Supplementary Material: Isotope analysis of iron on structural materials of nuclear power plant using double-pulse laser ablation molecular isotopic spectrometry

Sung-Uk Choi¹, Sol-Chan Han¹, Jun-Yeop Lee², and Jong-Il Yun^{1*}

¹Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ²School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

S-1. Chemical composition of structural materials

Stainless steel 304 (wt%)		Inconel 690 (wt%)		Portland cement (wt%)		
Fe	70.9	Ni	60.4	CaO	64.6	
Cr	18.2	Cr	31.0	SiO ₂	21.3	
Ni	8.5	Fe	7.0	Al ₂ O ₃	5.6	
Mn	1.8	Cu	0.5	Fe ₂ O ₃	3.4	
Si	0.6	Mn	0.5	MgO	2.1	
Ν	0.05	Cu	0.5	SO ₃	2.1	
С	0.05	С	0.05	N ₂ O	0.05	
S	0.01	Si	0.02			
Р	0.03					

Table S-1. Chemical Composition of Utilized Specimens

S-2. Optimized measurement condition according to matrix

The optimized measurement conditions (see Table S-2) were determined by considering the result of Figure S-1.

Figure S-1. Signal to noise ratio (SNR) of iron oxide emission as a function of (a) total energy, (b) inter-pulse delay, and (c) gate delay according to the matrix

Table S-2. Optimized Measurement Conditions for Surface Detection of Each matrix

	Total energy (mJ)	Inter-pulse delay (µs)	Gate delay (µs)	Gate width (µs)
SS304	180	4	4	100
Inconel	165	4	4	100
Cement	180	5	4	100

S-3. Methods of plasma characterization

Under the local thermal equilibrium (LTE) condition, plasma temperature (T) could be determined by Boltzmann plot method with below equation (1)^{S-1}.

$$\ln\left(\frac{I_{mn}\lambda_{mn}}{A_{ki}g_m}\right) = -\frac{E_m}{k_BT} + \ln\left(\frac{hcn_0(T)}{4\pi Z(T)}\right) (1)$$

 I_{mn} : Line intensity of transition from upper level *m* to lower lever *n*

 λ_{mn} : Wavelength of the transition

A_{mn}: Spontaneous emission probability

 g_m : Statistic weight of the upper level m

 E_m : Energy of the upper level m

k_B: Boltzmann constant

h: Planck constants

 $n_0(T)$: Number density

Z(T): Partition function

Table S-3. Utilized Spectral Parameters of Iron Atomic Emission^{S-1}

$\lambda_{mn}(nm)$	E_m (cm ⁻¹)	g_m	$A_{mn} (\mathrm{x10^8 \ s^{-1}})$
371.9	26875	11	0.163
373.5	33695	11	0.902
374.6	27395	7	0.115
375.8	34329	7	0.634
376.4	34547	5	0.540

Plasma electron density could be obtained using Stark broadening effect of Fe I (541.4 nm) with the below equation $(2)^{S-2}$.

$$\Delta \lambda_{S}^{Fe} = 0.3612 \frac{N_{e}}{10^{23}} \left(\frac{T}{13000}\right)^{1.6551} (2)$$

 $\Delta \lambda_{S}^{Fe}$: Linewidth of iron atomic line (541.4 nm) N_e : electron density [m⁻³]

References

(S-1) Rifai, K.; Laville, S.; Vidal, F.; Sabsabi, M.; Chaker, M. Quantitative analysis of metallic traces in waterbased liquids by UV-IR double-pulse laser-induced breakdown spectroscopy. *J. Anal. At. Spectrom.* 2012, 27(2), 276-283.

(S-2) Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F. Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process. *J. Phys. D: Appl. Phys.* 2010, 43(43), 434005.