Electronic Supplementary Information

Mechanochemical synthesis of coumarins via Pechmann condensation under solvent-free conditions: An easy access to coumarins and annulated pyrano[2,3-f] and [3,2-f]indoles

Ainur D. Sharapov, Ramil F. Fatykhov, Igor A. Khalymbadzha,* Vladimir V. Sharutin, Sougata Santra,* Grigory V. Zyryanov, Oleg N. Chupakhin and Brindaban C. Ranu*

Table of Contents

General Information4
Table 1. Optimization of the reaction conditions 4
General procedure for the mechanochemical preparation of crude coumarin derivatives 3a-ag and 4a-g4
General procedure for the purification of coumarin derivatives 3a-ag4
General procedure for the purification of coumarin derivatives 4a-g4
X-ray crystallographic data5
Calculation of Green Chemistry Metrics (EcoScale and E-factor)11
References14
Figure S1. ¹ H NMR spectrum of 3a15
Figure S2. ¹ H NMR spectrum of 3b15
Figure S3. View of the reactor with the reaction mass containing compound 3a16
Figure S4. ¹ H NMR spectrum of 3c16
Figure S5. ¹ H NMR spectrum of 3d17
Figure S6. ¹ H NMR spectrum of 3e17
Figure S7. ¹ H NMR spectrum of 3f18
Figure S8. ¹ H NMR spectrum of 3g18
Figure S9. ¹³ C NMR spectrum of 3g19
Figure S10. ¹ H NMR spectrum of 3h19
Figure S11. ¹ H NMR spectrum of 3i20
Figure S12. ¹ H NMR spectrum of 3j20
Figure S13. ¹ H NMR spectrum of 3k21
Figure S14. ¹ H NMR spectrum of 3I21
Figure S15. ¹ H NMR spectrum of 3m22
Figure S16. ¹ H NMR spectrum of 3n22
Figure S17. ¹ H NMR spectrum of 3023
Figure S18. ¹ H NMR spectrum of 3p23
Figure S19. ¹³ C NMR spectrum of 3p24
Figure S20. ¹ H NMR spectrum of 3q24
Figure S21. ¹³ C NMR spectrum of 3q25
Figure S22. ¹ H NMR spectrum of 3r25
Figure S23. ¹³ C NMR spectrum of 3r26

Figure S24. ¹⁹ F NMR spectrum of 3r	26
Figure S25. ¹ H NMR spectrum of 3s	27
Figure S26. ¹ H NMR spectrum of 3t	27
Figure S27. ¹³ C NMR spectrum of 3t	28
Figure S28. ¹⁹ F NMR spectrum of 3t	28
Figure S29. ¹ H NMR spectrum of 3u	29
Figure S30. ¹³ C NMR spectrum of 3u	29
Figure S31. ¹ H NMR spectrum of 3v	30
Figure S32. ¹³ C NMR spectrum of 3v	30
Figure S33. Thermal ellipsoid plot of compound 3v	31
Figure S34. ¹ H NMR spectrum of 3w	31
Figure S35. ¹³ C NMR spectrum of 3w	32
Figure S36. ¹ H NMR spectrum of 3x	32
Figure S37. ¹³ C NMR spectrum of 3x	33
Figure S38. ¹ H NMR spectrum of 3y	33
Figure S39. ¹³ C NMR spectrum of 3y	34
Figure S40. ¹ H NMR spectrum of 3z	34
Figure S41. ¹ H NMR spectrum of 3aa	35
Figure S42. ¹ H NMR spectrum of 3ab	35
Figure S43. ¹ H NMR spectrum of 3ac	36
Figure S44. ¹ H NMR spectrum of 3ad	36
Figure S45. ¹ H NMR spectrum of 3ae	37
Figure S46. ¹ H NMR spectrum of 3af	37
Figure S47. ¹ H NMR spectrum of 3ag	38
Figure S48. ¹³ C NMR spectrum of 3ag	38
Figure S49. ¹ H NMR spectrum of 4a	39
Figure S50. ¹³ C NMR spectrum of 4a	39
Figure S51. ¹ H NMR spectrum of 4b	40
Figure S52. ¹³ C NMR spectrum of 4b	40
Figure S53. ¹ H NMR spectrum of 4c	41
Figure S54. ¹³ C NMR spectrum of 4c	41
Figure S55. ¹³ C NMR spectrum of 4d	42
Figure S56. ¹ H NMR spectrum of 4d	42
Figure S57. ¹³ C NMR spectrum of 4e	43
Figure S58. ¹ H NMR spectrum of 4e	43
Figure S59. ¹ H NMR spectrum of 4f	44
Figure S60. ¹³ C NMR spectrum of 4f	44
Figure S61. ¹ H NMR spectrum of 4g	45
Figure S62. ¹³ C NMR spectrum of 4g	45
Figure S63. ¹ H NMR spectrum of 6a	46
Figure S64. ¹³ C NMR spectrum of 6a	46
Figure S65. ¹ H NMR spectrum of 6b	47

Figure S66. ¹³ C NMR spectrum of 6b4	7
---	---

General Information

All commercially available chemicals were obtained from Aldrich, and used without further purifications. The ball mill was a Retsch PM 100 swing mill. 10 mL stainless steel ball mill vessels were applied for 5-25 mmol runs. Ten stainless steel balls with 5 mm diameter were used, and the milling frequency was at 8.33 Hz at the ambient temperatures. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded on a Bruker DRX-400 Avance spectrometer with DMSO-d₆ as solvent at ambient temperature. All chemical shifts are given relative to residual signals of solvent. All yields refer to the isolated products.

	ОН	Me		OH N	Ле	
но		0 + 0 0	catalyst Et 0.5-4h _⊢			
no	1a	2a		3aa		
Entry	catalyst	catalyst loading	scale	rotation	time	yield
1	no	-	5 mmol	500 rpm	1 h	0
2	TFA	10%	5 mmol	500 rpm	2 h	63
3	TsOH	5%	5 mmol	500 rpm	2 h	62
4	TsOH	10%	5 mmol	500 rpm	2 h	71
5	MsOH	5%	5 mmol	500 rpm	2 h	73%
6	MsOH	10%	5 mmol	500 rpm	2 h	87%
7	MsOH	10%	5 mmol	500 rpm	0.5 h	74%
8	MsOH	10%	5 mmol	500 rpm	4 h	80%
9	MsOH	15%	5 mmol	500 rpm	2 h	83%
10	MsOH	10%	25 mmol	500 rpm	2 h	91%
11	MsOH	10%	5 mmol	no	2 h	65%

Table 1. Optimization of the reaction conditions

General procedure for the mechanochemical preparation of crude coumarin derivatives 3a-ag and 4a-g

A mixture of phenol **1** (5.0 mmol, 1.0 equiv), β -ketoester **2** (5.5 mmol, 1.1 equiv), and MsOH (0.5 mmol, 0.1 equiv) were placed in a 10 mL stainless steel jar. Ten 5 mm diameter stainless steel balls were added, and the mixture was milled at 8.33 Hz for 2 h.

