Supplementary Information Construction of Biocatalytic Cascades for the Synthesis of Benzylisoquinoline Alkaloids from *p*-Coumaric Acid Derivatives and Dopamine

Mingtao Zhao^a, Ziqing Qin^a, Abdullah Abdullah^a, Yi Xiao*^{a,b}

^aState Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China; Tel.: +86-21-3420 8601, Fax: +86-21-3420 5709; E-mail: <u>yi_xiao@sjtu.edu.cn</u>

^bJoint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China

Tables of Contents

1.	Supporting Tables S1-S2			S2		
2.	Supporting Figures S1-S7			S4		
3.	Experimental Section		S	7		
3.1	Chemicals and reagents used in this study			S7		
3.2	Genes used in this study			S8		
4. Analytical HPLC and MS results						
4.1	Achiral	HPLC	and	MS		
ana	ılysis					
4.2 Chiral HPLC analysis						
5.	Reference			S27		

1. Supporting Tables

Table S1. Plasmids used in this study

Plasmids	Descriptions	Sources
pET-28a(+)	Single T7 promoter, PBR322 ori, Kan ^R	Novagen
pA7a-RFP	Single T7 promoter, P15A ori, Amp ^R	BglBrick ¹
pA7a-BLPad	pA7a carrying <i>blpad</i>	2
pB7c-GFP	Single T7 promoter, pBBR1 ori, Cm ^R	BglBrick ¹
pCas	repA101(Ts), kan, P _{cas} -cas9 P _{araB} -Red, lacI ^q , Ptrc-sgRNA-	3
	pMB1	
pTargetF	pBR322, Spec, P _{J23119} -sgRNA-ldhA	3
pT-FeaB	pTargetF carrying P _{J23119} -sgRNA-feaB	This study
pA7a-⊿29TfNCS	pA7a carrying <i>d29TfNCS</i>	This study
pB7c-⊿29TfNCS	pB7c carrying <i>d29TfNCS</i>	This study
pET28a-StyAB-RostyC-7-BLPad	pET28a carrying styAB, RostyC and blpad	2
pET28a-StyAB-RostyC	pET28a carrying styAB and RostyC	2
pA7a-BLPad-7-⊿29TfNCS	pA7a carrying <i>blpad</i> and <i>A29TfNCS</i>	This study
pB7c-BLPad-7-⊿29TfNCS	pB7c carrying <i>blpad</i> and <i>A29TfNCS</i>	This study
pET28a-StyAB-RostyC-7-AnPad	pET28a carrying styAB, RostyC and AnPad	This study

Table S2. Strains used in this study

Strains	Descriptions	Sources
<i>E. coli</i> DH5α	F^- , φ80d lacZΔM15, Δ(lacZYA-argF) U169, recA1, endA1,	Novagen
	hsdR17(rk ⁻ , mk ⁺), phoA, supE44 λ ⁻ , thi ⁻¹ , gyrA96, relA1	
E. coli BL21 (DE3)	$F^{-}ompT hsdS_B(r_B^{-}m_B^{-})$ gal dcm (DE3) $\Delta recA$	Novagen
E. coli BL21 (DE3) RARE	E. coli BL21 (DE3) (<i>AdkgB</i> , <i>AyqhC</i> , <i>AyqhD</i> , <i>AyahK</i> , <i>AyeaE</i> ,	
	$\Delta dkgA, \Delta yjgB, \Delta recA)$	
E. coli BL21 (DE3)RARE∆feaB	E. coli BL21 (DE3) (<i>AdkgB</i> , <i>AyqhC</i> , <i>AyqhD</i> , <i>AyahK</i> , <i>AyeaE</i> ,	This study
	$\Delta dkgA, \Delta yjgB, \Delta recA, \Delta feaB)$	
E.coli (BLPad)	E. coli BL21 (DE3) with pA7a-BLPad	This study
ZMTS 1	E. coli BL21 (DE3) RARE <i>AfeaB</i> with pA7a-A29TfNCS and	This study
	pET28a-StyAB-RostyC-7-BLPad	
ZMTS 2	E. coli BL21 (DE3) RAREAfeaB with pB7c-A29TfNCS and	This study
	pET28a-StyAB-RostyC-7-BLPad	
ZMTS 3	E. coli BL21 (DE3) RAREAfeaB with pA7a-BLPad-7-	This study
	⊿29TfNCS and pET28a-StyAB-RostyC	
ZMTS 4	E. coli BL21 (DE3) RAREAfeaB with pB7c-BLPad-7-	This study
	⊿29TfNCS and pET28a-StyAB-RostyC	
ZMTS 5	E. coli BL21 (DE3) RARE <i>AfeaB</i> with pA7a- <i>A</i> 29TfNCS and	This study
	pET28a-StyAB-RostyC-7-AnPad	
Srac 1	E. coli BL21 (DE3) RAREAfeaB with pET28a-StyAB-	This study
	RostyC-7-BLPad	
Srac 2	E. coli BL21 (DE3) RAREAfeaB with pET28a-StyAB-	This study
	RostyC-7-AnPad	

