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Here we carry out two different experiments, “uniformity of multiple time
scale” and “autocorrelation function”, to test the temporal dependence of our
observed RFCE changes. Both methods have been used in spatial and temporal
analyses in astrophysics.1,2 In sight of these two experiments, we discuss the
evidence of the significant changes of the RFCEs of H1, H2, and H3 and no
significant changes of the RFCEs of L1 or L2.

Uniformity of Multiple Time Scales
Given a n-length time sequence s1, s2, ..., sn, let sb denote the mean value of

the data in the bth bin, where bins are separated in fixed time scales. These b
mean values have the mean value of sb. Note that sb is also the mean value s
of the original time sequence si. Then we compute the standard deviation δ of
the b bin mean values, weighted by the number of data points (w) in each bin,
as

δ =

√√√√ ∑b
i=1 wi

(
∑b
i=1 wi)

2 −
∑b
i=1 w

2
i

b∑
i=1

wi(si − s)2. (1)

The δ value describes the dispersion of the b bin mean values when a fixed bin
width is given. We then estimate the standard deviation of δ using a bootstrap-
ping method. Our procedure is as follows: for each data point in the signal
sequence, we have an estimate of si and an uncertainty σi (standard error). In
each bootstrap trial, we generate a random realization of the signal sequence
by drawing a set of random values for each data point from their Gaussian
distributions with mean si and standard deviation σi. We then compute the
dispersion of the bin mean values δ for this random realization. We repeat this
procedure 1,000 times, thereby deriving a sample of 1,000 values for δ. We take
the mean and standard deviation of these 1,000 realizations as our central value
〈δ〉 and 1σ uncertainty σδ. Here, the angle brackets 〈·〉 denote averaging over
the realizations. To compare with, we also generate an artificial noise array,
i.e., a random time sequence with normal distribution (mean = 0, standard de-
viation = σi) at each time point, and apply the same bootstrapping method to
compute 〈δ〉 and σδ as described above. At a given bin width (i.e., time scale),
if the δ value of the signal sequence significantly deviates (at 1σ level here) from
that of the zero-averaged noise sequence, the signal sequence is detected to have
intrinsic temporal variabilities distinguishable from the noise sequence.
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Figure 1: Relation between the dispersion of bin mean values (δ) and bin width
(time scale). Red dots and error bars are δ values of the signal sequences (i.e.,
RFCE changes) and their 1σ errors. Blue bands are the 1σ ranges of δ of
zero-averaged noise sequences.

We illustrate the relation between δ and bin width (time scale) for both the
signal sequences (i.e., RFCE changes of the Faraday cups) and the generated
noise sequences in Figure 1. It clearly shows that H1 has the strongest trend of
varying RFCEs, and that the signal points of H2 are all above the 1σ band of
the noise, while H3 only shows small-scale variabilities. In contrast, the δ values
of L1 and L2 are overwhelmed by the blue noise bands in general, implying that
their RFCEs do not show significant changes and are uniform of both small and
large time scales.
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Figure 2: Relation between the autocorrelation function (ξ) of time sequences
and time lag. Black dots and error bars are ξ values of the signal sequences
(i.e., RFCE changes) and their 1σ errors. Blue bands are the 1σ ranges of ξ of
zero-averaged noise sequences.

Autocorrelation Function
Autocorrelation function is another method to describe the intrinsic vari-

ability of a time sequence, defined as

ξ(k) =

∑n−k
i=1 (si − s)(si+k − s)∑n

i=1(si − s)2
. (2)

The autocorrelation function of a time sequence reflects the correlation of all
pairs of data points with a given time lag k, i.e., its periodicity (for detailed
discussion, see this webpage). Even if our time sequence is not periodical, non-
zero autocorrelation function can reveal some fine-structure correlations, which
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is an indication of intrinsic temporal variability. In practice, we apply the same
bootstrapping method as described above to calculate 〈ξ〉 and σξ values of the
original signal sequences and artificially generated noise sequences.

We illustrate the relation between ξ and time lag for both signal and noise
sequences in Figure 2. Only H1 and H2 show significant correlations (i.e., tem-
poral variabilities) at small time lags (k < 5 days), while all the others act
similarly like noise.
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Figure 3. Flow chart of the calculation method used in this study (described in section 4
 and 5.2 in the main text).
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