Supplementary information

Matching emerging formic acid synthesis processes with application requirements

Barbara Thijs,^a Jan Rongé^a and Johan A. Martens*^a

Fig. S1 : Top : Conductivity of two types of proton exchange solid state electrolyte ('PE-SSE') resin beads saturated either with liquid water, concentrated formic acid or after equilibration with a humid N₂ gas flow at a relative humidity of 100% at room temperature. A 5 mm thick layer of resin beads was pressed between two stainless steel plates and the resistance was determined from Nyquist plots obtained with potentiostatic electrochemical impedance spectroscopy (pEIS ; OV). Bottom : Nyquist plots for Amberlyst 15 (H) PE-SSE resin beads.

Fig. S2: Resistance measurements (**top**) and cyclic voltammetry (CV) measurements (**bottom**) for a threecompartment electrolyser for CO₂ reduction to formic acid at different humidity conditions. The membrane electrode assembly consisted of a Pt on C-cloth anode, a PEM (Nafion 117), SSE resin (Amberlyst-15H ; 3 mm thick layer), AEM (Fumasep FAD-PET-75) and Sn/Cu cathode coated with Pention D35 ionomer. In the middle compartment, either a liquid water flow or a humid gas flow was used. **Top** : The resistance was measured with potentiostatic electrochemical impedance spectroscopy (pEIS ; 0V) after exposing the MEA to the operating conditions until an equilibrium value was reached for the resistance, which is depicted here. **Bottom** : The CV curves were measured at equilibrium at a scan rate of 5 mV/s.

Table S1 : additional information for the determination of the round-trip efficiencies for variousenergy storage media. Transport is not taken into account.

	Li-ion battery	Pumped hydro	Hydrogen *1		Methane *2	Ammonia * ³	Formic acid *4
			Compressed (350 - 700 bar)	Liquefied	Compressed	Liquefied	
Energy to fuel (kWh/kg)			50 – 55				2.6 - 5.7
Fuel processing (kWh/kg)			2 – 6	7 - 13			2.3 - 9.6
Energy content (LHV)			33.3			5.2	1.72
Conversion efficiency (%)			55 - 64	49 - 58		43 - 52	11 - 35
Reconversion efficiency (%)			50 - 70			45	45
Round-trip efficiency (%)	80 – 95	70 – 80	34 - 45	25 - 41	30 - 38	19 - 23	5 - 16

*1: Hydrogen

Assuming H_2 formation from renewable energy with a PEM electrolyser with an energy efficiency of ca.70%,¹ followed by compression or liquefaction² and reconversion to energy in a hydrogen fuel cell with an energy efficiency of 50-70%.³

*2 : Methane

Assuming H_2 formation from renewable energy by an electrolyser, catalytic CO_2 methanation by the Sabatier-Senderens reaction and compression to 80 bar.⁴

*3 : Ammonia

Assuming one kg of ammonia production requires 9–15 kWh of energy.⁵ For reconversion, ammonia is cracked into high-purity hydrogen, compressed and used in a PEMFC.⁵

*4 : Formic acid

Assuming electrochemical production of formic acid from CO₂ and H₂O in a CO₂ electrolyzer. Post-processing is done by distillation and reconversion to energy by reforming of formic acid to H₂ followed by a H₂ fuel cell ("HYFORM-PEMFC", as described by Ma *et al.*⁶). Fuel processing of formic acid refers to the concentration process. A feed concentration of 10 wt.% is assumed, which requires 2.3-9.6 kWh/kg depending on the concentration method, as derived from Ramdin *et al.* (Fig. S4 from ⁷), calculated from given operational cost in \$/kg, assuming energy cost is biggest contributor to the operating costs with an electricity price of 50 \$/MWh.⁷

References

- 1 W. Colella, B. James, J. Moron, G. Saur and T. Ramsden, *Techno-economic Analysis of PEM Electrolysis for Hydrogen Production*, 2014.
- 2 U.S Department Of Energy, *Hydrogen and Fuel Cells Program: Hydrogen Storage*, 2009, vol. 25.
- 3 M. Handwerker, J. Wellnitz and H. Marzbani, *Hydrogen*, 2021, **2**, 76–100.
- 4 M. Sterner, M. Jentsch and U. Holzhammer, *Fraunhofer Inst. für Wind. und Energiesystemtechnik*, 2011, 18.
- 5 S. Giddey, S. P. S. Badwal, C. Munnings and M. Dolan, *ACS Sustain. Chem. Eng.*, 2017, **5**, 10231–10239.
- 6 Z. Ma, U. Legrand, E. Pahija, J. R. Tavares and D. C. Boffito, *Ind. Eng. Chem. Res.*, 2021, **60**, 803–815.
- 7 M. Ramdin, A. R. T. Morrison, M. De Groen, R. Van Haperen, R. De Kler, L. J. P. Van Den Broeke, J. P. Martin Trusler, W. De Jong and T. J. H. Vlugt, *Ind. Eng. Chem. Res.*, 2019, 58, 1834–1847.