General procedure for the purification of coumarin derivatives 3a-ag

After completion of the mechanochemical synthesis, the resulting paste or solid was transferred from the jar to a 30 mL beaker using 10-15 mL of ethanol (for compounds **3a-e,g-v,x-ag**) or ethanol-water 1:1 mixture (for compounds **3f,w**) and the mixture was heated to reflux (complete dissolution may not occur, but it is sufficient to dissolve unreacted starting materials). Then the reaction mixture was cooled and the coumarin **3** was filtered off and dried to get the pure product.

General procedure for the purification of coumarin derivatives 4a-g

After completion of the mechanochemical synthesis, the resulting paste or solid was transferred from the jar to a 20 mL beaker using 5 mL of DMF (for compounds **4a-c,e-g**) or DMF or 1:1 DMF-ethanol mixture (for compound **4d**), the mixture was heated to reflux, and then cooled to RT. The precipitate of coumarin **4** was filtered off and dried at 100°C to get the pure product.

X-ray crystallographic data

Single crystal was grown by the slow evaporation of the solution of compound **3v** in EtOAc. Single crystal X-ray data for the compound **3v** was collected using the Bruker D8 Quest diffractometer. The crystal was kept at 293.15 K during data collection. Using Olex2,¹ the structure was solved with the SHELXT² structure solution program using Intrinsic Phasing and refined with the SHELXL³ refinement package using Least Squares minimization.

Structure	Analytical Data
OH Me HO O O	5,7-Dihydroxy-4-methyl-2H-chromen-2-one ⁴ (3a). Yield 835 mg, 87%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.24 (s, 1H), 10.01 (br s, 1H), 6.22 (br s, 1H), 6.12 (s, 1H), 5.73 (s, 1H), 2.52 (s, 3H).
HO OH C ₃ H ₇	5,7-Dihydroxy-4-propyl-2H-chromen-2-one ⁵ (3b). Yield 902 mg, 82%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.25 (s, 1H), 9.96 (s, 1H), 6.21 (br s, 1H), 6.12 (br s, 1H), 5.70 (s, 1H), 2.84–2.88 (m, 2H), 1.62–1.66 (m, 2H), 0.98–1.01 (m, 3H).
HO OH CF3	5,7-Dihydroxy-4-triflouromethyl-2H-chromen-2-one ⁶ (3c). Yield 923 mg, 75%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.90 (s, 1H), 10.65 (s, 1H), 6.53 (s, 1H), 6.32 (d, J = 2.2 Hz, 1H), 6.29 (d, J = 2.2 Hz, 1H).
OH Ph HO O O	5,7-Dihydroxy-4-phenyl-2H-chromen-2-one ⁶ (3d). Yield 851 mg, 67%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.21 (s, 1H), 9.95 (s, 1H), 7.31–7.35 (m, 5H), 6.22 (d, <i>J</i> = 1.4 Hz, 1H), 6.13 (d, <i>J</i> = 1.4 Hz, 1H), 5.69 (s, 1H).
OMe OH HO OO	5,7-Dihydroxy-4-(3,4-dimethoxyphenyl)-2H-chromen-2-one ⁷ (3e). Yield 1194 mg, 76%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.99 (s, 1H), 9.74 (s, 1H), 6.83–6.89 (m, 3H), 6.21 (d, <i>J</i> = 2.3 Hz, 1H), 6.13 (d, <i>J</i> = 2.3 Hz, 1H), 5.69 (s, 1H), 3.83 (s, 3H), 3.79 (s, 3H).
HO O O	 1,3-Dihydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one⁵ (3f). Yield 904 mg, 78%. ¹H NMR (400 MHz, DMSO-d₆) δ 10.00 (br s, 1H), 9.77 (br s, 1H), 6.18 (br s, 1H), 6.08 (br s, 1H), 3.07 (br s, 2H), 2.36 (br s, 2H), 1.69 (br s, 4H).
HO O O	3-Benzyl-8,10-dihydroxy-1,2,3,4-tetrahydro-5H-chromeno[3,4- c]pyridin-5-one (3g). Yield 1244 mg, 77%. Off-white solid, m.p. = 238–240°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.36 (br s, 1H), 7.34–7.35 (m, 4H), 7.24–7.28 (m, 1H), 6.24 (d, J = 1.5 Hz, 1H), 6.13 (d, J = 1.5 Hz, 1H), 3.63 (s, 2H), 3.18 (br s, 2H), 3.14 (br s, 2H), 2.60–2.62 (m, 2H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.3, 159.6, 157.8, 154.8, 148.5, 138.1, 128.7, 128.2, 127.0, 114.0, 101.5, 99.4, 94.1, 61.6, 50.7, 48.9, 29.9. Anal. Calcd for C ₁₉ H ₁₇ NO ₄ : C, 70.58; H, 5.30; N, 4.33. Found.: C, 70.39; H, 5.38; N, 4.18.

