0832.
2-37 was obtained as a white solid, Yield 96% (26.6 mg), Melting point 98 – 100 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.90 – 7.86 (m, 2H), 7.58 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 4.38 (s, 2H), 4.03 (s, 2H), 3.10 – 3.02 (m, 1H), 1.27 (d, $J = 6.7$ Hz, 6H).

13C NMR (101 MHz, MeOH-d_4) δ 171.5, 170.4, 135.0, 132.9, 129.5, 128.5, 44.1, 40.7, 35.2, 23.9.

HRMS (ESI, m/z) calcd for C$_{13}$H$_{18}$N$_2$O$_2$S ([M+Na]$^+$): 289.0981, found 289.0976.

2-38 was obtained as a white solid, Yield 93% (27.2 mg), Melting point 108 – 110 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.92 – 7.85 (m, 2H), 7.58 – 7.52 (m, 1H), 7.51 – 7.42 (m, 2H), 4.37 (s, 2H), 4.04 (s, 2H), 3.28 – 3.19 (m, 1H), 2.10 – 1.99 (m, 2H), 1.77 – 1.65 (m, 2H), 1.65 – 1.41 (m, 4H).

13C NMR (101 MHz, MeOH-d_4) δ 171.5, 170.4, 135.0, 132.9, 129.5, 128.5, 44.2, 44.1, 41.9, 35.0, 25.7.

HRMS (ESI, m/z) calcd for C$_{15}$H$_{20}$N$_2$O$_2$S ([M+Na]$^+$): 315.1138, found 315.1129.

2-39 was obtained as a yellow solid, Yield 75% (25 mg), Melting point 104 – 106 °C.

1H NMR (400 MHz, MeOH-d_4) δ 7.90 – 7.85 (m, 2H), 7.57 – 7.52 (m, 1H), 7.49 – 7.43 (m, 2H), 7.29 – 7.11 (m, 5H), 4.38 (s, 2H), 4.04 (s, 2H), 2.94 – 2.87 (m, 2H), 2.86 – 2.81 (m, 2H).

13C NMR (101 MHz, MeOH-d_4) δ 171.7, 170.5, 142.0, 135.0, 132.9, 129.7, 129.5, 129.4, 128.5, 127.2, 44.2, 41.5, 37.4, 33.3.

HRMS (ESI, m/z) calcd for C$_{18}$H$_{20}$N$_2$O$_2$S ([M+Na]$^+$): 351.1138, found 351.1131.

S22
2-40 was obtained as a white solid, Yield 72% (34.2 mg), Melting point 85 – 87 °C.

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.81 – 8.75 (m, 2H), 8.61 – 8.55 (m, 2H), 7.90 – 7.87 (m, 4H), 7.57 – 7.51 (m, 2H), 7.50 – 7.45 (m, 4H), 4.29 (d, \(J = 6.3\) Hz, 4H), 3.87 (d, \(J = 5.9\) Hz, 4H), 2.97 – 2.94 (m, 2H), 2.88 – 2.86 (m, 2H).

\(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 169.8, 167.1, 134.6, 132.0, 128.9, 128.0, 43.4, 38.5, 30.4.

HRMS (ESI, m/z) calcd for C\(_{22}\)H\(_{26}\)N\(_4\)O\(_4\)S\(_2\) ([M+Na\(^+\)]: 497.1288, found 497.1288.

2-41 was obtained as a white oil, Yield 35% (14.3 mg, dr 1.3:1).

\(^1\)H NMR (400 MHz, MeOH-\(d_4\)) \(\delta\) 7.49 – 7.42 (m, 2H), 7.40 – 7.29 (m, 3H), 5.64 – 5.22 (m, 1H), 4.74 – 4.64 (m, 1H), 4.62 – 4.51 (m, 1H), 4.34 – 4.16 (m, 1H), 3.55 – 3.46 (m, 1H), 3.44 – 3.34 (m, 3H), 2.49 – 2.11 (m, 1H), 2.05 – 1.80 (m, 3H), [1.46 (s), 1.27 (s), 9H], 1.06 (t, \(J = 7.0\) Hz, 3H).

