ARTICLE

Sustainable NaAlH4 production from recycled automotive Al alloy

Received 00th January 20xx, Accepted 00th January 20xx Yuanyuan Shang, ^a Claudio Pistidda, ^{*a} Chiara Milanese, ^b Alessandro Girella, ^b Alexander Schökel, ^c Thi Thu Le, ^a Annbritt Hagenah, ^a Oliver Metz, ^a Thomas Klassen ^{a,d} and Martin Dornheim ^{*a}

DOI: 10.1039/x0xx00000x

Supporting Information

Fig. S1 XRD pattern (λ =1.54184 Å) of the NaH + pure Al mixture collected after 50 h's ball milling under about 83 bar of hydrogen.

Fig. S2. XRD patterns of the as-milled, and 5th re-hydrogenation of the less pure NaAlH $_4$.

Table S1 Fitting models and their corresponding kinetic reaction equations used for the hydrogenation curves of the less pure $NaAlH_4^{-1}$.

Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany b. C.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of

Model types	Kinetic rate models	Fitting equations			
Diffusion models	D1 one-dimensional diffusion	α^2/0.25			
	D2 two-dimensional diffusion	$(\alpha + (1-\alpha) * ln^{\text{ini}}[(1-\alpha)])/0$			
	D3 Jander equation for three-dimensional diffusion	$[(1 - [(1 - \alpha)]^{(1/3)})]^{2/0.0}$			
	D4 Ginstling-Braunshtein equation for three dimensional diffusion	$(1-2/3 [\alpha - (1-\alpha)]^{(2/3)})/$			
Geometrical contraction models	R2 two-dimensional interface controlled	$(1 - [(1 - \alpha)]^{(1/2)})/0.29289$			
	R3 three-dimensional interface controlled	$(1 - [(1 - \alpha)]^{(1/3)})/0.20629$			
Nucleation and growth models	F1 JMA- n = 1	$(-ln^{\text{min}}(1-\alpha)))/0.6931$			
	F2 JMA- n = 1/2	$(-ln[[[((1-\alpha)]^{(1/2)}])/0.8])$			
	F3 JMA- n = 1/3	$(-ln_{\text{res}}^{\text{res}}[[(1-\alpha)]^{(1/3)}])/0.8$			
	F4 JMA- n = 1/4	$(-ln \mathbb{E}[[(1-\alpha)]^{(1/4)}])/0.9$			

References

Gizer,	G.	Role	of	Additives	on	the	Kinetic	and

1

^{a.} Department of Materials Design, Institute of Hydrogen Technology, Helmholtz-

Pavia, Viale Taramelli 16, 27100 Pavia, Italy

^{c.} Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ^{d.} Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Journal Name

Thermodynamic Properties of Mg (NH2) 2+ LiH Reactive Hydride Composite. (2020).

2 | J. Name., 2012, **00**, 1-3