Table 2. NMR data for compounds 3a-3ag

HO O O	7-Hydroxy-4-methyl-2H-chromen-2-one ⁶ (3h). Yield 832 mg, 80%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.27 (br s, 1H), 7.50 (d, <i>J</i> = 7.0 Hz, 1H), 6.74 (d, <i>J</i> = 7.0 Hz, 1H), 6.65 (s, 1H), 6.02 (s, 1H), 2.37 (s, 3H).
HO O O	7-Hydroxy-4-propyl-2H-chromen-2-one ⁸ (3i). Yield 755 mg, 74%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.25 (br s, 1H), 7.52 (d, <i>J</i> = 8.7 Hz, 1H), 6.73 (dd, <i>J</i> = 8.7, 2.0 Hz, 1H), 6.66 (d, <i>J</i> = 2.0 Hz, 1H), 5.97 (s, 1H), 2.67–2.71 (m, 2H), 1.65–1.73 (m, 2H), 1.00–1.04 (m, 3H).
HO O O	7-Hydroxy-4-trifluoromethyl-2H-chromen-2-one ⁹ (3 <i>j</i>). Yield 863 mg, 75%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.77 (s, 1H), 7.51 (d, <i>J</i> = 8.9 Hz, 1H), 6.86 (dd, <i>J</i> = 8.9, 2.0 Hz, 1H), 6.79 (d, <i>J</i> = 2.0 Hz, 1H), 6.60 (s, 1H).
HO O O	7-Hydroxy-4-phenyl-2H-chromen-2-one ⁸ (3k). Yield 869 mg, 73%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.40 (br s, 1H), 7.52 (br s, 3H), 7.45–7.47 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 6.75 (br s, 1H), 6.71 (d, J = 8.7 Hz, 1H), 6.05 (s, 1H).
HO O O	7-Hydroxy-4-(2-fluorophenyl)-2H-chromen-2-one ¹⁰ (3 I). Yield 829 mg, 61%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.45 (s, 1H), 7.55–7.60 (m, 1H), 7.42–7.45 (m, 1H), 7.31–7.38 (m, 2H), 7.01 (dd, ${}^{3}J_{\text{H-H}}$ = 8.7 Hz, $J_{\text{H-F}}$ = 1.5 Hz, 1H), 6.76 (d, J = 1.4 Hz, 1H), 6.70 (dd, ${}^{3}J_{\text{H-H}}$ = 8.7 Hz, ${}^{4}J_{\text{H-H}}$ = 1.4 Hz, 1H), 6.12 (s, 1H).
OMe OMe HO OMe	7-Hydroxy-4-(3,4-dimethoxyphenyl)-2H-chromen-2-one ⁷ (3m). Yield 1013 mg, 68%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.37 (s, 1H), 7.39 (d, <i>J</i> = 7.7 Hz, 1H), 7.02–7.06 (m, 3H), 6.71– 6.74 (m, 2H), 6.06 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 6.12 (s, 1H).
HO O O	3-Benzyl-7-hydroxy-4-methyl-2H-chromen-2-one ¹¹ (3 <i>n</i>). Yield 944 mg, 71%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.14 (br s, 1H), 7.52 (d, <i>J</i> = 8.8 Hz, 1H), 7.18–7.24 (m, 4H), 7.12–7.15 (m, 1H), 6.74 (d, <i>J</i> = 8.8 Hz, 1H), 6.66 (s, 1H), 3.92 (s, 2H), 2.38 (s, 3H).
но о о	3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one ⁴ (3o). Yield 702 mg, 65%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.03 (br s, 1H), 7.39 (d, <i>J</i> = 8.5 Hz, 1H), 6.70 (d, <i>J</i> = 8.5 Hz, 1H), 6.62 (s, 1H), 2.71 (br s, 2H), 2.39 (br s, 2H), 1.76–1.79 (m, 4H).
C ₆ H ₁₃ HO O O	6-Hexyl-7-hydroxy-4-methyl-2H-chromen-2-one (3p). Yield 1209 mg, 93%. Off-white solid, m.p. = $138-140^{\circ}$ C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.42 (s, 1H), 7.39 (s, 1H), 6.71 (s, 1H), 6.07 (s, 1H), 2.53–2.57 (m, 2H), 2.35 (s, 3H), 1.53 (br s, 2H), 1.27 (br s, 6H), 0.84 (br s, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.4, 159.0, 153.5, 152.9, 126.3, 125.7, 111.6, 110.1, 101.6, 31.1, 29.3 (2C), 28.6, 22.1, 18.1, 13.9. Anal. Calcd for C ₁₆ H ₂₀ O ₃ : C, 73.82; H, 7.74. Found: C, 73.67; H, 7.83.