\(^{13}\)C NMR (101 MHz, MeOH-\(d_4\)) \(\delta\) 175.2, 173.2, 156.1, 138.8, 130.0, 129.9, 129.7, 129.5, 129.1, 81.5, 70.9, 64.7, 61.4, 58.9, 48.1, 32.5, 31.2, 28.9, 28.7, 25.5, 24.8, 15.5.

HRMS (ESI, m/z) calcd for C\(_{21}\)H\(_{31}\)N\(_3\)O\(_5\) ([M+Na\(^+\)]: 428.2156, found 428.2156.

2-42 was obtained as a white oil, Yield 64% (11.3 mg).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.27 (s, 1H), 4.61 (d, \(J = 7.2\) Hz, 2H), 3.53 (q, \(J = 7.0\) Hz, 2H), 1.45 (s, 9H), 1.20 (t, \(J = 7.0\) Hz, 3H).
13C NMR (101 MHz, CDCl3) δ 155.8, 80.1, 71.9, 63.6, 28.4, 15.3.

HRMS (ESI, m/z) calcd for C8H17NO3 ([M+Na]+): 198.1101, found 198.1102.

Synthesis of compound 2-43

\[
\begin{align*}
&\text{1a} + \text{CsOAc} \rightarrow \text{toluene} \rightarrow \text{2-43} \\
&\text{1a} (0.2 \text{ mmol}, 1.0 \text{ equiv}), \text{CsOAc} (0.4 \text{ mmol}, 2.0 \text{ equiv}) \text{ were placed to the screw cap vial followed by addition of Boc-Ser-OMe (1.0 mmol, 5.0 equiv) and toluene (2.0 mL). The resulting mixture was sealed and stirred at 120 °C for 12 h. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: n-heptane/ethyl acetate = 1:4 v/v) to afford the desired product 2-43.}
\end{align*}
\]

2-43 was obtained as a white oil, Yield 20% (16.4 mg).

1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.7 Hz, 2H), 7.60 – 7.50 (m, 1H), 7.49 – 7.39 (m, 2H), 7.23 – 7.04 (m, 2H), 5.41 (d, J = 8.8 Hz, 1H), 4.76 (d, J = 6.7 Hz, 2H), 4.47 – 4.36 (m, 1H), 4.18 (d, J = 5.1 Hz, 2H), 3.96 – 3.89 (m, 1H), 3.81 – 3.73 (m, 1H), 3.72 (s, 3H), 1.43 (s, 9H).

13C NMR (101 MHz, CDCl3) δ 171.3, 170.2, 168.0, 155.7, 133.4, 132.2, 128.8, 127.3, 80.3, 70.6, 69.0, 54.0, 52.7, 44.0, 28.4.

HRMS (ESI, m/z) calcd for C19H27N3O7 ([M+Na]+): 432.1741, found 432.1739.

Synthesis of compound 2-44

\[
\begin{align*}
&\text{1a} + \text{CsOAc} \rightarrow \text{CH3CN} \rightarrow \text{2-44} \\
&\text{1a} (0.2 \text{ mmol}, 1.0 \text{ equiv}), \text{CsOAc} (0.4 \text{ mmol}, 2.0 \text{ equiv}) \text{ were placed to the screw cap vial followed by addition of Boc-Ser-OMe (1.0 mmol, 5.0 equiv) and CH3CN (2.0 mL). The resulting mixture was sealed and stirred at 120 °C for 12 h. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: n-heptane/ethyl acetate = 1:4 v/v) to afford the desired product 2-44.}
\end{align*}
\]
1a (0.2 mmol, 1.0 equiv), CsOAc (0.4 mmol, 2.0 equiv) were placed to the screw cap vial followed by
addition of N-Boc-L-cysteine methyl ester (1.0 mmol, 5.0 equiv) and CH$_3$CN (2.0 mL). The resulting mixture
was sealed and stirred at 120 °C for 12 h. After completion of the reaction, the mixture was evaporated
under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent:
n-heptane/ethyl acetate = 1:4 v/v) to afford the desired product 2-44.