2. Supporting Figures

Fig. S1 Construction of strains coexpressing *blpad* or (*fdc* and *pad*), *styAB*, *RostyC* and $\Delta 29TfNCS$ for the synthesis of BIAs.

Fig. S2 HPLC analysis of the bioconversion samples from ZMTS 1. The bioconversion was performed in 50 mL HEPES buffer (50 mM, pH 7.0 and OD₆₀₀ of 30) at 37 °C, 250 rpm, with adding 10 g L⁻¹ of glucose, 7.5 mM *p*-coumaric acid **4**, 7.5 mM dopamine **2** and 7.5 mM sodium ascorbate for 1 h.

Fig. S3 Investigation of the catalytic activity of BLPad on *p*-coumaric acid derivatives, including cinnamic acid (8), 3-hydroxycinnamic acid (9), 3-methylcinnamic acid (10), 3-methoxycinnamic acid (11), 4-methoxycinnamic acid (12) and 3,4-dimethoxycinnamic acid (13), using strain *E. coli* (BLPad) carring pA7a-BLPad. The bioconversions were performed in 5 mL HEPES buffer (50 mM, pH 7.0 and OD₆₀₀ of 30) at 37 °C, 250 rpm, with adding 10 mM substrates for 1 h.

Fig. S4 Bioconversions for the synthesis of (*S*)-14 and (*S*)-15 using ZMTS 1 with adding 5 mM substrates (dopamine 2, ferulic acid 6 or caffeic acid 7). The bioconversions were performed in 5 mL HEPES buffer (50 mM, pH 7.0 and OD_{600} of 30) at 37 °C, 250 rpm, with adding 10 g L⁻¹ of glucose and 10 mM sodium ascorbate for 2 h.

Fig. S5 Bioconversions for the synthesis of (*S*)-**19** and (*S*)-**23** using ZMTS 5 with adding 10 mM substrates (dopamine **2**, 3-hydroxycinnamic acid **9** or 3,4-dimethoxycinnamic acid **13**). The bioconversions were performed in 5 mL HEPES buffer (50 mM, pH 7.0 and OD_{600} of 30) at 37 °C, 250 rpm, with adding 10 g L⁻¹ of glucose and 10 mM sodium ascorbate for 2 h.

Fig. S6 HPLC analysis of lignocellulosic biomass hydrolysate from sorghum pith.

Fig. S7 Chiral HPLC analysis of the synthesis of (*rac*)-3 (standard) and (S)-3 from dopamine 2 and hydrolysate

by bioconversion.

3. Experimental Section

3.1 Chemicals and reagents used in this study

All chemicals were purchased from commercial companies: *p*-coumaric acid (4), acetonitrile used for HPLC (Adamas Reagent Co., Ltd); ferulic acid (6) and 3-fluorocinnamic acid (27) (Macklin Biochemical Co., Ltd); 4-vinylphenol (5), 4-vinylguaiacol (16), 3-hydroxycinnamic acid (9) and 4-methoxycinnamic acid (12) (Ark Pharm); cinnamic acid (8) (Energy Chemical); tyrosol (Bidepharm); 4-hydroxyphenylacetaldehyde (1)

(APOLLO SCIENTIFIC); 4-hydroxyphenylacetic acid (4-HPA) (Energy Chemical); caffeic acid (7), 3methoxycinnamic acid (11), 3-fluoro-4-hydroxycinnamic acid (24) and *trans*-3-bromocinnamic acid (29) (Aladdin); 3-chlorocinnamic acid (28) ($H \land WN^{\circledast}$); 3-methylcinnamic acid (10) (Alfa Aesar); 3-chloro-4hydroxycinnamic acid (25), 3-bromo-4-hydroxycinnamic acid (26) and (*rac*)-norlaudanosoline [(*rac*)-15] (TRC Canada); (*rac*)-norcoclaurine [(*rac*)-3] (ANPEL).