$C_{6}H_{13}$ HO O O	6-Hexyl-7-hydroxy-4-propyl-2H-chromen-2-one (3q). Yield 1282 mg, 89%. Off-white solid, m.p. = 183–185°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.42 (s, 1H), 7.43 (s, 1H), 6.72 (s, 1H), 6.02 (s, 1H), 2.67–2.71 (m, 2H), 2.54–2.57 (m, 2H), 1.59–1.65 (m, 2H), 1.52 (br s, 2H), 1.26 (br s, 6H), 0.94–0.98 (m, 3H), 0.84 (br s, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.5, 158.9, 156.8, 153.2, 126.3, 125.5, 110.8, 109.1, 101.8, 32.8, 31.1, 29.2 (2C), 28.5, 22.1, 21.3, 13.9, 13.6. Anal. Calcd for C ₁₈ H ₂₄ O ₃ : C, 74.97; H, 8.39. Found: C, 75.03; H, 8.28.
CF_3 C_6H_{13} HO O O	6-Hexyl-7-hydroxy-4-trifluoromethyl-2H-chromen-2-one (3r). Yield 1271 mg, 81%. Light purple solid, m.p. = $142-145^{\circ}$ C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.91 (s, 1H), 7.31 (s, 1H), 6.83 (s, 1H), 6.69 (s, 1H), 2.55–2.59 (m, 2H), 1.47–1.53 (m, 2H), 1.26 (br s, 6H), 0.84 (br s, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.2, 158.9, 154.1, 140.2, 139.7 (q, <i>J</i> = 31.8 Hz), 127.5, 121.8 (q, <i>J</i> = 275.4 Hz) 111.6 (q, <i>J</i> = 5.5 Hz), 104.8, 102.5, 31.0, 29.1, 28.9, 28.3, 22.0, 13.8. ¹⁹ F NMR (376 MHz, DMSO-d ₆): δ -63.51 (s, 3F). Anal. Calcd for C ₁₆ H ₁₇ F ₃ O ₃ : C, 61.14; H, 5.45. Found: C, 61.23; H, 5.51.
Ph C ₆ H ₁₃ HO O O	6-Hexyl-7-hydroxy-4-phenyl-2H-chromen-2-one ¹² (3s). Yield 1208 mg, 75%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.61 (s, 1H), 7.53–7.55 (m, 3H), 7.47–7.49 (m, 2H), 7.08 (s, 1H), 6.83 (s, 1H), 6.09 (s, 1H), 2.44–2.47 (m, 2H), 1.39–1.44 (m, 2H), 1.19 (br s, 6H), 0.78–0.81 (m, 3H).
C_6H_{13} F HO O O	6-Hexyl-7-hydroxy-4-(2-fluorophenyl)-2H-chromen-2-one (3t). Yield 1139 mg, 67%. Off-white solid, m.p. = 175–177°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.70 (s, 1H), 7.63–7.68 (m, 1H), 7.52–7.55 (m, 1H), 7.41–7.48 (m, 2H), 6.88 (br s, 2H), 6.25 (s, 1H), 2.55 (br s, 2H), 1.46 (br s, 2H), 1.24 (br s, 6H), 0.85 (br s, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.0, 159.5, 158.5 (d, <i>J</i> = 246.2 Hz), 153.3, 150.2, 131.8 (d, <i>J</i> = 8.1 Hz), 130.7, (d, <i>J</i> = 2.4 Hz), 126.8, 126.6, 125.1 (d, <i>J</i> = 3.0 Hz), 122.8 (d, <i>J</i> = 15.4 Hz), 116.0 (d, <i>J</i> = 21.3 Hz), 111.9, 110.2, 101.9, 31.0, 28.9 (2C), 28.2, 22.0, 13.9. ¹⁹ F NMR (376 MHz, DMSO-d ₆): δ –113.05 (s, 1F). Anal. Calcd for C ₂₁ H ₂₁ FO ₃ : C, 74.10; H, 6.22. Found: C, 74.02; H, 6.31.
OMe OMe OMe OMe OMe	6-Hexyl-7-hydroxy-4-(3,4-dimethoxyphenyl)-2H-chromen-2- one (3u). Yield 1225 mg, 64%. Pale purple solid, m.p. = 173– 175°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.45 (s, 1H), 7.27 (s, 1H), 7.06–7.15 (m, 3H), 6.84 (s, 1H), 6.12 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.52–2.55 (m, 2H), 1.46–1.51 (m, 2H), 1.22–1.30 (m, 6H), 0.83–0.86 (m, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.1, 159.0, 155.0, 153.6, 149.9, 148.7, 127.6, 127.1, 126.2, 120.9, 112.2, 111.9, 110.3, 109.6, 102.0, 55.5 (2C), 30.8, 28.9, 28.8, 28.1, 21.7, 13.6. Anal. Calcd for C ₂₃ H ₂₆ O ₅ : C, 72.23; H, 6.85. Found: C, 72.03; H, 6.90.
Me C ₆ H ₁₃ HO O O	$\begin{array}{l} \textbf{3-Benzyl-6-hexyl-7-hydroxy-4-methyl-2H-chromen-2-one} (\textbf{3v}).\\ \textbf{Yield} 1400 mg, 80\%. Peach solid, m.p. = 162-164°C. ^1H\\ \textbf{NMR} (400 MHz, DMSO-d_6) \delta 10.35 (s, 1H), 7.44 (s, 1H),\\ \textbf{7.15-7.26} (m, 5H), 6.73 (s, 1H), 3.90 (s, 2H), 2.54-2.58 (m, 2H), 2.37 (s, 3H), 1.50-1.55 (m, 2H), 1.27 (br s, 6H), 0.82-\\ \textbf{0.84} (m, 3H). ^{13}C{^1H} \textbf{NMR} (101 \text{MHz, DMSO-d}_6) \delta 161.4, \end{array}$

	158.3, 151.5, 148.5 (2C), 139.5, 128.3, 128.0, 126.4, 125.9, 119.9, 112.1, 101.4, 32.1, 31.1, 29.4 (2C), 28.6, 22.1, 15.1, 13.9. Anal. Calcd for C ₂₃ H ₂₆ O ₃ : C, 78.83; H, 7.48. Found: C, 78.98; H, 7.56. Crystal Data: monoclinic, space group <i>P</i> ₂ 1/n (no. 14), a = 11.353(8) Å, b = 13.367(8) Å, c = 12.835(7) Å, β = 100.25(2)°, V = 1917(2) Å ³ , Z = 4, T = 293.15 K, μ(MoKα) = 0.079 mm-1, Dcalc = 1.214 g/cm3, 46605 reflections measured (6.098° ≤ 2Θ ≤ 57°), 4847 unique (Rint = 0.0388, Rsigma = 0.0200) which were used in all calculations. The final R1 was 0.0705 (I > 2σ(I)) and wR2 was 0.2405 (all data).
C ₆ H ₁₃ HO O O	2-Hexyl-3-hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen- 6-one (3w). Yield 1050 mg, 70%. Off-white solid, m.p. = 171– 173°C. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.21 (s, 1H), 7.31 (s, 1H), 6.69 (s, 1H), 2.71 (br s, 2H), 2.52–2.56 (m, 2H), 2.35 (br s, 2H), 1.69–1.73 (m, 4H), 1.52 (br s, 2H), 1.27 (br s, 6H), 0.85 (br s, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 161.1, 157.7, 151.1, 147.6, 126.1, 124.2, 118.2, 111.6, 101.4, 31.1, 29.3 (2C), 28.6, 24.6, 23.5, 22.1, 21.3, 20.9, 13.9. Anal. Calcd for C ₁₉ H ₂₄ O ₃ : C, 75.97; H, 8.05. Found: C, 75.83; H, 7.99.
C ₆ H ₁₃ HO O O	3-Benzyl-9-hexyl-8-hydroxy-1,2,3,4-tetrahydro-5H- chromeno[3,4-c]pyridin-5-one (3x). Yield 1271 mg, 65%. White solid, m.p. = 162–164°C. ¹ H NMR (400 MHz, DMSO- d ₆) δ 7.34–7.41 (m, 6H), 6.75 (s, 1H), 3.93 (s, 2H), 3.43–3.47 (m, 1H), 2.96 (s, 4H), 2.55–2.58 (m, 2H), 1.50–1.57 (m, 2H), 1.28 (br s, 6H), 1.04–1.07 (m, 1H), 0.84–0.87 (m, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 161.7, 159.3, 158.3, 151.3, 146.1, 135.6, 129.2, 128.2, 127.6, 126.5, 124.3, 114.6, 110.6, 101.5, 60.4, 49.0, 47.6, 30.9, 29.1, 29.0, 28.3, 24.2, 21.8, 13.6. Anal. Calcd for C ₂₅ H ₂₉ NO ₃ : C, 76.70; H, 7.47; N, 3.58. Found: C, 76.74; 7.36.
Br HO O O	6-Bromo-7-hydroxy-4-propyl-2H-chromen-2-one (3y). Yield 877 mg, 62%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 11.19 (s, 1H), 7.80 (s, 1H), 6.86 (s, 1H), 6.05 (s, 1H), 2.69–2.72 (m, 2H), 1.64–1.70 (m, 2H), 1.02–1.04 (m, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 159.9, 157.1, 156.0, 153.9, 128.7, 112.7, 110.2, 106.0, 103.2, 32.5, 21.1, 13.6. Anal. Calcd for $C_{12}H_{11}BrO_3$: C, 50.91; H, 3.92. Found: C, 50.77; H, 3.74.
HO O O OH	7,8-Dihydroxy-4-methyl-2H-chromen-2-one ⁶ (3z). Yield 595 mg, 62%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.69 (br s, 1H), 9.13 (br s, 1H), 7.00 (d, <i>J</i> = 8.6 Hz, 1H), 6.75 (d, <i>J</i> = 8.6 Hz, 1H), 6.02 (s, 1H), 2.36 (s, 3H).
HO O O O	7,8-Dihydroxy-4-propyl-2H-chromen-2-one ⁶ (3aa). Yield 781 mg, 71%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.68 (br s, 1H), 9.14 (br s, 1H), 7.03 (d, <i>J</i> = 8.6 Hz, 1H), 6.75 (d, <i>J</i> = 8.6 Hz, 1H), 5.98 (s, 1H), 2.67–2.70 (m, 2H), 1.64–1.70 (m, 2H), 1.01–1.04 (m, 3H).

