Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

LA-ICP-MS using a nitrogen plasma source

Christoph Neff, Pascal Becker, Bodo Hattendorf*, Detlef Günther*

Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland

*corresponding authors: detlef.guenther@sl.ethz.ch, bodo@inorg.chem.ethz.ch

LA-(Ar-ICP)-MS experiments were performed using an Agilent 7500cs (Agilent, USA). NIST SRM 612 was quantified using NIST SRM 610 as external standard and ⁴⁴Ca⁺ was used as internal standard. For each LA-(Ar-ICP)-MS measurement, 30 s of gas blank were acquired followed by 50 s of ablation. LA-(Ar-ICP)-MS operating conditions were applied according to **Table S1**.

 Table S1 LA-(Ar-ICP)-MS operating conditions.

Laser fluence	15-20 J/cm ²
Laser repetition rate	10 Hz
Laser spot diameter	60 µm
Ablation mode	Hole-drilling (bulk analysis)
Ablation gas flow (He)	0.95 L/min
Carrier gas flow (Ar)	0.65 L/min
Auxiliary gas flow (Ar)	0.92 L/min
Cooling gas flow (Ar)	15.2 L/min
Plasma power	1400 W
Sampler cone	1.0 mm Ø, Pt
Skimmer cone	0.3 mm Ø, Pt

Unknown gas blank species. Four unknown species were detected in the dry (N₂-ICP)-MS gas blank at m/z 80, 82, 108, 110. The mass difference of 28 indicated that the species at 108 and 110 m/z are likely caused by $^{14}N_2$ adducts from the species at 80 and 82 m/z. Similar intensity ratios for of [80]/[82] (2.4) and [108]/[110] (2.2) suggest a similar reactivity with N₂. Therefore, the origin of the species at 80 and 82 m/z was further investigated. These signals cannot be explained by the species ⁸⁰Kr⁺/⁸²Kr⁺ or ⁸⁰Se⁺/⁸²Se⁺, as they did not fit the isotopic abundance of these elements. Oxides, nitrides and doubly charged ions such as ⁶⁴Zn¹⁶O⁺/⁶⁶Zn¹⁶O⁺, ${}^{66}Zn^{14}N^{+}/{}^{68}Zn^{14}N^{+}$, ${}^{66}Zn^{14}N^{+}/{}^{66}Zn^{16}O^{+}$, ${}^{160}Gd^{2+}$, ${}^{160}Dy^{2+}$, or ${}^{164}Er^{2+}$ were also excluded, as they did not match with the isotopic abundance of these elements and as Zn⁺, Gd⁺, Dy⁺, and Er⁺ were not detected in the gas blank. Other polyatomic species such as ⁷⁹Br¹H⁺/⁸¹Br¹H⁺ or $^{12}C^{16}O_2^{35}Cl^1H^+/l^2C^{16}O_2^{37}Cl^1H^+$ (HCl+CO₂) were also excluded as Br⁺ and Cl⁺ were not detected in combinations of ${}^{40}\text{Ar}_2^{+}/{}^{40}\text{Ar}^{14}\text{N}_3^{+}$, ${}^{12}\text{C}_2{}^{14}\text{N}_4^{+}/{}^{12}\text{C}^{14}\text{N}_5^{+}$, the gas blank. The and 63 Cu¹⁶O¹H⁺/ 65 Cu¹⁶O¹H⁺ were examined by ablating pure copper (> 99.9%), graphite (pencil lead, Farber-Castell, Germany), and by adding 0.1 L/min Ar gas (99.996%, PanGas AG, Switzerland) to the dry (N₂-ICP)-MS gas blank (**Figure S1b-d**). The intensities of the signals at 80 and 82 m/z did not change, indicating that Ar, C, and Cu were not part of these species. Therefore, an assignment of the species at 80, 82, 108, 110 m/z cannot be given.

In addition, these experiments revealed the formation of other cluster species. The ablation of copper formed ${}^{63}Cu^{14}N_2^+$ and ${}^{65}Cu^{14}N_2^+$ clusters and to a lower extent ${}^{63}Cu^{14}N^+$ and ${}^{65}Cu^{14}N^+$. The ablation of graphite intensified the signals for 40 and 44 m/z indicating the formation of ${}^{12}C^{14}N_2^+$, ${}^{12}C^{16}O_2^+$, ${}^{14}N_2^{16}O^+$ and/or residues of Ca in the graphite pencil lead. Adding 0.1 L/min of Ar to the carrier gas intensified the ${}^{36,38,40}Ar^+$ signals and also ${}^{40}Ar^{14}N^+$ and ${}^{40}Ar^{14}N_2^+$.

