SUPPLEMENTARY MATERIAL

Determination of mercury (thimerosal) in vaccines using different oxidants and cold vapor atomic fluorescence spectrometry in dilute acids

Maria Janaína de Oliveira, Francisco Antônio S. Cunha, and Josué C. Caldas Santos⊠

Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, 57072-900, Maceió, Alagoas, Brazil.

[™]Corresponding author (JCCS): E-mail address: josue@iqb.ufal.br or jcarinhanha@yahoo.com.br Phone: +55 82 3214-1347

AUTHORS ORCID:

JCCS: <u>https://orcid.org/0000-0002-9525-5123</u> MJO: <u>https://orcid.org/0000-0001-7913-7728</u> FASC: <u>https://orcid.org/0000-0002-1247-1008</u>

Tables

Table S1. Instrumental parameters were used to determine total Hg by CV AFS.

Parameter	Value
Measurement mode (a. u.)	Peak height
Wavelength (nm)	253.7
Delay time (s)	15
Analysis time (s)	40
Memory wash time (s)	60
Gain	10
Reducer solution SnCl ₂ (mM)	90
Carrier gas - Argon UHP 99.999% (mL min ⁻¹)	250
Dryer gas – Synthetic air 99.999% (mL min ⁻¹)	2500
Carrier solution (mL min ⁻¹)	9.0
Sample solution (mL min ⁻¹)	9.0
SnCl ₂ solution (mL min ⁻¹)	4.5

Table S2. Heating program for closed system digestion of vaccine samples by microwave radiation.

Step	Time (min)	Power (W)	Temperature (ºC)
I	15 [*]	700	RT - 130
11	20**	700	130
111	15*	1000	130 - 180
IV	20**	1000	180

RT = room temperature // *Ramp time // **Hold time

Table S3. Analyzed vaccine sample characteristics and the respective TH concentrations declared by the manufacturer.

N⁰	Sample	TH declared (mg L ⁻¹)
1	Hepatite B: Hepatitis B Vaccine (Recombinant)	100
2	Td: Tetanus-diphtheria adsorbed vaccine.	100
3	DTP/Hib/HB: Diphtheria-tetanus-pertussis/Hemophilus influenzae type b conjugate and Hepatitis B vaccine	50
4	Influenza: Influenza vaccine (fragmented, inactivated)	4
5	Triple viral: measles, mumps, and rubella vaccine.	absent

Table S4. Residual acidity of digested TH solutions using the microwave in a closed system. The results refer to the analysis of 100 µL of the analytical blank in front of the different compositions (n = 3).

Condition	Volume HNO ₃ /H ₂ O ₂ (mL)	Residual acidity (M)
1	8/0	6.23 ± 0.30
2	7/1	5.90 ± 0.05
3	6 / 2	3.38 ± 0.09
4	5/3	3.02 ± 0.10

Table S5. Acid concentration (HCl and HNO₃) influences the oxidizing systems (KBr / KBrO₃ and KMnO₄) regarding oxidation efficiency TH to Hgino. Experimental condition: SnCl₂ 90 mM (reducer solution) and HCl 2.40 M or HNO₃ 1 M (carrier solution) (n = 3).

Condition	Acid	Concentration (M)	System	**Oxidation efficiency (%)
1	HCI	0.2 - 0.8		75 - 105
2	HNO ₃	0.06 - 0.7	$KBI / KBIO_3$	66 - 95
3	HCI*	0.6	//M=0	98 ± 4
4	HNO ₃	0.06 - 0.7	KIVITIO4	10 - 22

^{*}For [HCI] < 0.2 M, there was no oxidation of TH to Hg_{ino.} ^{**}Calculated based on the reference method procedure (microwave digestion).

Table S6. ANOVA for the linear model was obtained b	y the pro	posed method	(systems 1	and 2).
---	-----------	--------------	------------	---------

System	Source	aSS	^b DF	^c MS	F	
	Model	5783990.0	1	5783990	1509.6337	
KBr / KBrO₃	Residual	84290.5	22	3831.4		
	Lack of Fit	15001.9	6	2500.3	0.5774	
	Pure error	69288.6	16	4330.5		
	Model	2574890.0	1	2574890	1961.9962	
KMac	Residual	20998.1	16	1312.4		
KMnO4	Lack of Fit	939.6	4	234.9	0.1405	
	Pure error	20058.5	12	1671.5		
SS: Sum of squares; ^b DF: Degrees of freedom; ^c MS: Mean squares.						

System 1: *F*_{cal} (1509.6337) > F_{crit} (4.301) // System 2: *F*_{calc} (1961.9962) > F_{crit} (4.494).