Ме	6,7-Dihydroxy-4-methyl-2H-chromen-2-one ¹³ (3ab). Yield 586
HO	mg, 61%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.92 (br s 1H),
	9.01 (br s, 1H), 6.95 (s, 1H), 6.68 (s, 1H), 5.99 (d, <i>J</i> = 1.0 Hz,
ното	1H), 2.32 (d, <i>J</i> = 1.0 Hz, 3H).
C ₃ H ₇	6,7-Dihydroxy-4-propyl-2H-chromen-2-one ¹⁴ (3ac). Yield 715
HO	mg, 65%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 9.93 (br s, 1H),
	8.97 (br s, 1H), 6.98 (s, 1H), 6.68 (s, 1H), 5.94 (s, 1H), 2.62-
ното	2.65 (m, 2H), 1.66–1.71 (m, 2H), 1.01–1.05 (m, 3H).
Ме	7-Methoxy-4-methyl-2H-chromen-2-one ¹⁵ (3ad). Yield 608
	mg, 64%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 7.61 (d, J = 9.3
	Hz, 1H), 6.88-6.90 (m, 2H), 6.11 (s, 1H), 3.87 (s, 3H), 2.41 (s,
MeO	3H).
	Ethyl (2-oxo-4-propyl-2H-chromen-7-yl)carbamate ¹⁶ (3ae).
C ₃ H ₇	Yield 702 mg, 51%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 10.11 (s,
	1H), 7.72 (d, J = 8.7 Hz, 1H), 7.54 (d, J = 1.0 Hz, 1H), 7.39
	(dd, J = 8.7, 1.0 Hz, 1H), 6.16 (s, 1H), 4.17 (q, J = 7.1 Hz)
EtO N O O	2H). 2.69–2.73 (m. 2H). 1.58–1.68 (m. 2H). 1.24–1.28 (m.
Н	3H), 0.97 (t, $J = 7.1$ Hz, $3H$).
Ph	Fthyl (2-0x0-4-nhenyl-2H-chromen-7-yl)carhamate16 (3af)
	Vield 773 mg 50% ¹ H NMR (400 MHz DMSO-d.) δ 10.18 (s
	1H) $753-764$ (m 6H) 736 (br s 2H) 624 (s 1H) 417 (g
Ft0 N O	I = 6.6 Hz 2H 126 (t = 6.6 Hz 3H)
<u> </u>	
	6-Methoxy-4-propyl-2H-benzo[h]chromen-2-one (3ag). Yield
СН	804 mg, 60%. Off-white solid, m.p. = 170–172 °C. ¹ H NMR
	(400 MHz, DMSO-d ₆) δ 8.28–8.29 (m, 1H), 8.15–8.16 (m,
MeO	1H), 7.67–7.72 (m, 2H), 6.94 (s, 1H), 6.35 (m, 1H), 4.01 (s,
	3H), 2.79–2.82 (m, 2H), 1.66–1.72 (m, 2H), 1.00–1.02 (m,
	3H). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, DMSO-d ₆) δ 160.3, 157.7,
	151.5, 144.8, 128.7, 128.3, 126.8, 123.6, 122.3, 122.1, 114.8,
	113.4, 98.1, 56.4, 33.5, 21.2, 14.1. Anal. Calcd for $C_{17}H_{16}O_3$:
	C, 76.10; H, 6.01. Found: C, 75.93; H, 5.94.
	<i>Ethyl</i> 9-methyl-5-oxo-1,2,3,4,5,10-
	hexahydroisochromeno[3,4-f]indole-8-carboxylate (4a). Yield
	1398 mg, 86%. Off-white solid, m.p. > 300 °C. 'H NMR (400
	MHZ, DMSO-d ₆) \circ 12.00 (s, 1H), 7.62 (s, 1H), 7.43 (s, 1H),
	4.28 (q, J = 7.1 Hz, 2H), 2.75 (s, 2H); 2.66 (s, 3H), 2.38 (s,
	2H), 1.68-1.78 (m, 2H), 1.37 (t, 3H). ¹³ C NMR (101 MHz,
EtO ₂ C	DMSO-d ₆) o 164.6, 161.0, 148.6, 147.3, 146.9, 131.8, 128.5,
	120.2, 114.8, 105.8, 104.9, 102.7, 59.0, 24.6, 23.7, 21.2,
	20.9, 14.4, 13.9. Anal. Calcd for $C_{19}H_{19}NO_4$: C, 70.14; H,
	5.89; N, 4.31. Found: C, 70.02; H, 5,95; N, 4.27.
	Eury 2-meury-o-oxo-o-propy-i,o-omyaropyrano[2,3-t]Indole-
	3-carboxylate (40). Light brown solid, m.p. > 300 °C. Yield
	141 776 (br c 14) 767 (br c 14) 640 (c 14) 422 (c 1-
	$(11), 1.10 (UI S, 1\Pi), 1.01 (UI S, 1\Pi), 0.40 (S, 1\Pi), 4.32 (Q, J = 6.8 Uz 2U) 2.74 2.80 (m 2U) 2.70 (a 2U) 4.70 4.75 (m$
Me	$0.0 \text{ Hz}, 2\Pi$, 2.14–2.09 (III, 2 Π), 2.10 (S, 3 Π), 1.10–1.15 (M,
	$2\Pi j$, 1.30 (I, J = 0.0 ΠZ , 3 Πj , 1.00=1.04 (M, 3H). " $U_{1}^{*}H_{1}^{*}$ NMR
	$(101 \text{ WIPZ}, \text{DWISO}-\text{u}_6) \cup 104.3, 100.3, 130.4, 149.1, 148.5, 131.9, 130.5, 113.9, 141.4, 106.2, (20), 102.0, 59.9, 20.0, 131.9, 131.$
	131.0, 129.3, 113.0, 111.1, 100.2 (2C), 102.9, 58.8, 32.9,
	$20.9, 14.2, 13.7, 13.5$. Anal. Calco for $C_{18}H_{19}NO_4$: C, 69.00;

