Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Green Chemistry

Electronic Supporting Information for

Efficient Conversion of Bio-renewable Citric Acid to High-value Carboxylic

Acids on Stable Solid Catalysts

Zhaowei Li,^{a, †} Xin Wen,^{b, †} and Haichao Liu^{a,*}

^aBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^bKey Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science,

Hebei University, Baoding, Hebei 071002, China.

[†]Zhaowei Li and Xin Wen contributed equally to this work.

*E-mail address: hcliu@pku.edu.cn

Fig. S1 XRD patterns of m-ZrO₂ samples calcined at different temperatures in the range of 300-500 °C.

The spectra confirm that the monoclinic structure of the ZrO_2 was obtained, according to the JCPDS No. 37-1484.

Fig. S2 Raman spectrum for m-ZrO₂-300.

The representative peaks at 328, 378, 471, 499, 533, 553, and 610 cm⁻¹ are Raman scattering of m-ZrO₂, further confirming the formation of monoclinic phase.¹ Unfortunately, the Raman spectrum of t-ZrO₂ was not obtained due to the strong fluorescence background.

Reference

 L. Bai, F. Wyrwalski, C. Machut, P. Roussel, E. Monflier and A. Ponchel, *CrystEngComm*, 2013, 15, 2076-2083.

Fig. S3 XRD patterns of *m*-ZrO₂-400, *m*,*t*-ZrO₂-400, *t*-ZrO₂-300, *t*-ZrO₂-400, and *t*-ZrO₂-500.

The diffraction peaks of m-ZrO₂-400 were almost identical to those of m-ZrO₂-300 (Fig. S1). Compared with m-ZrO₂-400, a new diffraction peak at 30.3° in the pattern of m,t-ZrO₂-400 was observed, which can be assigned to the representative (011) lattice plane of t-ZrO₂, demonstrating the successful synthesis of m,t-ZrO₂ containing mixed monoclinic and tetrahedral phases

For *t*-ZrO₂-300, only one diffraction peak at 30.3° can be observed. With increasing the calcination temperature to 400 °C and 500 °C, the intensity was greatly enhanced, together with other typical diffraction peaks of *t*-ZrO₂ at 35.2°, 50.5°, 60.2° and 62.9°, indicating the successful synthesis of *t*-ZrO₂. It seems that a pure tetragonal phase can only be formed at a calcination temperature at 400 °C in the calcination temperature range of 300 to 500°C. Therefore, in Table 2, the ZrO₂ samples obtained at 400 °C were used as the catalysts to discuss the impacts of different crystallites on the reaction performance.

ZrO ₂	BET surface	Acidic site	Basic site	Acidic density	Basic density
	area (m²/g)	(µmol/g)	(µmol/g)	$(\mu mol/m^2)$	$(\mu mol/m^2)$
<i>m</i> -ZrO ₂ -300	213.6	295.3	245.3	1.38	1.14
<i>m</i> -ZrO ₂ -350	154.6	291.0	146.3	1.88	0.95
<i>m</i> -ZrO ₂ -400	135.1	216.7	117.1	1.60	0.86
<i>m</i> -ZrO ₂ -450	98.7	185.9	80.1	1.88	0.81
<i>m</i> -ZrO ₂ -500	83.4	117.6	61.1	1.41	0.73
<i>t</i> -ZrO ₂ -400	94.3	120.3	124.0	1.27	1.31
<i>m</i> , <i>t</i> -ZrO ₂ -400	91.4	123.2	61.0	1.35	0.67

Table S1 BET specific surface area and acid-basic densities of different ZrO₂ catalysts.

Fig. S4 (a) CO₂- and (b) NH₃-TPD of *m*-ZrO₂-T catalysts.

Fig. S5 XRD patterns of m-ZrO₂-300 before and after five consecutive cycles in the conversion of citric acid to ICA. Reaction conditions: 1 mmol citric acid, 0.3 g m-ZrO₂-300, 20 mL water, 2 MPa N₂, 180 °C, 40 min. ICA: itaconic acid.

Fig. S6 Comparison of activity of Pt/P25 and Pd/*a*-TiO₂ in the hydrogenation of ICA. Reaction condition: 5 mmol ICA, 0.05 g catalyst, 20 mL water, 2 MPa H₂, 25 °C, 10 min. ICA: itaconic acid; MSA: 2-methylsuccinic acid.