Reagents: DNA gel extraction kit, plasmid purification kit, Phusion[®] High-Fidelity DNA Polymerase, and dNTP mix (10 mM each) were obtained from Thermo Fisher Scientific. Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs.

3.2 Genes used in this study

blpad from Bacillus licheniformis strain CGMCC 7172:5

> blpad

styAB from Pseudomonas sp. strain VLB120 was codon optimized:6

>styA

ATGACGTTAAAAAAGATATGGCGGTGGATATCGACTCCACCAACTTCCGCCAGGCGGTTGCATT GTTCGCGACGGGAATTGCGGTTCTCAGCGCGGAGACTGAAGAGGGCGATGTGCACGGCATGACC GTGAACAGTTTCACCTCCATCAGTCTGGATCCGCCGACTGTGATGGTTTCCCTGAAATCGGGCCGT ATGCATGAGTTGCTGACTCAAGGCGGACGCTTCGGAGTTAGCCTCTTGGGTGAAAGCCAGAAGGT GTTCTCGGCATTCTTCAGCAAGCGCGCGATGGATGACACGCCTCCCCCCGCCTTCACCATTCAGGC CGGCCTTCCCACTCTGCAGGGCGCCATGGCCTGGTTCGAATGCGAGGTGGAGAGCACGGTTCAAG TACACGACCACACGCTCTTCATTGCGCGCGTTAGCGCCTGTGGAACGCCTGAGGCGAATACCCCC CAGCCGCTGCTGTTCTTTGCCAGCCGTTATCACGGCAACCCGTTGCCACTGAATTGA *RostyC* from *Rhodococcus opacus* 1CP was codon optimized:⁷

>RostyC

ATGAAAACGCTGGAACGCAAAATCTACGGCCACGGCGTGCTGATGATTCTGAGCACGCTGATCTT CGGTCTGTTTCTGTGGATGAATCTGGTTGGCCGGCGCTCGAGATCGTGCCGGGGCTACATCATCAACTT CAACATCCCGGGTACGGCGGAAGGTTGGGCGAAAGCCCATGTTGGCCCGGCGCTGAATGGCATG ATGGTTATCGCGATCGGTCTGGTTCTGCCAAAACTGGCGTTCCCGCTGAAGACGGCCAAGAAACT GGGCTATATCATCGTGCTGGACGGCTGGGGGCAATGTGTGCTTCTACTTCTTCAGCAACTTCGCGCC GAGCCGTGGTCTGAGTTTCGGCAGCAACGTCTGGGCGAAACCAACATCTTCGGCGTTCTGGCGC TGGCCCCGGCCTATGTTTTTGGCGTGCTGGCGAACGCGCAAGAACGCCTAA

Δ29TfNCS from Thalictrum flavum was codon optimized:8

>\Delta 29TfNCS

ATGTTGCATCACCAGGGTATCATCAATCAAGTTAGCACCGTCACGAAAGTAATTCATCACGAGCT GGAAGTTGCGGCATCCGCTGACGACATTTGGACCGTGTACAGCTGGCCGGGTCTGGCGAAGCACT TGCCGGATCTGCTGCCTGGCGCGTTCGAAAAACTGGAGATTATCGGCGATGGCGGTGTTGGTACG ATTCTGGACATGACCTTTGTCCCGGGTGAATTCCCGCACGAGTATAAAGAGAAATTCATCCTGGTT GATAACGAACATCGTCTGAAGAAGGTGCAGATGATCGAAGGCGGCTATCTGGACCTGGGTGTGA CGTATTACATGGACACGATTCACGTTGTGCCGACCGGTAAAGACAGCTGCGTCATCAAGAGCAGC ACTGAGTACCACGTCAAGCCGGAGTTTGTGAAGATTGTTGAGCCGCTGATCACCACCGGTCCACT GGCAGCCATGGCAGATGCCATTAGCAAGTTGGTCCTGGAACATAAATCTAAAAGCAACTCCGATG AAATTGAGGCGGCGATCATCACCGTGTGA