	H, 6.11; N, 4.47. Found: C, 68.86; H, 6.23; N, 4.39.
$H \qquad Ph \\ Me \qquad J \qquad O \qquad O \\ EtO_2C \qquad O \qquad O \qquad O \\ EtO_2C \qquad O \qquad O \qquad O \qquad O \\ O \qquad O \qquad O \qquad O \qquad O \\ O \qquad O \qquad$	<i>Ethyl 2-methyl-6-oxo-8-phenyl-1,6-dihydropyrano</i> [2,3- <i>f</i>] <i>indole-</i> 3-carboxylate (4 <i>c</i>). Light brown solid, m.p. > 300 °C. Yield 781 mg, 45%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 12.07 (s, 1H), 7.86 (s, 1H), 7.60 (br s, 5H), 7.37 (s, 1H), 6.30 (s, 1H), 4.32 (q, <i>J</i> = 7.1 Hz, 2H), 2.67 (s, 3H), 1.38 (t, <i>J</i> = 7.1 Hz, 3H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 164.4, 160.3, 155.7, 149.5, 148.9, 135.4, 131.8, 129.8, 129.5, 128.8, 128.5, 113.6, 112.4, 108.6, 106.5, 103.0, 59.1, 14.4, 14.0. Anal. Calcd for C ₂₁ H ₁₇ NO ₄ : C, 72.61; H, 4.93; N, 4.03. Found: C, 72.79; H, 4.98; N, 3.90.
Ph Ph Ph N O O	4,6,7- <i>Triphenylpyrano</i> [3,2-f]indol-2(8H)-one (4d). Off-white solid, m.p. > 300 °C. Yield 1282 mg, 62%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 12.01 (s, 1H), 7.26-7.59 (m, 17H), 6.23 (s, 1H). ¹³ C NMR (101 MHz, DMSO-d ₆) δ 160.3, 156.3, 150.3, 137.9, 136.3, 135.6, 134.1, 131.5, 129.6 (2C), 128.7 (4C), 128.6 (2C), 128.5 (2C), 128.1 (2C), 126.7, 125.8, 117.1, 113.8, 112.6, 111.2, 98.1. Anal. Calcd for $C_{19}H_{19}NO_4$: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.02; H, 5,95; N, 4.27.
Ph Ph N H	6,7-Diphenyl-4-(thiophen-2-yl)pyrano[3,2-f]indol-2(8H)-one (4e). Off-white solid, m.p. > 300 °C. Yield 1111 mg, 53%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 12.03 (br s, 1H), 8.07 (br s, 1H), 7.87 (br s, 1H), 7.64 (br s, 1H), 7.29-7.47 (m, 13H), 6.35 (br s, 1H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.05, 150.21, 148.49, 137.9, 136.5, 136.0, 134.1, 131.5, 129.9, 129.6 (2C), 129.5, 128.8 (2C), 128.6 (2C), 128.3, 128.1 (3C), 126.7, 125.9, 116.8, 113.9, 111.7, 111.0, 98.3. Anal. Calcd for $C_{27}H_{17}NO_2S$: C, 77.31; H, 4.08; N, 3.34; S, 7.64. Found: C, 77.16; H, 4.20; N, 3.27; S, 7.73.
Ph Ph N H	10,11-Diphenyl-1,2,3,4,5,9-hexahydro-6H-cyclohepta[4,5] pyrano[3,2-f]indol-6-one (4f). Off-white solid, m.p. > 300 °C. Yield 1520 mg, 75%. ¹ H NMR (600 MHz, DMF-d ₇) δ 11.93 (s, 1H), 7.98 (s, 1H), 7.36-7.58 (m, 11H), 3.05-3.07 (m, 2H), 2.88-2.90 (m, 2H), 1.87-1.89 (m, 2H), 1.65-1.67 (m, 2H), 1.55- 1.57 (2H). ¹³ C{ ¹ H} NMR (151 MHz, DMF-d ₇) δ 156.0, 150.8, 139.0, 137.5, 136.1, 133.4, 131.3, 130.0, 129.7, 129.4, 129.0, 127.8, 127.4, 125.5, 115.5, 115.4, 115.1, 98.9, 32.8, 28.9, 27.5, 26.9, 26.3. Anal. Calcd for C ₂₈ H ₂₃ NO ₂ : C, 82.94; H, 5.72; N, 3.45. Found: C, 82.85; H, 5.80; N, 3.31.
MeO MeO MeO MeO H MeO H O O O	4-Phenyl-6,7-bis(3,4,5-trimethoxyphenyl)pyrano[3,2-f]indol- 2(8H)-one (4g). Off-white solid, m.p. 210–212 °C. Yield 2018 mg, 68%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 11.96 (s, 1H), 7.61-7.63 (m, 3H), 7.53-7.54 (m, 3H), 7.48 (s, 1H), 6.84 (s, 2H), 6.62 (s, 2H), 6.23 (s, 1H), 3.68 (s, 3H), 3.66 (s, 6H), 3.64 (s, 3H), 3.60 (s, 6H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆) δ 160.4, 156.4, 153.0 (2C), 152.7 (2C), 150.3, 137.6, 137.5, 136.3, 136.1, 135.8, 129.5, 128.7 (2C), 128.5 (2C), 126.6, 125.6, 117.3, 113.6, 112.6, 111.2, 107.0 (2C), 105.8 (2C), 97.9, 60.14 (3C), 60.07 (3C), 55.8 (6C), 55.7 (6C). Anal. Calcd for C ₃₅ H ₃₁ NO ₈ : C, 70.82; H, 5.26; N, 2.36. Found: C, 70.72; H, 5.16; N, 2.51.

Decarboxylation of ethyl indole-3-carboxylates

Compound **4a** or **4b** (0.32 mmol) was added to a solution of 0.07 mL H_2SO_4 in 0.5 mL AcOH. The reaction mixture was stirred under heating for 36 hours, then poured into water and the precipitate was filtered off. The resulting precipitate was purified by flash chromatography (chloroform/silica gel) to give decarboxylated indole **6a** and **6b**, respectively.