Figure S1 a) N_2 from a 50 L gas bottle (99.995%), b) adding 0.1 L/min Ar, c) ablation of copper, and d) ablation of graphite compared to the gas blank spectrum of (N_2 -ICP)-MS using N_2 from a liquid N_2 Dewar (> 99.99%).

lsotope	Bg corr signal	Background	Sensitivity	LOD
	[cps]	[cps]	[cps/(mg/kg)]	[mg/kg]
⁴⁰ Ca	52'000'000	56'000	600	3
⁴² Ca	110'000	1'170'000	1.4	13000
⁴³ Ca	64'000	12'100	0.8	500
⁴⁴ Ca	1'010'000	450	12	6
⁵² Cr	147'000	6	400	0.02
⁵³ Cr	17'600	3	40	0.2
⁵⁶ Fe	181'000	6′500	400	0.8
⁵⁷ Fe	4'200	90	9	3
⁷⁷ Se	900	7	6	1
⁷⁸ Se	2'400	2	17	0.3
⁸⁰ Se	5'300	5′300	40	6
⁸² Se	1'100	2'200	8	22
¹²⁵ Te	5'500	1	18	0.2
¹²⁶ Te	14'600	2	50	0.1
¹²⁸ Te	25'000	4	80	0.09

Table S2 NIST SRM 610 analyzed with LA-(N_2 -ICP)-MS. Figures of merit for selected isotopes of Ca, Cr, Fe, Se, and Te.

Table S3 Figures of merit for 64 elements in NIST SRM 610 analyzed with LA-(N₂-ICP)-MS. For isotopes where an average background signal of 0 cps was measured one data point with 100 cps (1 count, 10 ms dwell time) was added to calculate the LOD according to Longerich et al.¹ These LODs were marked with an asterisk and were in good agreement with other LA-(N₂-ICP)-MS measurements of NIST SRM 610.

lsotope	Bg corr signal	Background	Sensitivity	LOD
	[cps]	[cps]	[cps/(mg/kg)]	[mg/kg]
⁷ Li	40'000	50	80	0.4
⁹ Be	18'000	3	40	0.2
¹¹ B	21'000	10	60	0.2
²³ Na	25'000'000	1'000	250	0.6
²⁵ Mg	9'000	0	20	0.2*
²⁷ Al	1'900'000	70	180	0.2
²⁹ Si	1'400'000	196'000	4	1'000
³⁹ K	300'000	18'700	700	0.9
⁴⁰ Ca	56'000'000	77'000	700	6
⁴⁵ Sc	240'000	6	500	0.02
⁴⁹ Ti	13'000	0	30	0.2*
⁵¹ V	210'000	5	500	0.02
⁵² Cr	150'000	3	400	0.02
⁵⁵ Mn	240'000	4	500	0.02
⁵⁶ Fe	190'000	7'400	400	1
⁵⁹ Co	110'000	3	300	0.04
⁶⁰ Ni	30'000	3	60	0.1
⁶³ Cu	59'000	50	130	0.3
⁶⁶ Zn	22'000	1	50	0.1
⁶⁹ Ga	157'000	5	400	0.02
⁷² Ge	41'000	30	90	0.2
⁷⁵ As	28'000	30	90	0.3
⁷⁸ Se	2'400	1	17	0.2
⁸⁵ Rb	300'000	30	700	0.03
⁸⁸ Sr	460'000	5	900	0.009
⁸⁹ Y	490'000	3	1'100	0.006
⁹⁰ Zr	220'000	3	500	0.01
⁹³ Nb	420'000	8	900	0.01
⁹⁵ Mo	56'000	3	140	0.06
¹⁰³ Rh	900	3	700	0.01
¹⁰⁵ Pd	200	3	190	0.04
¹⁰⁷ Ag	72'000	4	300	0.03

