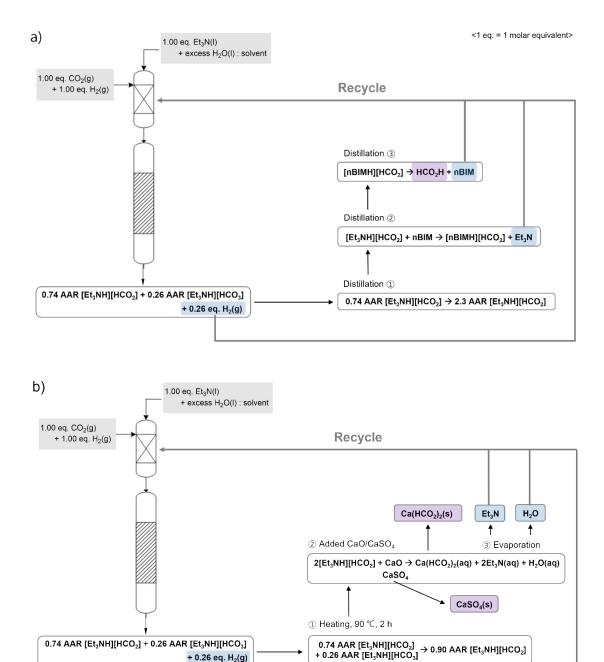
Supplementary information

Eco-friendly and techno-economic conversion of CO₂ into calcium formate, a valuable resource

Hayoung Yoon, †^a Taeksang Yoon, †^b Ha-Jun Yoon^b, Chul-Jin Lee*^{b,c} and Sungho Yoon*^a


^aDepartment of Chemistry, Chung Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. E-mail: sunghoyoon@cau.ac.kr

^bSchool of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.

^cDepartment of Intelligent Energy and Industry, Chung Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. E-mail: cjlee@cau.ac.kr

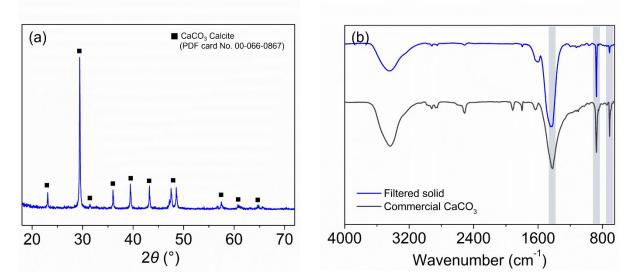
Contents

- 1. Conventional HCO₂H production process and proposed Ca(HCO₂)₂ production process
- 2. composition analysis of CO_2 hydrogenation adduct
- 3. Analysis of substances generated during separation of Ca(HCO₂)₂ production
- 4. Ca(HCO₂)₂ yield and amine loss according to the change of additives containing CaO
- 5. Techno-economic analysis
- 6. Life-cycle assessment

Conventional HCO₂H production process and proposed Ca(HCO₂)₂ production process 1.

*Flue-gas desulfurization ash (CaO/CaSO₄) consists of 23.4 wt% of CaO

+ 0.26 eq. H₂(g)


Figure S1. Detailed schematics of CO₂ conversion into value-added chemicals: a) conventional HCO₂H production process and b) proposed Ca(HCO₂)₂ production process. (AAR: acid to amine ratio)

 $CO_2(g)$

2. composition analysis of CO₂ hydrogenation adduct

Figure S2. ¹³C NMR analysis of the [Et₃NH][HCO₂] adduct generated by CO₂ hydrogenation.

Figure S3. (a) XRD and (b) FT-IR analyses of filtered solid (blue) and commercial CaCO₃ (black) in a stirred solution obtained by adding CaO to the adduct containing bicarbonate.