2-44 was obtained as a white oil, Yield 18% (15.4 mg).

1H NMR (400 MHz, CDCl$_3$) δ 7.92 – 7.76 (m, 2H), 7.59 – 7.38 (m, 3H), 7.37 – 7.19 (m, 2H), 5.57 – 5.34 (m,
1H), 4.54 – 4.47 (m, 1H), 4.44 (d, J = 4.3 Hz, 2H), 4.19 (d, J = 4.9 Hz, 2H), 3.73 (s, 3H), 3.16 – 2.99 (m,
1H), 2.97 – 2.79 (m, 1H), 1.44 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 171.6, 169.3, 167.9, 155.8, 133.6, 132.1, 128.8, 127.4, 80.8, 54.1, 52.9, 43.9,
42.5, 35.1, 28.5.

HRMS (ESI, m/z) calcd for C$_{19}$H$_{27}$N$_3$O$_6$S ([M+Na]$^+$): 448.1513, found 448.1505.

Synthesis of compound 2-45

1H NMR (400 MHz, CDCl$_3$) δ 7.92 – 7.76 (m, 2H), 7.59 – 7.38 (m, 3H), 7.37 – 7.19 (m, 2H), 5.57 – 5.34 (m,
1H), 4.54 – 4.47 (m, 1H), 4.44 (d, J = 4.3 Hz, 2H), 4.19 (d, J = 4.9 Hz, 2H), 3.73 (s, 3H), 3.16 – 2.99 (m,
1H), 2.97 – 2.79 (m, 1H), 1.44 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 171.6, 169.3, 167.9, 155.8, 133.6, 132.1, 128.8, 127.4, 80.8, 54.1, 52.9, 43.9,
42.5, 35.1, 28.5.

HRMS (ESI, m/z) calcd for C$_{19}$H$_{27}$N$_3$O$_6$S ([M+Na]$^+$): 448.1513, found 448.1505.

Synthesis of compound 2-45

1H NMR (400 MHz, CDCl$_3$) δ 7.92 – 7.76 (m, 2H), 7.59 – 7.38 (m, 3H), 7.37 – 7.19 (m, 2H), 5.57 – 5.34 (m,
1H), 4.54 – 4.47 (m, 1H), 4.44 (d, J = 4.3 Hz, 2H), 4.19 (d, J = 4.9 Hz, 2H), 3.73 (s, 3H), 3.16 – 2.99 (m,
1H), 2.97 – 2.79 (m, 1H), 1.44 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 171.6, 169.3, 167.9, 155.8, 133.6, 132.1, 128.8, 127.4, 80.8, 54.1, 52.9, 43.9,
42.5, 35.1, 28.5.

HRMS (ESI, m/z) calcd for C$_{19}$H$_{27}$N$_3$O$_6$S ([M+Na]$^+$): 448.1513, found 448.1505.
1H NMR (400 MHz, CDCl$_3$) δ 7.83 (d, $J = 7.6$ Hz, 2H), 7.61 – 7.40 (m, 3H), 7.04 – 6.85 (m, 2H), 5.75 (d, $J = 3.7$ Hz, 1H), 5.05 – 4.82 (m, 2H), 4.75 – 4.63 (m, 1H), 4.44 – 4.32 (m, 1H), 4.30 – 3.84 (m, 6H), 1.58 (s, 3H), 1.48 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 170.0, 167.8, 133.4, 132.2, 128.9, 127.2, 113.1, 110.0, 104.1, 78.6, 78.4, 75.0, 70.3, 65.3, 43.9, 27.0, 26.4, 24.9.