AnPad (pad and fcd) from Aspergillus niger was codon optimized⁹:

> pad

>fcd

ATGAGCGCGCGCGCGCGCGCATCTGTGCTTTCGCAGCTTTGTGGAAGCGCTGAAAGTGGATAACGA TCTGGTGGAAATTAACACACCAATCGATCCGAACCTGGAAGCCGCTGCCATCACTAGGCGCGTGT GCGAAACCAACGATAAAGCGCCGCTGTTTAACAACCTGATTGGCATGAAGAATGGGCTGTTTCGC ATTCTGGGCGCGCCGGCAGCCTGCGCAAGTCTAGTGCGGATCGCTATGGCCGCCTGGCGCGCCA TGCCGCCGATTCCGCCGACCATTGTGCCGACCGGCCCGTGCAAAGAGAATAGTCTGGATGATAGC GAATTTGATCTGACCGAACTGCCGGTGCCGCTGATTCATAAGTCTGACGGCGGCAAATATATTCA GACCTATGGCATGCATATTGTGCAGAGCCCGGATGGCACCTGGACCAACTGGAGCATTGCGCGCG CGATGGTGCATGATAAGAATCACCTGACCGGCCTGGTGATTCCGCCGCAGCATATTTGGCAGATT CATCAGATGTGGAAGAAGGAGGGACGCAGCGATGTGCCGTGGGCGCTGGCGTTTGGCGTGCCGC CCGCAGCCATAATGGCCAGCAGCATGCCGATTCCGGATGGCGTGACCGAAGCGGGCTATGTGGGC GCGATGACCGGCAGCAGCCTGGAACTGGTGAAATGCGATACCAACGATCTGTATGTGCCGGCGAC CAGCGAAATTGTGCTGGAAGGCACCCTGAGCATTAGCGAAACCGGCCCGGAAGGCCCGTTTGGC GAAATGCATGGCTATATATTCCCAGGAGATACCCATCTGGGCGCGAAATATAAAGTGAACCGCAT TACCTATCGCAACAACGCGATTATGCCGATGAGCAGCTGCGGCCGCCTGACCGATGAAACCCATA CCATGATTGGCAGCCTGG

Fig. S8 (A) HPLC and MS analysis of the standard of (*rac*)-3. (B) HPLC and MS analysis of the synthesis of (*S*)-3 from dopamine 2 and *p*-CA 4 with strain ZMTS 1.

Fig. S9 HPLC analysis of the synthesis of (S)-14 from dopamine 2 and ferulic acid 6 with strain ZMTS 1.

Fig. S10 (A) HPLC and MS analysis of (*rac*)-15 standard. (B) HPLC and MS analysis of the synthesis of (S)-15 from dopamine 2 and caffeic acid 7 with strain ZMTS 1.

Fig. S11 HPLC analysis of the synthesis of (S)-18 from 2 and cinnamic acid 8 with strain ZMTS 5.

Fig. S12 HPLC and MS analysis of the synthesis of (S)-19 from dopamine 2 and 3-hydroxycinnamic acid 9 with strain ZMTS 5.

Fig. S13 HPLC and MS analysis of the synthesis of (*S*)-20 from dopamine 2 and 3-methylcinnamic acid 10 with strain ZMTS 5.

Fig. S14 HPLC and MS analysis of the synthesis of (*S*)-21 from dopamine 2 and 3-methoxycinnamic acid 11 with strain ZMTS 5.

Fig. S15 HPLC and MS analysis of the synthesis of (*S*)-22 from dopamine 2 and 4-methoxycinnamic acid 12 with strain ZMTS 5.

Fig. S16 HPLC and MS analysis of the synthesis of (*S*)-23 from dopamine 2 and 3,4-dimethoxycinnamic acid 13 with strain ZMTS 5.