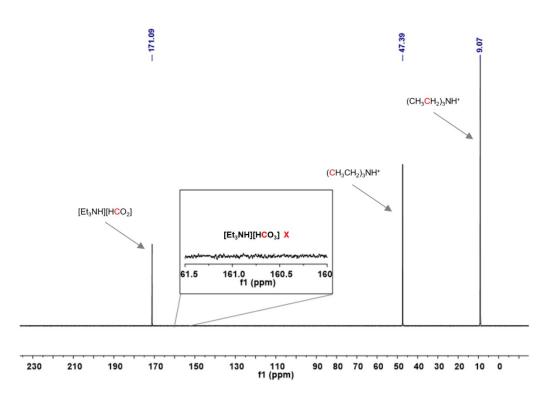


Figure S4. ¹³C NMR analysis of the adduct produced by CO₂ hydrogenation after degassing at 90 °C for 2 h.

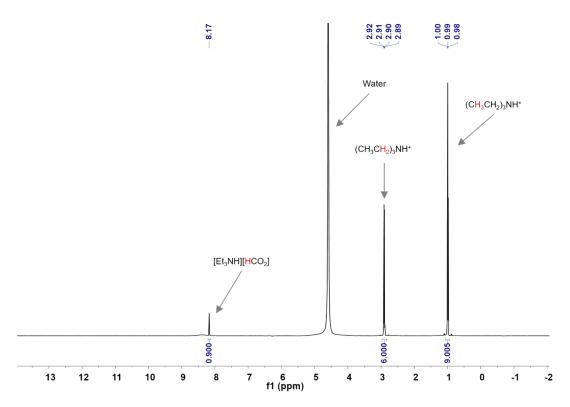
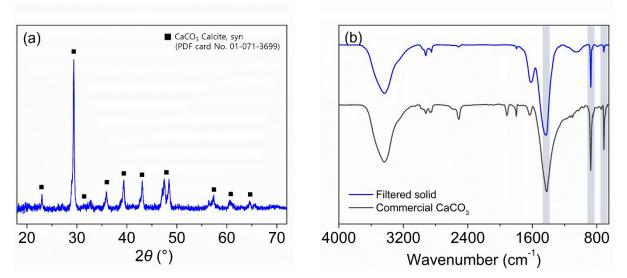
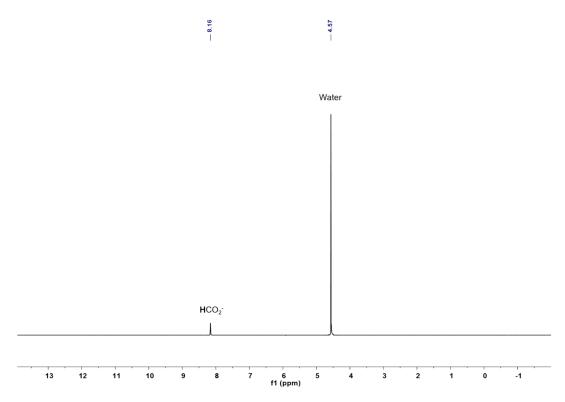




Figure S5. ¹H NMR analysis of the adduct produced by CO₂ hydrogenation after degassing at 90 °C for 2 h.

3. Analysis of substances generated during separation of Ca(HCO₂)₂ production

Figure S6. (a) XRD and (b) FT-IR analyses of the filtered solid produced during the synthesis of $Ca(HCO_2)_2$ from [Et₃NH][HCO₂] by using CaO.

Figure S7. ¹H NMR analysis of the evaporated solid produced during the synthesis of $Ca(HCO_2)_2$ from [Et₃NH][HCO₂] by using CaO.

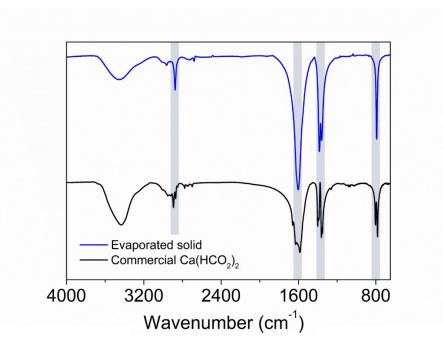


Figure S8. FT-IR analysis of the evaporated solid produced during the synthesis of $Ca(HCO_2)_2$ from $[Et_3NH][HCO_2]$ by using CaO.

Figure S9. XRD image of Ca(HCO₂)₂ obtained from [Et₃NH][HCO₂] by using CaO.

