Supporting Information

A kind of self-healing and recyclable poly(urea-imine) thermoset synthesized from CO₂

Peixuan Wu,^{*a,b*} Xinchao Wang,^{*a,b*} Ruhui Shi,^{*a,b*} Haiyang Cheng *,^{*a,b*} and Fengyu Zhao

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd.,

Changchun, 130022, China

E-mail: hycyl@ciac.ac.cn

^b Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute

of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd.,

Changchun, 130022, China

Measurement of molecular weight of oligourea

The M_n of CO₂-based oligourea (OUa) was measured by acid-base titration (ASTM D2074-92) with a two-electrode automatic potentiometric titrator. The 0.1 M HCl/isopropanol standard solution was used as the titrate. The M_n was calculated by the following formula. The results were recorded using the mean number of three tests.

$$Mn = \frac{m}{c \times V/N} \times 1000$$

Where Mn was the number average molecular weight of the CO₂-oligourea, g/mol; c was the concentration of HCl/isopropanol solution, mol/L; V was the Volume of HCl/isopropanol solution used at titration end point, ml; m was the mass of the CO₂-oligourea used, g; N was the number of the end group for CO₂-oligourea, N is 2. As a result, M_n of the CO₂-based oligourea (OUa) used was 890 g mol⁻¹.

Recovery by chemical methods

The OUa₂-T₃ sample (6.85 g) can be completely dissolved in methanol (100 mL) to form a homogenous yellow solution with adding new OUa (4.8 mmol). By adding new TA (15.6 mmol) and TAEA (7.2 mmol), the solution was stirred at 25 °C for 4 h and then placed in the Teflon mould. Then methanol was evaporated at room temperature for 24 h and the sample was dried at 80 °C for 12 h. A recycled OUa₂-T₃ sample was obtained.

Degradation process

 OUa_2 -T₃ was cut into rectangular samples and then immersed respectively in a 10 mL of methanol/H₂O (V:V = 1:1) and 10 mL 0.1 M HCl of methanol/H₂O (V:V = 1:1) at room temperature. The degradation rate was calculated by weighing method, and the obtained degraded mixture was analyzed by FT-IR and ¹³C NMR after evaporating out solvent.

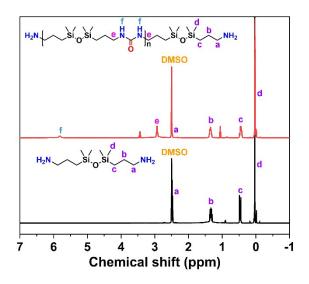


Fig. S1 ¹H NMR spectra of 1,3-bis(3-aminopropyl)tetramethyldisiloxane and oligourea.

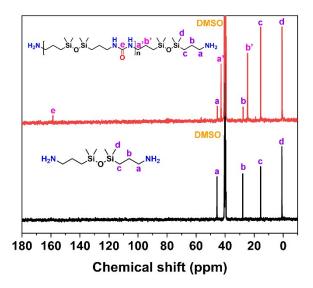


Fig. S2 ¹³C NMR spectra of 1,3-bis(3-aminopropyl)tetramethyldisiloxane and oligourea.

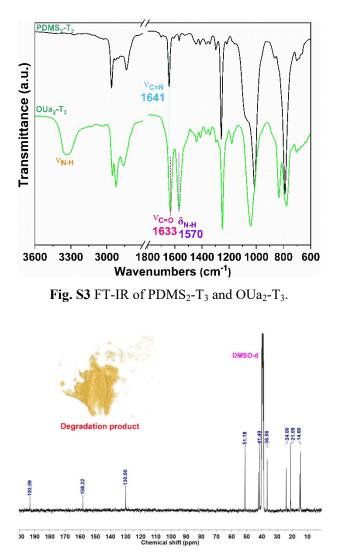


Fig. S4 13 C NMR spectra of the degradation product of OUa₂-T₃ in 0.1 M HCl methanol/H₂O.

	5	~ J 1			1 1	
	OUa,	$T_{\rm g}$	$T_{d,5\%}$ (°C) ^b	Tensile	Elongation	Young's
Sample	TREA, TA	(°C) ^a		stress	at break	modulus
	molar ratio			(MPa)	(%)	(MPa)
OUa ₁ -T ₀	1:0:1	-7	275	/	/	/
OUa ₃ -T ₂	3:2:6	4	267	1.3 ± 0.1	257 ± 18	3.3 ± 0.5
OUa_1 - T_1	1:1:2.5	6	268	4.3 ± 0.5	98 ± 10	56 ± 8
OUa ₂ -T ₃	2:3:6.5	11	274	10.2 ± 0.2	51 ± 6	79 ± 8
OUa ₀ -T ₁	0:1:1.5	123	250	23.5 ± 2.6	4 ± 0.3	620 ± 45

Table S1 Summary of the OUax-Ty samples and their mechanical and thermal properties.

^a $T_{\rm g}$ is glass transition temperature, which is measured by DSC.

 $^{\text{b}}$ T_{d,5%} is the initial decomposition temperature (the temperature of 5% weight loss).

Table S2 Mechanical properties of original and self-healed OUa₂-T₃.

Frature	Tensile stress	Elongation	at	at Young's modulus (MPa)	
Entry	(MPa)	break (%)	foung's modulus (MPa)		
Original	10.2 ± 0.2	51 ± 6		79 ± 8	
Healed	9.4 ± 0.3	53 ± 4		63 ± 6	

Table S3 Mechanical properties of original and reprocessed OUa₂-T₃.

Frature	Tensile stress	Elongation at break	Young's modulus
Entry	(MPa)	(%)	(MPa)
Original	10.2 ± 0.2	51 ± 6	79 ± 8
1st reprocessed	10.6 ± 0.1	54 ± 3	74 ± 4
2nd reprocessed	9.7 ± 0.8	52 ± 2	72 ± 10
3rd reprocessed	10.3 ± 0.6	52 ± 3	78 ± 3

Table S4 Mechanical properties of original and reprocessed OUa₂-T₃.

Entry	Tensile stress	Elongation at brea	x Young's modulus
	(MPa)	(%)	(MPa)
Original	10.2 ± 0.2	51 ± 6	79 ± 8
Recycled	7.9 ± 1.5	54 ± 1	67 ± 9