Fig. S17 HPLC and MS analysis of the synthesis of (S)-30 from dopamine 2 and 3-fluoro-4-hydroxycinnamic acid 24 with strain ZMTS 1.

Fig. S18 HPLC and MS analysis of the synthesis of (S)-31 from dopamine 2 and 3-chloro-4-hydroxycinnamic acid 25 with strain ZMTS 1.

Fig. S19 HPLC and MS analysis of the synthesis of (S)-32 from dopamine 2 and (E)-3-bromo-4hydroxycinnamic acid 26 with strain ZMTS 1.

Fig. S20 HPLC and MS analysis of the synthesis of (*S*)-33 from dopamine 2 and 3-fluorocinnamic acid 27 with strain ZMTS 5.

Fig. S21 HPLC and MS analysis of the synthesis of (*S*)-34 from dopamine 2 and 3-chlorocinnamic acid 28 with strain ZMTS 5.

Fig. S22 HPLC and MS analysis of the synthesis of (*S*)-35 from dopamine 2 and *trans*-3-bromocinnamic acid 29 with strain ZMTS 5.

4.2 Chiral HPLC analysis

Fig. S23 Chiral HPLC analysis of the synthesis of (*rac*)-3 and (*S*)-3.

Fig. S24 Chiral HPLC analysis of the synthesis of (rac)-14 and (S)-14.

Fig. S25 Chiral HPLC analysis of the synthesis of (rac)-15 and (S)-15.

Fig. S26 Chiral HPLC analysis of the synthesis of (rac)-15 and (S)-18.

Fig. S27 Chiral HPLC analysis of the synthesis of (*rac*)-19 and (S)-19.

Fig. S28 Chiral HPLC analysis of the synthesis of (*rac*)-20 and (*S*)-20.

Fig. S29 Chiral HPLC analysis of the synthesis of (rac)-21 and (S)-21.

Fig. S30 Chiral HPLC analysis of the synthesis of (rac)-22 and (S)-22.

Fig. S31 Chiral HPLC analysis of the synthesis of (rac)-23 and (S)-23.

Fig. S32 Chiral HPLC analysis of the synthesis of (*rac*)-30 and (*S*)-30.

Fig. S33 Chiral HPLC analysis of the synthesis of (rac)-31 and (S)-31.

Fig. S34 Chiral HPLC analysis of the synthesis of (rac)-32 and (S)-32.

Fig. S35 Chiral HPLC analysis of the synthesis of (rac)-33 and (S)-33.

Fig. S36 Chiral HPLC analysis of the synthesis of (rac)-34 and (S)-34.

Fig. S37 Chiral HPLC analysis of the synthesis of (rac)-35 and (S)-35.

5. Reference

- 1. T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee and J. D. Keasling, *J. Biol. Eng.*, 2011, **5**.
- 2. M. Zhao, X. Hong, Abdullah, R. Yao and Y. Xiao, *Green Chem.*, 2021, 23, 838-847.
- Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang and R. M. Kelly, *Appl. Environ. Microbiol.*, 2015, 81, 2506-2514.
- 4. M. Zhao, Y. Tao, X. Wu and Y. Xiao, ACS Sustain. Chem. Eng., 2021, 9, 6400-6409.
- 5. H. Hu, L. Li and S. Ding, Appl. Microbiol. Biotechnol., 2014, 99, 5071-5081.
- 6. S. Panke, B. Witholt, A. Schmid and M. G. Wubbolts, *Appl. Environ. Microbiol.* 1998, 64, 2032-2043.
- M. Oelschlägel, J. A. D. Gröning, D. Tischler, S. R. Kaschabek and M. Schlömann, *Appl. Environ. Microbiol.*, 2012, 78, 4330-4337.
- B. R. Lichman, E. D. Lamming, T. Pesnot, J. M. Smith, H. C. Hailes and J. M. Ward, *Green Chem.*, 2015, 17, 852-855.
- K. A. P. Payne, M. D. White, K. Fisher, B. Khara, S. S. Bailey, D. Parker, N. J. W. Rattray, D. K. Trivedi, R. Goodacre, R. Beveridge, P. Barran, S. E. J. Rigby, N. S. Scrutton, S. Hay and D. Leys, *Nature*, 2015, 522, 497-501.