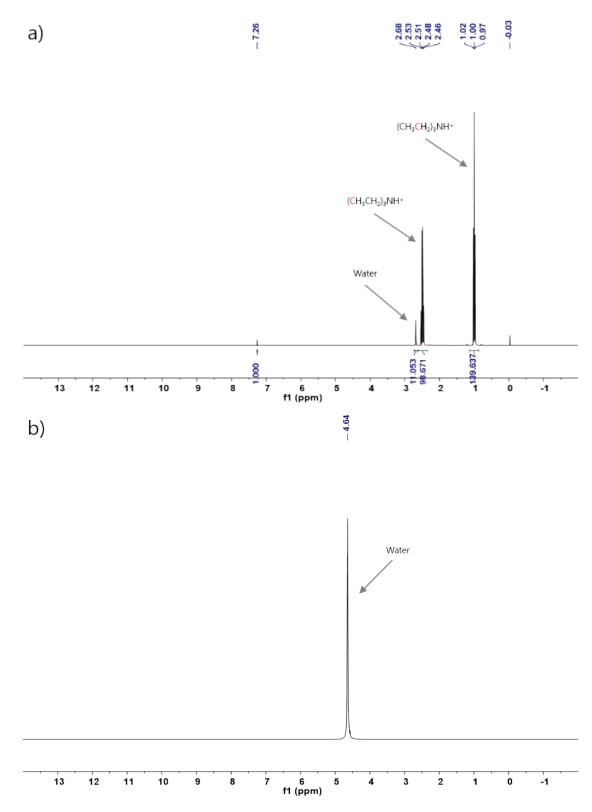


Figure S10. ¹H-NMR data of a) Et₃N and b) H₂O obtained by evaporating the filtrate at 100 and 130 °C.

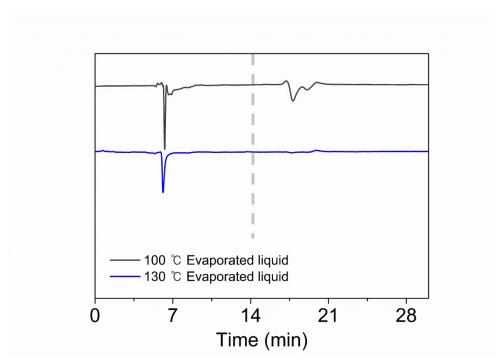


Figure S11. HPLC data of Et₃N (black) and H₂O (blue) obtained by evaporating the filtrate at 100 and 130 °C.

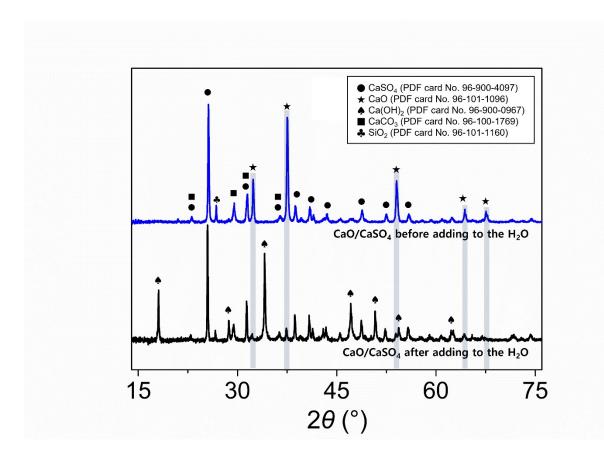


Figure S12. XRD image before and after adding CaO/CaSO₄ to the H₂O.

