Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Fig. S1 Flow chart of rice straw process to produce bioethanol and to generate cellulose nanofibrils for Pickering emulsions stabilizers and cellulases inducers.

Fig. S2 Rheological properties of Pickering emulsions with 0.1% CNFs generated from the *Osfc16* and WT samples. (A-D) Apparent viscoelastic as a function of shear rate; (E-H) Storage modulus (closed symbols) and loss modulus (open symbols) as a function of angular frequency measured at 0.65% strain.

Fig. S3 Particle size distribution of Pickering emulsions with 0.1% CNFs under different storage times. (A, B) HPH-20t of raw straws from the *Osfc16* and WT samples; (C, D) HPH-10t of enzymatic residues.

Fig. S4 LC-MS/MS profiling of cellulases secreted by *T.reesei* after incubated with *Osfc16* raw straw co-supplied with 0.2% CNFs from HPH-10t of enzymatic residues of *Osfc16* mutant.

Fig. S5 LC-MS/MS profiling of cellulases and xylanases secreted by *T.reesei* after incubated with *Osfc16* raw straw co-supplied with 0.2% CNFs from HPH-10t of enzymatic residues of *Osfc16* mutant.

Material	Cellulose (% Dry Matter)	SD	Hemicellulose (% Dry Matter)	SD
Raw-WT	29.24	0.60	21.61	0.45
Raw-Osfc16	20.02	0.56	24.79	0.65
Residue-WT	36.28	0.36	34.24	0.81
Residue-Osfc16	24.66	0.87	40.45	1.79

Table S1 Comparison of cellulose and hemicellulose levels in raw straws and residues from direct enzymatic hydrolyses between WT(NPB) and mutant(*Osfc16*)

Reported	Observed			
wave number	wave number	Functional group	Assignment	References
(cm ⁻¹)	(cm ⁻¹)			
829	823	C-H breathing	H-lignin	59
898	897	C-H vibration	Cellulose	59
1045	1040	C-O-C	Cellulose	60
1051	1058	C-O-C ring skeletal vibration	Hemicellulose	6
1163	1164	C-O-C asymmetric stretching	Cellulose	61
1247	1245	C-O-C stretching of aryl-alkyl ether	Lignin	59
1373	1368	C-H ₂ scissoring	Cellulose	62
1515	1510	C=C stretching of the aromatic ring	Lignin	63
1632	1636	-C=O stretching from CO-OR	Pectin	64

 Table S2 Characteristic chemical bonds of the FT-IR spectra presented in Fig. 7

Peaks highlighted in red as altered ones in two residues samples relative to raw control sample (without *T. reesei* incubation).