Table 37. Analytical characteristics of underent methodologies for determining in invaccines concerning the proposed meth	Table S7. A	nalytical characteristics	of different methodol	ogies for determining	TH in vaccines concerning	g the pro-	posed metho
--	-------------	---------------------------	-----------------------	-----------------------	---------------------------	------------	-------------

^a Analytical technique	Sample preparation	^b Vaccine type analyzed (analyzed quantity)	Sample volume (μL)	RSD (%)	LOD (µg L ⁻¹)	Recovery (%)	Reference
ELCAD - AES	Dilution	Hepatitis B (1)	200	< 5.00	25	c	[1]
ICP OES	Addition of formic acid and photochemical vapor generation	Anti-rabies (3), Td (1), Hepatitis B (1), and influenza (2)	500	2.90	0.30	93 - 102	[2]
DBD-PIV-AFS	Dielectric barrier discharge-plasma induced	Anti-rabies (1), Td (1), and Hepatitis B (3)	с_	2.50	0.03	94.3 - 100	[3]
PVG-DBD-OES	Addition of formic acid and photochemical vapor generation	Anti-rabies (1), Hepatitis B (3), and Influenza (2)	c	0.99	0.17	c_	[4]
DP AdSV Hg(Ag)FE	Sonication	D (1), d (1), Td (1) and DTP (1),	40	2.20	0.36	99 - 105	[5]
CV AFS	Oxidation with $FeCl_3$	Anti-rabies (4) and Hepatitis B (1)	с <u>–</u>	2.80	0.02	96- 103.4	[6]
SWV	Photo-degradation (UV)	Influenza (2)	100	3.20	340	91.9 - 92.4	[7]
	Oxidation with KBr/KBrO ₃	Td (1), DTP/Hib/HB (1), Hepatitis B (1), Influenza (1) and Triple viral (1)	100	3.14	0.02	80.1 - 106.0	- This work
CV AFS	Oxidation with KMnO ₄	dT (1), DTP/Hib/HB (1), Hepatitis B (1), Influenza (1) and Triple viral (1)	100	4.59	0.02	92.5 - 101.1	THIS WOFK

^aTechniques: ELCAD-AES: Electrolyte cathode glow discharge atomic emission spectrometry; ICP OES: Inductively coupled plasma optical emission spectrometry; CV AAS: Cold vapor atomic absorption spectrophotometry; DBD-PIV-AFS: Dielectric barrier discharge using plasma-induced vaporization coupled atomic fluorescence spectrometry; PVG-DBD-OES: Photochemical vapor generation using dielectric barrier discharge coupled to optical emission spectrometry; DP AdSV Hg(Ag)FE: Differential pulse adsorptive stripping voltammetry using a renewable mercury film electrode; CV AFS: Cold vapor atomic fluorescence spectrometry; SWV: Squarewave voltammetry. ^bType of vaccine: Td = Tetanus-diphtheria adsorbed vaccine; D = Diphtheria adsorbed pediatric vaccine; d = Diphtheria adsorbed vaccine for teenagers and adults; DTP = Diphtheria-tetanus-pertussis adsorbed vaccine.; DTP/Hib/HB = Diphtheria-tetanuspertussis/Haemophilus influenzae type b conjugate and Hepatitis B vaccine. ^cUninformed. Table S8. General comparison of the parameters obtained for systems 1 and 2 and microwave-assisted digestion.

Developmenter		Oxidizing system		Microwave-assisted digestion	
Parameters	Unit	KBr/KBrO ₃ KMnO ₄		(reference method)	
Sample					
Vaccine volume	μL	100	100	500	
Reagents					
Concentration system					
TH solution	µg L⁻¹	20	20	20	
Complexing/oxidizing	mM	2/0.34	1.2	-	
HCI	М	0.6	0.6	-	
HNO ₃	М	0.2	0.2	14	
H ₂ O ₂	m/m (%)	-	-	30	
Ascorbic acid volume	μL	20	200	20	
Reaction time	min	5	5	70	
Cold vapor generation					
Solution Concentration					
Carrier HCI	М	2.4	2.4		
Carrier HNO ₃	М	-	-	1	
Reductant SnCl ₂	mM	90	90	90	

References (Table S7)

- 1 R. Shekhar, D. Karunasagar, K. Dash and M. Ranjit, J. Anal. At. Spectrom., 2010, 25, 875–879.
- 2 E. J. Santos, A. B. Herrmann, A. B. Santos, L. M. Baika, C. S. Sato, L. Tormen, R. E. Sturgeon and A. J. Curtius, J. Anal. At. Spectrom., 2010, 25, 1627–1632.
- 3 Q. Wu, Z. Zhu, Z. Liu, H. Zheng, S. Hu, and L. Li, J. Anal. At. Spectrom., 2012, 27, 496–500.
- 4 H. He, Z. Zhu, H. Zheng, Q. Xiao, L. Jin, and S. Hu, *Microchem. J.*, 2012, 104, 7–11.
- 5 R. Piech, J. Wymazała, J. Smajdor and B. Paczosa-Bator, Anal. Methods, 2016, 8, 1187–1193.
- 6 Q. Xu, Z. Wang, L. Jin, P. Liu, Y. Tian, S. Zhang, and C. Zhang, Anal. Methods, 2018, 10, 2144–2150.
- 7 M. J. Pedrozo-Penafiel, J. R. Miranda-Andrades, L. M. Gutierrez-Beleño, D. G. Larrudé and R. Q. Aucelio, Talanta, 2020, 215, 120938.

Figures

Fig. S1. Analytical signal comparison after microwave digestion of TH (20 μ g L⁻¹) using different oxidizing mixture compositions (HNO₃ / H₂O₂) (n = 3).

Fig. S2. Analytical signals evaluation using oxidizing systems (1 and 2) and sonication to determine total mercury in different standard solutions content mercury species and determination of TH in vaccines. In all systems assessed, the total mercury content concentration was adjusted to 15 μ g L⁻¹ (*n* = 3), except for the black solutions.

Fig S3. The sensitivity of the proposed method using different mercury species (Hg(II) and TH) (n = 3).