4. Ca(HCO₂)₂ yield and amine loss according to the change of additives containing CaO

Entry	Temp.	Time	Et ₃ N	HCO ₂ H	Added CaO	Reacted CaO	Reacted CaO	Produced Ca(HCO ₂) ₂	Produced Ca(HCO ₂) ₂
-	[°C]	[h]	[M]	[M]	[M]	[M]		[M]	
1	30	0.0833	1.9008	1.7107	0.8554	0.8547	99.93%	0.8434	98.60%
2	30	0.0833	1.9008	1.7107	0.8554	0.8518	99.58%	0.8559	100.06%
3	30	0.5	1.9008	1.7107	0.8554	0.8510	99.50%	0.8551	99.97%
4	30	0.5	1.9008	1.7107	0.8554	0.8516	99.56%	0.8453	98.83%
5	30	2	1.9008	1.7107	0.8554	0.8526	99.68%	0.8735	102.13%
6	30	2	1.9008	1.7107	0.8554	0.8521	99.62%	0.8618	100.75%
7	30	15	1.9008	1.7107	0.8554	0.8543	99.88%	0.8677	101.44%
8	30	15	1.9008	1.7107	0.8554	0.8484	99.19%	0.8603	100.58%
9	30	60	1.9008	1.7107	0.8554	0.8395	98.15%	0.8394	98.13%
10	30	60	1.9008	1.7107	0.8554	0.8171	95.53%	0.8329	97.37%
11	45	0.0833	1.9008	1.7107	0.8554	0.8539	99.83%	0.8584	100.36%
12	45	0.0833	1.9008	1.7107	0.8554	0.8521	99.62%	0.8411	98.33%
13	60	0.0833	1.9008	1.7107	0.8554	0.8521	99.62%	0.8664	101.29%
14	60	0.0833	1.9008	1.7107	0.8554	0.8527	99.69%	0.8432	98.57%
15	75	0.0833	1.9008	1.7107	0.8554	0.8520	99.61%	0.8536	99.79%
16	75	0.0833	1.9008	1.7107	0.8554	0.8536	99.79%	0.8657	101.21%
17	90	0.0833	1.9008	1.7107	0.8554	0.8536	99.79%	0.8217	96.06%
18	90	0.0833	1.9008	1.7107	0.8554	0.8533	99.76%	0.8210	95.98%

Table S1. $Ca(HCO_2)_2$ yields from the reaction between $[Et_3NH][HCO_2]$ and CaO for various reaction times and temperatures.

Entry	Temp.	Time	Et ₃ N	HCO ₂ H	Added CaSO ₄	Added CaO	Reacted CaO	Reacted CaO	Produced Ca(HCO ₂) ₂	Produced Ca(HCO ₂) ₂
-	[°C]	[h]	[M]	[M]	[M]	[M]	[M]		[M]	
1	30	0.0833	1.9008	1.7107	0.8554	0.8554	0.9034	105.62%	0.8852	103.49%
2	30	0.0833	1.9008	1.7107	0.8554	0.8554	0.9014	105.38%	0.8606	100.61%
3	30	0.5	1.9008	1.7107	0.8554	0.8554	0.8959	104.74%	0.8464	98.96%
4	30	0.5	1.9008	1.7107	0.8554	0.8554	0.8821	103.13%	0.8310	97.16%
5	30	2	1.9008	1.7107	0.8554	0.8554	0.8993	105.14%	0.8396	98.16%
6	30	2	1.9008	1.7107	0.8554	0.8554	0.8864	103.63%	0.8553	99.99%
7	30	15	1.9008	1.7107	0.8554	0.8554	0.8987	105.06%	0.8727	102.03%
8	30	15	1.9008	1.7107	0.8554	0.8554	0.8332	97.41%	0.8530	99.72%
9	30	60	1.9008	1.7107	0.8554	0.8554	0.9183	107.36%	0.8859	103.57%
10	30	60	1.9008	1.7107	0.8554	0.8554	0.8946	104.59%	0.8676	101.43%
11	45	0.0833	1.9008	1.7107	0.8554	0.8554	0.8819	103.11%	0.8474	99.07%
12	45	0.0833	1.9008	1.7107	0.8554	0.8554	0.8736	102.14%	0.8634	100.94%
13	60	0.0833	1.9008	1.7107	0.8554	0.8554	0.8973	104.90%	0.8629	100.89%
14	60	0.0833	1.9008	1.7107	0.8554	0.8554	0.8899	104.04%	0.8540	99.84%
15	75	0.0833	1.9008	1.7107	0.8554	0.8554	0.9084	106.20%	0.9053	105.84%
16	75	0.0833	1.9008	1.7107	0.8554	0.8554	0.8887	103.89%	0.8722	101.97%
17	90	0.0833	1.9008	1.7107	0.8554	0.8554	0.9037	105.65%	0.8669	101.35%
18	90	0.0833	1.9008	1.7107	0.8554	0.8554	0.8843	103.39%	0.8650	101.12%

Table S2. $Ca(HCO_2)_2$ yields from the reaction between $[Et_3NH][HCO_2]$ and the CaO-CaSO₄ mixture for various reaction times and temperatures.