¹¹¹ Cd	15'000	3	60	0.1
¹¹⁵ In	390'000	20	900	0.02
¹¹⁸ Sn	80'000	1'000	190	0.7
¹²¹ Sb	89'000	10	230	0.05
¹²⁸ Te	24'000	5	80	0.1
¹³³ Cs	270'000	9	700	0.02
¹³⁷ Ba	43'000	2	90	0.05
¹³⁹ La	330'000	2	700	0.006
¹⁴⁰ Ce	320'000	3	700	0.008
¹⁴¹ Pr	430'000	0	1'000	0.003*
¹⁴⁶ Nd	73'000	1	170	0.02
¹⁴⁷ Sm	61'000	1	130	0.03
¹⁵³ Eu	240'000	0	500	0.006*
¹⁵⁷ Gd	76'000	1	170	0.02
¹⁵⁹ Tb	550'000	3	1'300	0.005
¹⁶³ Dy	141'000	2	300	0.01
¹⁶⁵ Ho	610'000	1	1'400	0.002
¹⁶⁶ Er	205'000	2	400	0.01
¹⁶⁹ Tm	640'000	2	1′500	0.003
¹⁷² Yb	144'000	0	300	0.01*
¹⁷⁵ Lu	640'000	1	1′500	0.002
¹⁸⁰ Hf	240'000	1	600	0.005
¹⁸¹ Та	620'000	1	1'400	0.002
^{182}W	135'000	1	300	0.01
¹⁸⁵ Re	25'000	1	500	0.006
¹⁹⁵ Pt	800	0	250	0.01*
¹⁹⁷ Au	3′800	0	160	0.02*
²⁰⁵ TI	49'000	3	800	0.007
²⁰⁸ Pb	197'000	1	500	0.009
²⁰⁹ Bi	280'000	3	700	0.008
²³² Th	420'000	1	900	0.004
²³⁸ U	430'000	0	900	0.003*

lsotope	Quantified mass fractions	Quantified mass fractions	NIST SRM 612
	with LA-(N ₂ -ICP)-MS [mg/kg]	with LA-(Ar-ICP)-MS [mg/kg]	ref. values [mg/kg]
⁷ Li	40.5 ± 1.0	40.5 ± 0.4	40.2 ± 1.3
⁹ Be	40.1 ± 1.1	40.4 ± 1.5	37.5 ± 1.5
¹¹ B	35.7 ± 1.0	34.9 ± 1.7	34.3 ± 1.7
²³ Na	104400 ± 900	102100 ± 400	101600 ± 2200
²⁵ Mg	56.3 ± 1.7	54.7 ± 1.2	68 ± 5
²⁷ Al	10740 ± 210	10750 ± 90	10740 ± 210
²⁹ Si	343000 ± 9000	336000 ± 5000	337000 ± 3000
³⁹ K	62.2 ± 0.8	59.3 ± 2.1	62.3 ± 2.4
⁵² Cr	35.92 ± 0.06	-	36.4 ± 1.5
⁵³ Cr	-	35.8 ± 1.3	36.4 ± 1.5
⁵⁵ Mn	38.6 ± 0.9	38.2 ± 0.3	38.7 ± 0.9
⁵⁶ Fe	46.3 ± 1.2	47.1 ± 0.4	51.0 ± 2.0
⁵⁹ Co	34.9 ± 0.3	34.94 ± 0.14	35.5 ± 1.0
⁶⁶ Zn	37.8 ± 1.8	36.3 ± 1.6	39.1 ± 1.7
⁷⁵ As	33.9 ± 1.3	33.0 ± 0.9	36 ± 6
⁷⁷ Se	-	19 ± 5	16.3 ± 1.9
⁷⁸ Se	18.8 ± 1.8	-	16.3 ± 1.9
⁸⁵ Rb	31.5 ± 0.4	31.5 ± 0.4	31.4 ± 0.4
¹⁰⁷ Ag	22.4 ± 0.9	21.4 ± 0.6	22.0 ± 0.3
¹¹⁵ In	37.0 ± 0.7	36.88 ± 0.17	38.9 ± 2.1
¹²⁵ Te	34.4 ± 1.0	34.4 ± 1.3	30.9
¹²⁸ Te	35.4 ± 1.3	33.8 ± 0.5	30.9
¹³³ Cs	42.1 ± 0.8	41.35 ± 0.17	42.7 ± 1.8
¹⁵⁹ Tb	36.3 ± 0.7	37.0 ± 0.6	37.6 ± 1.1
²⁰⁸ Pb	38.6 ± 0.4	37.4 ± 1.2	38.57 ± 0.20
²³² Th	36.9 ± 0.4	37.7 ± 0.6	37.79 ± 0.08
²³⁸ U	37.3 ± 0.7	37.3 ± 0.4	37.38 ± 0.08

Table S4 Quantification of selected elements in NIST SRM 612 using LA-(N_2 -ICP)-MS and LA-(Ar-ICP)-MS. The confidence intervals were calculated based on four consecutive measurements with a confidence level of 95%. The reference values were based on Jochum et al.²

Figure S2 232 Th¹⁴N⁺/ 232 Th⁺ and 232 Th¹⁶O⁺/ 232 Th⁺ ratios measured in the LA-(N₂-ICP)-MS long-term study.

References

- 1. H. P. Longerich, S. E. Jackson and D. Gunther, *Journal of Analytical Atomic Spectrometry*, 1996, **11**, 899-904.
- 2. K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Günther and J. Enzweiler, *Geostandards and Geoanalytical Research*, 2011, **35**, 397-429.