HRMS (ESI, m/z) calcd for C$_{22}$H$_{30}$N$_2$O$_8$ ([M+Na]$^+$): 473.1894, found 473.1890.

6. References

7. Copies of 1H NMR and 13C NMR spectra for the Ugi adducts

1H NMR spectra of compound 1c (400 MHz, DMSO-d_6)

13C NMR spectra of compound 1c (101 MHz, DMSO-d_6)
1H NMR spectra of compound 1d (400 MHz, DMSO-d_6)

13C NMR spectra of compound 1d (101 MHz, DMSO-d_6)
1H NMR spectra of compound 1e (400 MHz, DMSO-d_6)

Mixture of rotamers (~4:1)

13C NMR spectra of compound 1e (101 MHz, DMSO-d_6)

Mixture of rotamers
1H NMR spectra of compound 1f (400 MHz, DMSO-d_6)

13C NMR spectra of compound 1f (101 MHz, DMSO-d_6)
1H NMR spectra of compound 1j (400 MHz, DMSO-d_6)

Mixture of rotamers (~3:1)

13C NMR spectra of compound 1j (101 MHz, DMSO-d_6)

Mixture of rotamers
\(^1\)H NMR spectra of compound \(1q\) (400 MHz, DMSO-\(d_6\))

\(1^3C\) NMR spectra of compound \(1q\) (101 MHz, DMSO-\(d_6\))

Mixture of rotamers (~1.1:1)
1H NMR spectra of compound 1v (400 MHz, CDCl$_3$)

13C NMR spectra of compound 1v (101 MHz, CDCl$_3$)
8. Copies of 1H NMR and 13C NMR spectra for the products

1H NMR spectra of compound 2-1 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-1 (101 MHz, MeOH-d_4)
\[\text{1H NMR spectra of compound 2-2 (400 MHz, MeOH-}d_4)\]

\[\text{13C NMR spectra of compound 2-2 (101 MHz, MeOH-}d_4)\]
1H NMR spectra of compound 2-3 (400 MHz, DMSO-d_6)

13C NMR spectra of compound 2-3 (101 MHz, DMSO-d_6)
1H NMR spectra of compound 2-4 (300 MHz, DMSO-d_6)

13C NMR spectra of compound 2-4 (101 MHz, DMSO-d_6)
1H NMR spectra of compound 2-5 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-5 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-6 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-6 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-7 (400 MHz, MeOH-\textit{d}_4)

13C NMR spectra of compound 2-7 (101 MHz, MeOH-\textit{d}_4)
1H NMR spectra of compound 2-8 (400 MHz, DMSO-d_6)

13C NMR spectra of compound 2-8 (101 MHz, DMSO-d_6)
1H NMR spectra of compound 2-9 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-9 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-10 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-10 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-11 (400 MHz, MeOH-d_4)

Mixture of rotamers (~1:1)

13C NMR spectra of compound 2-11 (101 MHz, MeOH-d_4)

Mixture of rotamers
1H NMR spectra of compound 2-12 (400 MHz, MeOH-d_4)

Mixture of rotamers (~1:1)

13C NMR spectra of compound 2-12 (101 MHz, MeOH-d_4)

Mixture of rotamers
1H NMR spectra of compound 2-13 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-13 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-14 (400 MHz, MeOH-d_4)

Mixture of rotamers (~3:2)

13C NMR spectra of compound 2-14 (101 MHz, MeOH-d_4)

Mixture of rotamers
1H NMR spectra of compound 2-15 (400 MHz, MeOH-d_4)

Mixture of rotamers (~3:2)

13C NMR spectra of compound 2-15 (101 MHz, MeOH-d_4)

Mixture of rotamers
1H NMR spectra of compound 2-16 (400 MHz, MeOH-d_4)

Mixture of rotamers (~3:2)

