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S1. Evaluation of the alteration state of the “fake-gilded” decorations in the Maestà
S1.1 SR µ-XRD patterns

Figure S1. SR µ-XRD patterns obtained from (top) layer 3 and (bottom) layer 4 of cross-section CM1resin 
[see Figure 1e-g (main paper) for the corresponding µ-XRD maps].
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S1.2 Ag speciation analysis and µ-XRF mapping 
In agreement with the SR µ-XRD mapping results [Figure 1 (main paper)], Ag L3-edge µ-XANES 

measurements performed at selected spots of the Ag/S-rich darkened layer reveal that α-Ag2S is the 

dominant component (Figure S2a,b). To determine the nature and the relative concentration 

percentage of various Ag species, we described each Ag L3-edge μ-XANES spectrum as a linear 

combination of two Ag reference compounds. The best linear combination fitting (LCF) was obtained 

by including in the model the spectra of α-Ag2S (~70%) and either silver sulfate (Ag2SO4) or silver 

acetate (CH3COOAg).

SR µ-XRF mapping results shows the widespread presence of Cl and Pb across the paint 

stratigraphy (Figure S2c), thus supporting the identification of mimetite [Pb5(AsO4)3Cl] by SR µ-XRD 

[Figure 1f (main paper)].

Figure S2. RGB composite SR µ-XRF images of a) S-II/SVI/Ag-L and c) Cl-K/Pb-M/As-L recorded from the area shown in 
Figure 1c (main paper) [map size (v×h): 99.5.8×74.2 μm2; step size (v×h): 0.5×0.7 µm2; exp. time: 100 ms/pixel]. b) Selection 
of the Ag L3-edge µ-XANES spectra (black) recorded from the spots shown in a) and LCF results of different Ag-based 
reference compounds. In grey, the profiles of selected Ag-reference compounds are reported for comparison [see Figures 
1-3 (main paper) for further results]. 
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S1.3 ATR mode µ-FTIR spectra

Figure S3. Selection of ATR mode µ-FTIR spectra extracted from the maps of Figure 3 (main paper) with rectangles 
showing the ROIs used to map the different compounds. a) Spectrum of the ground layer with selected bands of 
gypsum (1680 cm-1) and calcite (875 cm-1);  b) spectrum extracted from layer 1 with highlighted the band of silicates 
and proteinaceous material [ν(C=O) Amide I]; c) spectrum obtained from layer 3 with the band of sulfates; d) 
spectrum extracted from layer 4 with bands selected for mapping the lipidic material [ν(C=O)ester] and lead 
carboxylates [ν(COO)-].
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S2. Orpiment-based paint mock-ups

S2.1 Unaged paints

SR µ-XRD mapping (Figure S4a,b) in combination with SR µ-XRF/µ-XANES measurements at S 

K-edge (Figure S4c,d) show that the unaged Orp mock-up is only composed of α-As2S3. No evidence 

of the presence of oxidized S-species was revealed by µ-XANES spectroscopy. 

Figure S4. a) Photomicrograph of unaged Orp(resin) cross-section 
and b) corresponding SR µ-XRD image of α-As2S3 [map size 
(v×h): 189.5×50 µm²; step size (v×h): 1.5×2 µm²; exp. time: 
1s/pixel; energy: 21 keV]. c) SR µ-XRF image of Stotal [map size 
(v×h): 84×97 µm²; step size (v×h): 1×1 µm2; exp. time: 100 
ms/pixel; energy: 3.4 keV] and d) S K-edge µ-XANES spectrum 
(black) recorded from the area shown in c), compared to that of α-
As2S3 reference compound (gray). In a), rectangles show the 
areas where maps of b,c) were recorded. In d), numbers in 
brackets indicate the spectra showing similar features to that 
reported.
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For Orp-Ag (Figure S5a), the presence of α-As2S3 and Ag0-crystals occurs along with that of few 

grains of α-Ag2S (green) (Figure S5b-f). Small abundances of sulfate-compounds are also detected 

at a single spot by S K-edge XANES (Figure S5d: pt 04S). 

Figure S5. a) Photomicrograph of unaged Orp-Ag(resin) cross-section and b) corresponding composite SR µ-
XRD maps of α-As2S3 (red), α-Ag2S (green) and Ag0 (blue) [map size (v×h): 150×50 µm²; step size (v×h): 
1.5×2 µm²; exp. time: 1s/pixel; energy: 21 keV]. c) RB composite SR µ-XRF images of (left) Stotal/Ag-L [map 
size (v×h): 117×65 µm²; step size (v×h): 0.86×1 µm2; exp. time: 100 ms/pixel; energy: 3.4 keV] ] and (right) 
Astotal /Ag-L [map size (v×h): 56.9×9.9 µm²; step size (v×h): 0.1×0.15 µm2; exp. time: 100 ms/pixel; energy: 
12 keV]. Selection of the µ-XANES spectra (black) recorded at d) S K-edge, e) Ag L3-edge and f) As K-edge 
from the spots shown in c) and compared to those of selected reference compounds. Numbers in brackets 
refer to the spectra showing similar features to those reported.
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Single point µ-Raman investigations (Figure S6a,b) corroborate the SR µ-XRD mapping results 

