## 1. Plasmid Construction

All primers are listed in Supplementary Table S1, and all constructed plasmid are listed in Table 1. For marker-free gene deletion, a series of plasmids were constructed. The vector pK18mobsacB- $\triangle$ scrB was constructed for scrB deletion. The upstream and downstream fragments (scrB-F and scrB-B, forward and backward fragments) were amplified from the *C. glutamicum* genome using primers ScrB-UF/ScrB-UR and ScrB-DF/ScrB-DR respectively. The two fragments were fused and amplified by fusion PCR with primers ScrB-UF/ScrB-DR. The fused fragment (scrB-UD) was digested with *Bam*HI and *Xba*I, and then ligated into the same digested sites of pK18mobsacB to create pK18mobsacB- $\triangle$ scrB. With a similar procedure, pK18mobsacB- $\triangle$ ptsS, and pK18mobsacB- $\triangle$ scrB $\triangle$ ptsS were also constructed. The fused fragments pK18mobsacB- $\triangle$ ptsS and pK18mobsacB- $\triangle$ scrB $\triangle$ ptsS, respectively.

The shuttle vector pEC-XK99E-*siase*- $\triangle$ *lacIq* was constructed for *siase* expression without addition of isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG). The liner fragment of was amplified from vector pEC-XK99E-*siase*2 with the primers pEC-*lacIq*-F/L, then was digested with *Spe*I and ligated itself to yield pEC-XK99E-*siase*2- $\triangle$ *lacIq*.

## 2. Strains Construction

All constructed strains are listed in Table 1.

The vector pK18*mobsacB*- $\triangle$ *scrB* was integrated into *C. glutamicum* ATCC 13032 chromosome by the first single-crossover recombination and kanamycin-resistant transformants were selected and

verified by PCR. Next, the resulting transformant was cultured in LB liquid medium for 12h, and then the cells were spread on a LB-sucrose agar plate. The *scrB*-deleted strain, denoted as IS1, was selected from the grown colonies by PCR verification using primers ScrB-UF/ScrB-DR. With a similar procedure above, the *ptsS* gene could be knocked out together using pK18*mobsacB*- $\triangle scrB \triangle ptsS$  verified by primers PtsS-UF/PtsS-DR. The *ptsS* were deleted in *C. glutamicum* ATCC 13032 step by step, generating IS5.

The shuttle vector pEC-XK99E-*siase*0, pEC-XK99E-*siase*1, pEC-XK99E-*siase*2, pEC-XK99E*siase*3, were introduced into *C. glutamicum* ATCC13032, yielding IS3, IS4, IS6 and IS7, respectively. The transformant IS3 was obtained by introducing the plasmid pEC-XK99E-*siase*0 into IS1. The transformant IS4 was obtained by introducing the plasmid pEC-XK99E-*siase*1 into IS1. The transformant IS6 was obtained by introducing the plasmid pEC-XK99E-*siase*2 into IS5. The transformant IS7 was obtained by introducing the plasmid pEC-XK99E-*siase*3 into IS5. The transformant IS7 was obtained by introducing the plasmid pEC-XK99E-*siase*3 into IS5. The transformant IS8 was obtained by introducing the plasmid pEC-XK99E-*siase*3 into IS5.

| Primer name                   | Sequence (5'-3') *                                      |  |  |
|-------------------------------|---------------------------------------------------------|--|--|
| $\triangle scrB$ construction |                                                         |  |  |
| ScrB-UF                       | GC <u>GGATCC</u> CTGGGCCAATGGCGATGAAT (BamHI)           |  |  |
| ScrB-UR                       | AGGAAAGTAGTGTGTGGGGGCTATCATAAAAAGGGTCTTTTG              |  |  |
|                               | Т                                                       |  |  |
| ScrB-DF                       | ACAAAAGACCCTTTTTTATGATAGCCCCACACACTACTTTCCT             |  |  |
| ScrB-UR                       | TCTAGAGCGCAGGGGTATGACGCTT (XbaI)                        |  |  |
| riangle ptsS construction     |                                                         |  |  |
| PtsS-UF                       | GGATCCGACGGTAACCCACCGCAGCTTCACT(BamHI)                  |  |  |
| PtsS-UR                       | CCCGGTTAAGGAGAAATTCAAGTTGAAACCTTGAGTGTTC                |  |  |
| PtsS-DF                       | GAACACTCAAGGTTTCAACTTGAATTTCTCCTTAACCGGG                |  |  |
| PtsS-DR                       | TCTAGATTTCACACCCCATTACCGCGAT(XbaI)                      |  |  |
| $\triangle$ lacq construction |                                                         |  |  |
| Lacq-F                        | CG <u>ACTAGT</u> GAGCGCAACGCAATTAATGTGAGTT (Spel)       |  |  |
| Lacq-R                        | ACTAGT ATTCACCACCCTGAATTGACTCTC (Spel)                  |  |  |
| siase0                        |                                                         |  |  |
| F0-                           | CG <u>GAATTC</u> CGCAACGAATATACAAAAGTCCGCTGATTTTCCC     |  |  |
|                               | AT (EcoRI)                                              |  |  |
| R0-                           | GGTCGACGTTCAGCTTATAGATCCCGGCTTGCCACGGAGC(Sal            |  |  |
|                               | I)                                                      |  |  |
| siase1                        |                                                         |  |  |
| F1                            | CG <u>GAATTC</u> ATGTTTCTTAATGGATTTAAG( <i>EcoR</i> I)  |  |  |
| R1                            | G <u>GTCGAC</u> GTTCAGCTTATAGATCCCGGCTTGCCACGGAGC(Sal   |  |  |
|                               | I)                                                      |  |  |
| siase2                        |                                                         |  |  |
| F2                            | CG <u>ATATC</u> TGAGCTGTTGACAATTAATCAT ( <i>EcoR</i> V) |  |  |
| R2                            | TCTAGACAAAAAAGGGCATCCGTCAGGAT_(XbaI)                    |  |  |
| siase3                        |                                                         |  |  |
| F3                            | CG <u>ATATC</u> TGAGCTGTTGACAATTAATCAT ( <i>EcoR</i> V) |  |  |
| R3                            | TCTAGACAAAAAAGGGCATCCGTCAGGAT (XbaI)                    |  |  |