Structure	Analytical Data
	Analytical Data
	9-Methyl-2,3,4,10-tetrahydroisochromeno[3,4-f]indol-5(1H)-
	one (6a). Light yellow solid with m.p. = 279–281 °C. Yield 38
	mg, 47%. ¹ H NMR (400 MHz, DMSO-d ₆) δ 11.19 (s, 1H), 7.51
н	(s, 1H), 7.33 (s, 1H), 6.21 (s, 1H), 2.84-2.87 (m, 2H), 2.43
	(m, 5H), 1.72-1.84 (m, 4H). ¹³ C{ ¹ H} NMR (101 MHz, DMSO-
Me	d ₆) δ 161.4, 147.9, 145.7, 140.8, 133.4, 130.5, 119.2, 113.6,
~ 0.0	104.1, 104.0, 99.3, 24.8, 23.8, 21.4, 21.1, 13.6. Anal. Calcd
	for C ₁₆ H ₁₅ NO ₂ : C, 75.87; H, 5.97; N, 5.53. Found: 75.79; H,
	6.08; N, 5.35.
	2-Methyl-6-oxo-8-propyl-1,6-dihydropyrano[2,3-f]indole (6b).
	Light yellow solid with m.p. = 147–149 °C. Yield 32 mg, 41%.
СН	¹ H NMR (400 MHz, CDCl ₃) δ 8.15 (br s, 1H), 7.51 (s, 1H),
H	7.42 (s, 1H), 6.28 (s, 1H), 6.19 (s, 1H), 2.75–2.79 (m, 2H),
	1.73–1.80 (m, 2H), 1.04–1.08 (m, 3H). ¹³ C NMR (101 MHz,
Me	CDCl ₃) δ 162.4, 156.7, 148.4, 140.6, 133.4, 132.2, 114.0,
	111.4, 106.1, 104.6, 100.9, 34.1, 29.7, 21.6, 14.1, 14.0. Anal.
	Calcd for C ₁₅ H ₁₅ NO ₂ : C, 74.67; H, 6.27; N, 5.81. Found: C,
	74.57; H, 6.38; N, 5.64.

Calculation of Green Chemistry Metrics (EcoScale and E-factor)

(a) Calculation of EcoScale indexes under ball milling (This work)

The penalty points for synthesis of coumarin derivatives under ball milling (This work)

Parameter	Penalty
1. Yields 50-93	25-3.5
2. Price of reaction components	
β-ketoester	0
Phenol	0
MsOH	0
3. Safety	
non-dangerous for environment, non-toxic, non-flammable	0
4. Technical setup	
Unconventional activation technique	2
5. Temperature/time	
Room temperature < 24 h	1
6. Workup and purification	
Crystallization and filtration	1
Penalty points total:	29-7.5

EcoScale Score

= 100 - Total penalty points = 71-92.5

EcoScale Score for the synthesis of 5,7-dihydroxy-4-methyl-2H-chromen-2-one (3a) under the ball-milling conditions:

-		
Parameter		Penalty
1. Yields 87%		6.5
2. Price of reaction cor	nponents	
Ethyl acetoacetate		0
3,5-Dihydroxy pheno	bl	0
MsOH		0
3. Safety		
non-dangerous for e	0	
4. Technical setup		
Unconventional activ	vation technique	2
5. Temperature/time		
Room temperature <	< 24 h	1
6. Workup and purifica	tion	
Crystallization and fi	Itration	1
Penalty points total:		10.5
EcoScale Score	= 100 - Total penalty points	
	= 89.5	

(b) Calculation of EcoScale index for the synthesis of 5,7-dihydroxy-4-methyl-2H-chromen-2-one (3a) under the conventional stirring under solvent-free heating conditions (*Chem. Lett.*, 2001, 30, 110)¹⁷

EcoScale Score = 100 - Total penalty points = 87.5

(c) Calculation of E-factor for the synthesis of 5,7-dihydroxy-4-methyl-2H-chromen-2-one (3a) under the ball-milling conditions (this work):

E-factor calculation for the synthesis of 3a under ball-milling conditions:

	Reactant 1 (1a):	3,5-Dihydroxy phenol	0.126 g	1 mmol	FW 126.11
	Reactant 2 (2a):	Ethyl acetoacetate	0.143 g	1.1 mmol	FW 130.14
	Reagent:	MsOH	0.010 g	0.1 mmol	FW 96.11
j	0 - 1				
÷	Solvent:				
	Solvent: Auxiliary (grinding):				
	Solvent: Auxiliary (grinding): Product (3a):	 5,7-dihydroxy-4-methyl-2 <i>H</i> - chromen-2-one	 0.167 g	 0.87 mmol	 FW 192.17

Product yield = 87%

E-factor =
$$\frac{0.126 + 0.143 + 0.010 - (0.167)}{0.167} = 0.67 \text{ Kg waste/1 Kg product}$$

Note: (i) Calculations were done on 1 mmol scale. (ii) When the authors have not reported the amount of solvent used in the work-up procedure, we have not accounted for solvent and considered that solvent can be recovered.

(d) Calculation of E-factor for the synthesis of 5,7-dihydroxy-4-methyl-2H-chromen-2-one (3a) under the conventional stirring under solvent-free heating conditions (*Chem. Lett.*, 2001, 30, 110)¹⁷

E-factor calculation for the synthesis of 3a under the conventional stirring under solvent-free heating conditions:

1	Reactant 1 (1a):	3,5-Dihydroxy phenol	0.126 g	1 mmol	FW 126.11
	Reactant 2 (2a):	Ethyl acetoacetate	0.130 g	1 mmol	FW 130.14
	Reagent:	<i>p</i> -TsOH	0.017 g	0.1 mmol	FW 172.20
- 1	Calvert				1
- 1	Solvent:				
	Auxiliary (grinding):				
	Solvent: Auxiliary (grinding): Product (3a):	 5,7-dihydroxy-4-methyl-2 <i>H-</i> chromen-2-one	 0.155 g	 0.81 mmol	 FW 192.17

Product yield = 81%

E-factor = $\frac{0.126 + 0.130 + 0.017 - (0.155)}{0.155} = 0.76 \text{ Kg waste/1 Kg product}$

Note: (i) Calculations were done on 1 mmol scale. (ii) When the authors have not reported the amount of solvent used in the work-up procedure, we have not accounted for solvent and considered that solvent can be recovered.