(Figure S5b), revealing the possible presence of a Ag2S-based phase (broad band at ca. 220 cm-1 

and signal below 150 cm-1)1 in selected darker grains of the α-As2S3/Ag0-based paint matrix. In 

addition, As2O3 was locally identified by µ-FTIR mapping measurements (band at 796 cm-1) (Figure 

S6c-e).2,3

Such results provide evidence that an in-situ degradation process of the paint has already occurred 

before artificial aging in the areas where α-As2S3 and Ag0 are in contact.

Figure S6. a,c) Photomicrographs and corresponding b) single-point µ-Raman (black) and d) ATR mode µ-FTIR mapping 
results obtained from unaged Orp-Ag(KBr) cross-section. e) FTIR spectra extracted from the As2O3-free region (grey) and 
As2O3-rich area (black) of the map shown in d). In b) one Raman spectrum is reported as example. The asterisk indicates 
Ag lattice vibrational modes of Ag2S. [1] 
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S2.2 Orp-AgUVA-vis paint: µ-Raman, Ag/As speciation investigations and SR µ-XRD patterns

In line with the SR µ-XRD and µ-FTIR mapping results [Figure 5 (main paper)], single point µ-

Raman analysis (Figure S7a,b) and Ag L3-edge/As K-edge µ-XANES investigations (Figure S7c-g: 

pts 01Ag-03Ag, pts 01As-04As) reveal that α-Ag2S and As2O3 are localized in the uppermost darkened 

areas of the Orp-AgUVA-vis paint stratigraphy. Ag0 and As2S3  remain instead the main components of 

the innermost side of the paint (Figure S7f,g: pt 04Ag; pts. 05As-11As).

Figure S7. Photomicrographs of a) Orp-AgUVA-vis (KBr) and c) Orp-AgUVA-vis (resin) cross-sections. b) µ-Raman spectrum (black) 
recorded from the spot shown in a) and compared to that of α-As2S3 reference compound (red). d) RGB composite SR µ-
XRF images of d) S-II/SVI/Ag-L [map size (v×h): 130×100 µm²; step size (v×h): 0.97×1.1 µm2; exp. time: 100 ms/pixel; ; 
energy (S-II)= 2.473 keV, energy (SVI)= 2.482 keV] and e) AsIII (∝α-As2S3) / AsIII (∝α-As2O3) [map size (v×h): 58.1×5.4 µm²; 
step size (v×h): 0.1×0.1 µm2; exp. time: 100 ms/pixel; energy (AsIII, ∝α-As2S3)= 11.870 keV, energy (AsIII, ∝α-As2O3)= 
11.8754 keV] recorded from the areas reported in c). µ-XANES spectra (black) recorded at the f) Ag L3-edge and g) As K-
edge obtained from the spots shown in d,e) and compared to those of a set of Ag/As reference compounds (gray). In f,g), 
numbers in brackets refer to the spectra showing similar features to those reported.
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Figure S8. SR µ-XRD patterns obtained from (top) the uppermost dark layer and (bottom) the yellow bulk paint of 
Orp-AgUVA-vis (KBr) (see Figure 5d (main paper) for the corresponding µ-XRD maps].
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S3. Ag0 paint mock-ups

SR µ-XRD mapping acquired from Ag and AgUVA-vis paint cross-sections (Figure S9) show in both 

cases the presence of Ag0  and AgCl (the latter present as impurity of the powder). The fact that the 

exposure to UVA-visible light did not promote the formation of α-Ag2S is in line with the smaller total 

color change of the paint surface [Table 2: ΔE=5±1 (main paper)] with respect to that of the Orp-

AgUVA-vis paint (ΔE=32±2); furthermore, it provides evidence that in Orp-Ag paint mock-ups, the main 

responsible for the formation of α-Ag2S are S2- ions arising from the degradation of As2S3. 

Figure S9. Photomicrographs of a) Ag(resin) and c) AgUVA-vis(resin) cross-sections and b,d) corresponding SR µ-XRD 
distribution of Ag0 and AgCl [Panel b): map size (v×h): 180×50 µm²; step size (v×h): 1.5×2.0 µm2; exp. time: 1 s/pixel; 
energy: 21 keV. Panel d): map size (v×h): 105×100 µm²; step size (v×h): 1.0×2.0 µm2; exp. time: 0.5 s/pixel; energy: 21 
keV].
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