13C NMR spectra of compound 2-16 (101 MHz, MeOH-d_4)

Mixture of rotamers
\(^1\)H NMR spectra of compound 2-17 (400 MHz, MeOH-\(d_4\))

\[^13\]C NMR spectra of compound 2-17 (101 MHz, MeOH-\(d_4\))
1H NMR spectra of compound 2-18 (400 MHz, MeOH-d_4)

Mixture of rotamers (~1:1)

13C NMR spectra of compound 2-18 (101 MHz, MeOH-d_4)

Mixture of rotamers
\[^1\text{H NMR spectra of compound 2-19 (400 MHz, MeOH-}d_4) \]

\[^{13}\text{C NMR spectra of compound 2-19 (101 MHz, MeOH-}d_4) \]
\(^1\)H NMR spectra of compound 2-20 (400 MHz, MeOH-\(d_4\))

![H NMR spectra](image)

Mixture of rotamers (~1:1)

13\(^C\) NMR spectra of compound 2-20 (101 MHz, MeOH-\(d_4\))

![C NMR spectra](image)

Mixture of rotamers
1H NMR spectra of compound 2-21 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-21 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-22 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-22 (101 MHz, CDCl$_3$)
\(^1\)H NMR spectra of compound 2-23 (400 MHz, MeOH-\(d_4\))

\(^{13}\)C NMR spectra of compound 2-23 (101 MHz, MeOH-\(d_4\))
1H NMR spectra of compound 2-24 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-24 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-25 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-25 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-26 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-26 (101 MHz MeOH-d_4)
1H NMR spectra of compound 2-27 (300 MHz, MeOH-d_4)

Mixture of rotamers (~4:1)

13C NMR spectra of compound 2-27 (101 MHz MeOH-d_4)

Mixture of rotamers
1H NMR spectra of compound 2-28 (400 MHz, MeOH-d$_4$)

13C NMR spectra of compound 2-28 (101 MHz MeOH-d$_4$)
1H NMR spectra of compound 2-29 (400 MHz, MeOH-$_d^4$)

13C NMR spectra of compound 2-29 (101 MHz MeOH-$_d^4$)
^1H NMR spectra of compound 2-30 (400 MHz, MeOH-d_4)

Mixture of rotamers (~4:1)

^{13}C NMR spectra of compound 2-30 (101 MHz MeOH-d_4)

Mixture of rotamers
\(^1\)H NMR spectra of compound 2-31 (400 MHz, MeOH-\(d_4\))

\(^{13}\)C NMR spectra of compound 2-31 (101 MHz MeOH-\(d_4\))
1H NMR spectra of compound 2-32 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-32 (101 MHz MeOH-d_4)
1H NMR spectra of compound 2-33 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-33 (101 MHz MeOH-d_4)
1H NMR spectra of compound 2-34 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-34 (101 MHz MeOH-d_4)
1H NMR spectra of compound 2-35 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-35 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-36 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-36 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-37 (400 MHz, MeOH-d_4)

![H NMR spectrum image]

13C NMR spectra of compound 2-37 (101 MHz, MeOH-d_4)

![C NMR spectrum image]
1H NMR spectra of compound 2-38 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-38 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-39 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-39 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-40 (400 MHz, DMSO-d_6)

13C NMR spectra of compound 2-40 (101 MHz, DMSO-d_6)
1H NMR spectra of compound 2-41 (400 MHz, MeOH-d_4)

13C NMR spectra of compound 2-41 (101 MHz, MeOH-d_4)
1H NMR spectra of compound 2-42 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-42 (101 MHz, CDCl$_3$)

2-42
1H NMR spectra of compound 2-43 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-43 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-44 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-44 (101 MHz, CDCl$_3$)
1H NMR spectra of compound 2-45 (400 MHz, CDCl$_3$)

13C NMR spectra of compound 2-45 (101 MHz, CDCl$_3$)