 Table S1. Primers used in this study

\*Restriction sites are underlined, and the restriction enzymes are indicated in parentheses.

**Table S2.** Comparison of the costs from different substrates for isomaltulose production by different engineered food-grade strains and purity. The cost of feedstocks for producing one ton of isomaltulose was calculated based on the current market prices and the reported conversion rate of sucrose.

| Studing             | Substrate cost (yuan/ton | Isomaltulose | Isomaltulose | References    |
|---------------------|--------------------------|--------------|--------------|---------------|
| Strains             | isomaltulose)            | Yield (g/g)  | purity (%)   |               |
| Lactococcus lactis  | Sucrose; 12,500          | 0.72         | < 90         | 30            |
| Saccharomyces       | Sucrose; > 20,000        | 0.07         | < 10         | 49            |
| cerevisiae          |                          |              |              |               |
| Yarrowia lipolytica | Sucrose; 8,646           | 0.96         | 97.8         | 44            |
| Bacillus subtilis   | PCM; 3,800               | 0.92         | < 92.4       | 16            |
| Yarrowia lipolytica | PCM; 3,600               | 0.96         | 97.4         | 13            |
| Yarrowia lipolytica | PBM; 2,700               | 0.94         | 85.8         | 14            |
| Corynebacterium     | UCM; 1,646               | 0.97         | 98%          | In this study |
| glutamicum          |                          |              |              |               |
| Corynebacterium     | UBM; 1,916               | 0.97         | 98%          | In this study |
| glutamicum          |                          |              |              |               |



**Figure S1.** Secretory expression of sucrose isomerase in *C. gluctamicum*. (A) Siagram of extracellular isomaltulose conversion. Slase, sucrose isomerase; SecYEGDF/YajC/SecA, proteins involving SEC secretion pathway; TatABC, proteins involving TAT secretion pathway. (B) SDS-PAGE of the expression of sucrose isomerase. IS2 strain, *C.glutamicum* carrying pEC-XK99E-*siase* 0 vector without native signal peptide; IS3, *C.glutamicum* carrying pEC-XK99E-*siase* 1 vector with native signal peptide; IS5, *C.glutamicum* carrying pEC-XK99E-*siase* 2 vector with cgR-2070 signal peptide through Sec pathway; IS6, *C.glutamicum* carrying pEC-XK99E-*siase* 3 vector with cgR-

0949 signal peptide through Tat pathway. Samples were collected after cultured in shake flasks for 48 h at 30°C, 200 rpm and pH 7.0.



**Figure S2.** The activity of PtsS, ScrB and SIase in different strains. The strains grown on the CGXII medium at 30°C, 180 rpm for 48 h. The amount of enzyme producing 1umol/min of production was defined as one unit of enzyme activity (U). The symbol (a) was the difference (p < 0.05) in SIase activity between two groups; n.s. meant no statistic difference.



**Figure S3.** Metabolic profiles of the strains IS5, IS6 and IS7. The strains were cultured in CGXIIY medium with 50 g/L glucose and 50 g/L sucrose at 30°C and 180 rpm in 300 mL flasks with a final culture volume of 60 mL. A: The fermentation characteristics of IS5; B: the fermentation characteristics of IS6; C: the fermentation characteristics of IS7.