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

2. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

4. Sharghi, H.; Jokar, M. Al₂O₃/MeSO₃H (AMA) as a Novel Heterogeneous System for Synthesis of Coumarins under Mild Conditions. *Heterocycles* **2007**, *71*, 2721–2733.

5. Fatykhov, R. F.; Khalymbadzha, I. A.; Chupakhin, O. N.; Charushin, V. N.; Inyutina, A. K.; Slepukhin, P.A.; Kartsev, V. G. 1-Nicotinoylbenzotriazole: A Convenient Tool for Site-Selective Protection of 5,7-Dihydroxycoumarins. *Synthesis* **2019**, *51*, 3617–3624.

6. Jung, K.; Park, Y.-J.; Ryu J.-S. Scandium(III) Triflate–Catalyzed Coumarin Synthesis. *Synth. Commun.* **2008**, *38*, 4395–4406.

7. Wang, B.; Li, N.; Liu, T.; Sun, J.; Wang X. Synthesis and biological evaluation of novel neoflavonoid derivatives as potential antidiabetic agents. *RSC Adv.* **2017**, *7*, 34448–34460.

8. Timonen, J. M.; Nieminen, R. M.; Sareila, O.; Goulas, A.; Moilanen, L. J.; Haukka, M.; Vainiotalo, P.; Moilanen, E.; Aulaskari P. H. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. *Eur. J. Med. Chem.* **2011**, *46*, 3845–3850.

9. B. Zhang, C. Ge, J. Yao, Y. Liu, H. Xie, J. Fang Selective Selenol Fluorescent Probes: Design, Synthesis, Structural Determinants, and Biological Applications. *J. Am. Chem. Soc.* **2015**, *137*, 757–769.

10. Mzozoyana, V.; van Heerden, F. R.; Grimmer C. Synthesis of 4-(2-fluorophenyl)-7methoxycoumarin: experimental and computational evidence for intramolecular and intermolecular C– F···H–C bonds. *Beilstein J. Org. Chem.* **2020**, *16*, 190–199.

11. Wang, C.; Zhang, H.; Xu, F.; Niu, Y.; Wu, Y.; Wang, X.; Peng, Y.; Sun, J.; Liang, L.; Xu P. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents. *Molecules* **2013**, *18*, 6057–6091.

12. Shamsuddin, K. M.; Siddiqui M. J. A. One-pot Synthesis of 4-Phenylcoumarins. *J. Chem. Research (S)* **1998**, 392–393.

13. Wang, P.; Xia, Y.-L.; Yu, Y.; Lu, J.-X.; Zou, L.-W.; Feng, L.; Ge G.-B.; Yang L. Design, synthesis and biological evaluation of esculetin derivatives as anti-tumour agents. *RSC Adv.* **2015**, *5*, 53477–53483.

14. Tiftikçi, E.; Erk Ç. The Synthesis of Novel Crown Ethers, Part X, 4-Propyl-and 3-ethyl-4methylchromenone-Crown Ethers. *J. Heterocycl. Chem.* **2004**, *41*, 867–871.

15. Montazeri, N.; Khaksar, S.; Nazari, A.; Alavi, S. S.; Vahdat, S. M.; Tajbakhsh M. Pentafluorophenylammonium triflate (PFPAT): An efficient, metal-free and reusable catalyst for the von Pechmann reaction. *J. Fluor. Chem.* **2011**, *132*, 450–452.

16. Reszka P.; Schulz R.; Methling K.; Lalk M.; Bednarski P. J. Synthesis, Enzymatic Evaluation, and Docking Studies of Fluorogenic Caspase Tetrapeptide Substrates. *ChemMedChem* **2010**, *5*, 103–117.

17. Teizo, S.; Koichi, T. Solvent-Free Coumarin Synthesis. Chem. Lett. **2001**, *30*, 110-111.

A B Figure S3. View of the reactor with the reaction mass containing compound 3a after completion of the reaction; 25 mmol scaling.

Figure S4. ¹H NMR spectrum of 3c

Figure S6. ¹H NMR spectrum of 3e

Figure S7. ¹H NMR spectrum of 3f

Figure S8. ¹H NMR spectrum of 3g

Figure S9. ¹³C NMR spectrum of 3g

Figure S12. ¹H NMR spectrum of 3j

Figure S13. ¹H NMR spectrum of 3k

Figure S14. ¹H NMR spectrum of 3I

Figure S15. ¹H NMR spectrum of 3m

Figure S17. ¹H NMR spectrum of 3o

Figure S18. ¹H NMR spectrum of 3p

Figure S19. ¹³C NMR spectrum of 3p

Figure S20. ¹H NMR spectrum of 3q

Figure S21. ¹³C NMR spectrum of 3q

Figure S22. ¹H NMR spectrum of 3r

Figure S23. ¹³C NMR spectrum of 3r

Figure S24. ¹⁹F NMR spectrum of 3r

Figure S25. ¹H NMR spectrum of 3s

Figure S26. ¹H NMR spectrum of 3t

Figure S27. ¹³C NMR spectrum of 3t

Figure S28. ¹⁹F NMR spectrum of 3t

Figure S29. ¹H NMR spectrum of 3u

Figure S30. ¹³C NMR spectrum of 3u

Figure S32. ¹³C NMR spectrum of 3v

Figure S33. Thermal ellipsoid plot of compound 3v; ellipsoid contour at the 30% probability level. carbon (gray), hydrogen (light gray), and oxygen (red). Single crystal was grown by the slow evaporation of the solution of compound 2v in EtOAc.

Figure S34. ¹H NMR spectrum of 3w

Figure S35. ¹³C NMR spectrum of 3w

Figure S36. ¹H NMR spectrum of 3x

Figure S37. ¹³C NMR spectrum of 3x

Figure S39. ¹³C NMR spectrum of 3y

Figure S41. ¹H NMR spectrum of 3aa

Figure S43. ¹H NMR spectrum of 3ac

Figure S45. ¹H NMR spectrum of 3ae

Figure S51. ¹H NMR spectrum of 4b

Figure S52. ¹³C NMR spectrum of 4b

Figure S53. ¹H NMR spectrum of 4c

Figure S54. ¹³C NMR spectrum of 4c

Figure S62. ¹³C NMR spectrum of 4g

Figure S64. ¹³C NMR spectrum of 6a

Figure S65. ¹H NMR spectrum of 6b

Figure S66. ¹³C NMR spectrum of 6b