Temp.	Time	Et ₃ N	HCO ₂ H	Added CaO	Reacted CaO	Reacted CaO	Produced Ca(HCO ₂) ₂	Produced Ca(HCO ₂) ₂
[°C]	[min]	[M]	[M]	[M]	[M]		[M]	
30	5	1.9008	1.7107	0.9593	0.8529	99.71%	0.8624	100.83%

Table S3. $Ca(HCO_2)_2$ yields from the reaction between $[Et_3NH][HCO_2]$ and the ash in the desulfurization process (CaO 23.4wt%).

Table S4. Amine loss during synthesis of $Ca(HCO_2)_2$ from $[Et_3NH][HCO_2]$ by using (1) CaO, (2) CaO+CaSO₄ and (3) ash in desulfurization process.

Entry	HCO ₂ H	Et ₃ N	Temp.	Time	Added CaO	Produced Ca(HCO ₂) ₂	Produced Ca(HCO ₂) ₂	Produced amine	Amine loss
-	[M]	[M]	[°C]	[min]	[M]	[M]	%		
1	1.7107	1.9008	30	5	0.8554	0.8559	100.06%	100.06%	0%
2	1.7107	1.9008	30	5	0.8554	0.8606	100.61%	100.61%	0%
3	1.7107	1.9008	30	5	0.8554	0.8624	100.82%	100.82%	0%

5. Techno-economic analysis

	Parameter	Value
Assumptions	(1) Annual Ca(HCO ₂) ₂ production (t Ca(HCO ₂) ₂ /yr)	38,500
	(2) Economic life of the plant (yr)	20
	(3) Annual operating hours (hr/yr)	8,000
	(4) Interest rate (%)	8
	(5) Tax rate (%)	35
	(5) Depreciation method	Straightforward
	(6) Direct supervisory and clerical labor(% of operating labor cost)	17
	(7) Maintenance and repairs(% of fixed capital investment cost)	6
	(8) Operating supplies(% of maintenance and repairs cost)	15
	(9) Laboratory charges(% of operating labor cost)	15
	(10) Patents and royalties(% of total operating cost)	3
	(11) Taxes and insurance(% of fixed capital investment cost)	2
	(12) Plant overhead costs(% of operating labor, (6) and (7))	60
	(13) Administration costs(% of operating labor, (6) and (7))	15
	(14) Distribution and selling cost(% of total operating cost)	11
	(15) Research and development(% of total operating cost)	5
Utilities	(16) Low-pressure steam (USD/GJ)	13.28
	(17) Electricity (Conventional) (USD/kWh)	0.07
	(18) Electricity (Renewable) (USD/kWh)	0.14
	(19) Cooling water (USD/ton)	0.354

Table S5. Parameters used and assumptions made for the economic analysis^{1, 2}

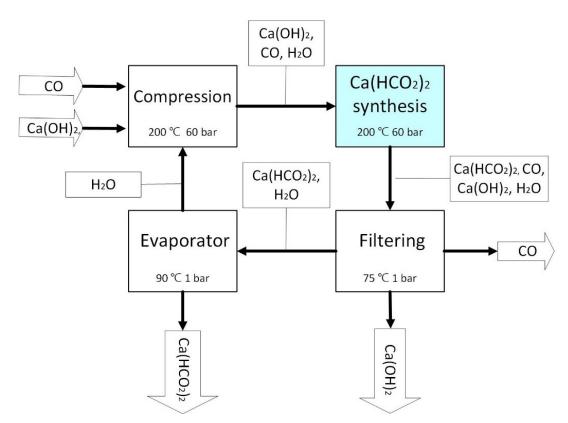
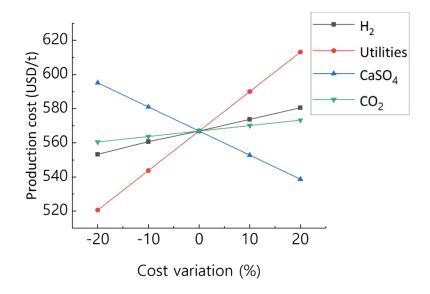



Figure S13. Block flow diagram of the process of Ca(HCO₂)₂ production from CO and Ca(OH)₂.

Figure S14. Sensitivity analysis of the Ca(HCO₂)₂ production cost for the fluctuation of H₂ from SMR(black), utilities (red), CO₂ (green), and CaSO₄ (blue).

6. Life-cycle assessment

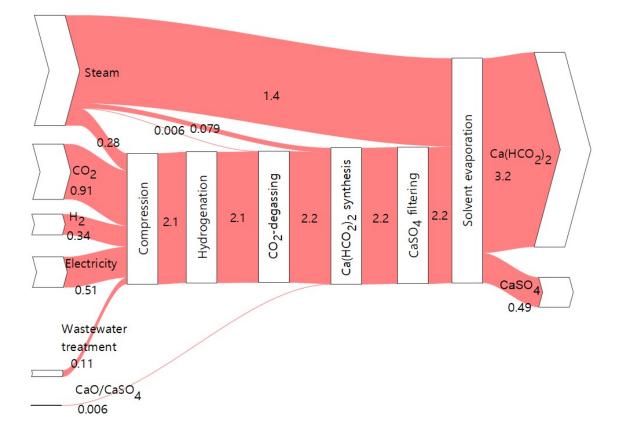


Figure S15. Sankey diagram for the GW index of the proposed process (H₂ from SMR) (unit: kg CO_2 -eq/kg $Ca(HCO_2)_2$).

Inflows	Database	Note
Material		
${\rm H_2}^3$	Hydrogen (reformer) E	H ₂ from SMR
CO_2^4	Carbon dioxide, liquid market for Cut-off, S	
CaO/CaSO44	Waste gypsum market for Cut-off, S	
$\rm CO^4$	Carbon monoxide market for Cut-off. S	
Ca(OH) ₂ ⁴	Lime, hydrated, packed market for Cut-off, S	
H_2O^4	Water, completely softened market for Cut-off, S	
Et ₃ N	Triethyl amine {GLO} market for Cut-off, S	
Utilities		
Steam ⁴	Heat, from steam, in chemical industry market for Cut-off, S	
Electricity ⁴	Electricity, high voltage $^2\vert$ heat and power co-generation, hard coal \vert Cut-off, S	
Electricity ^{4, 5}	Electricity, low voltage ² electricity production, photovoltaic, 570kWp open Cut-off, S	H ₂ from Electrolysis
Electricity ^{4, 5}	Electricity, high voltage ² electricity production, wind, >3MW turbine, onshore Cut-off, S	H ₂ from Electrolysis
Outflows		
Wastewater ⁴	Wastewater, average treatment of, capacity 1E9l/year Cut-off, S	
Inert waste ⁴	Inert waste treatment of, sanitary landfill Cut-off, S	

Table S6. Parameters used for the environmental analysis.

5. A. Al-Qahtani, B. Parkinson, K. Hellgardt, N. Shah and G. Guillen-Gosalbez, *Applied Energy*, 2021, **281**, 115958.

^{1.} R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, *Analysis, synthesis and design of chemical processes*, Pearson Education, 2008.

^{2.} L. a. K.-H. G-D, Kim, Establishment and operation of mid- to long-term unit cost (LCOE) forecasting system for expanding renewable energy supply, <u>https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fd_results.nsf%2Fmain_all%2F</u> <u>A10FCB3438C55F4349258669004FC436&s=%3FOpenDocument%26menucode%3DS0%26category%3</u> D%25EA%25B8%25B0%25EB%25B3%25B8%25EC%2597%25B0%25EA%25B5%25AC.

^{3.} Eco-profiles, <u>https://www.plasticseurope.org/en/resources/eco-profiles</u>, 2005.

^{4.} G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz and B. Weidema, *The International Journal of Life Cycle Assessment*, 2016, **21**, 1218-1230.