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S1. Evaluation of the alteration state of the “fake-gilded” decorations in the Maesta
S$1.1 SR u-XRD patterns
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Figure S1. SR p-XRD patterns obtained from (top) layer 3 and (bottom) layer 4 of cross-section CM1sin
[see Figure 1e-g (main paper) for the corresponding u-XRD maps].



S$1.2 Ag speciation analysis and u-XRF mapping

In agreement with the SR u-XRD mapping results [Figure 1 (main paper)], Ag Ls-edge y-XANES
measurements performed at selected spots of the Ag/S-rich darkened layer reveal that a-Ag,Sis the
dominant component (Figure S2a,b). To determine the nature and the relative concentration
percentage of various Ag species, we described each Ag L;-edge p-XANES spectrum as a linear
combination of two Ag reference compounds. The best linear combination fitting (LCF) was obtained
by including in the model the spectra of a-Ag,S (~70%) and either silver sulfate (Ag,SQO,) or silver
acetate (CH;COOAg).

SR p-XRF mapping results shows the widespread presence of Cl and Pb across the paint
stratigraphy (Figure S2c), thus supporting the identification of mimetite [Pbs(AsO,);ClI] by SR y-XRD
[Figure 1f (main paper)].
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Figure S2. RGB composite SR y-XRF images of a) S/SV/Ag-L and c) CI-K/Pb-M/As-L recorded from the area shown in
Figure 1c (main paper) [map size (vxh): 99.5.8x74.2 um?; step size (vxh): 0.5x0.7 um2; exp. time: 100 ms/pixel]. b) Selection
of the Ag Ls-edge u-XANES spectra (black) recorded from the spots shown in a) and LCF results of different Ag-based
reference compounds. In grey, the profiles of selected Ag-reference compounds are reported for comparison [see Figures
1-3 (main paper) for further results].
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S$1.3 ATR mode u-FTIR spectra
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Figure S3. Selection of ATR mode p-FTIR spectra extracted from the maps of Figure 3 (main paper) with rectangles
showing the ROIs used to map the different compounds. a) Spectrum of the ground layer with selected bands of
gypsum (1680 cm") and calcite (875 cm™); b) spectrum extracted from layer 1 with highlighted the band of silicates
and proteinaceous material [v(C=0) Amide I]; c) spectrum obtained from layer 3 with the band of sulfates; d)
spectrum extracted from layer 4 with bands selected for mapping the lipidic material [v(C=O)ester] and lead

carboxylates [v(COQ)T].
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S2. Orpiment-based paint mock-ups
S2.1 Unaged paints
SR u-XRD mapping (Figure S4a,b) in combination with SR y-XRF/u-XANES measurements at S

K-edge (Figure S4c,d) show that the unaged Orp mock-up is only composed of a-As,S;. No evidence

of the presence of oxidized S-species was revealed by u-XANES spectroscopy.
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Figure S4. a) Photomicrograph of unaged Orpsin) Cross-section
and b) corresponding SR p-XRD image of a-As,S; [map size
(vxh): 189.5x50 um?; step size (vxh): 1.5x2 pm? exp. time:
1s/pixel; energy: 21 keV]. ¢) SR u-XRF image of Syt [map size
(vxh): 84x97 pm?; step size (vxh): 1x1 pum?; exp. time: 100
ms/pixel; energy: 3.4 keV] and d) S K-edge y-XANES spectrum
(black) recorded from the area shown in c), compared to that of a-
As,S; reference compound (gray). In a), rectangles show the
areas where maps of b,c) were recorded. In d), numbers in
brackets indicate the spectra showing similar features to that
reported.
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For Orp-Ag (Figure S5a), the presence of a-As,S; and AgP-crystals occurs along with that of few
grains of a-Ag,S (green) (Figure S5b-f). Small abundances of sulfate-compounds are also detected
at a single spot by S K-edge XANES (Figure S5d: pt 045).
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Figure S$5. a) Photomicrograph of unaged Orp-Agrsin) Cross-section and b) corresponding composite SR p-
XRD maps of a-As,S3 (red), a-Ag>S (green) and AgP (blue) [map size (vxh): 150x50 um?; step size (vxh):
1.5%2 ym?; exp. time: 1s/pixel; energy: 21 keV]. c) RB composite SR y-XRF images of (left) Sioa/Ag-L [map
size (vxh): 117x65 pm?; step size (vxh): 0.86x1 um?; exp. time: 100 ms/pixel; energy: 3.4 keV] ] and (right)
Asiotal /Ag-L [map size (vxh): 56.9x9.9 um?; step size (vxh): 0.1x0.15 pm?; exp. time: 100 ms/pixel; energy:
12 keV]. Selection of the y-XANES spectra (black) recorded at d) S K-edge, e) Ag Ls-edge and f) As K-edge
from the spots shown in ¢) and compared to those of selected reference compounds. Numbers in brackets
refer to the spectra showing similar features to those reported.

Normalized Fluorescence®

S-6



Single point y-Raman investigations (Figure S6a,b) corroborate the SR u-XRD mapping results
(Figure S5b), revealing the possible presence of a Ag,S-based phase (broad band at ca. 220 cm"
and signal below 150 cm')! in selected darker grains of the a-As,Si/AgP-based paint matrix. In
addition, As,03; was locally identified by pu-FTIR mapping measurements (band at 796 cm-) (Figure
S6c-e).23

Such results provide evidence that an in-situ degradation process of the paint has already occurred

before artificial aging in the areas where a-As,S; and AgP are in contact.
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Figure S6. a,c) Photomicrographs and corresponding b) single-point y-Raman (black) and d) ATR mode p-FTIR mapping

results obtained from unaged Orp-Agsr cross-section. e) FTIR spectra extracted from the As,Os-free region (grey) and

As,03-rich area (black) of the map shown in d). In b) one Raman spectrum is reported as example. The asterisk indicates

Ag lattice vibrational modes of Ag,S. [1]
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S2.2 Orp-Aguva.vis paint: p-Raman, Ag/As speciation investigations and SR y-XRD patterns

In line with the SR p-XRD and p-FTIR mapping results [Figure 5 (main paper)], single point p-
Raman analysis (Figure S7a,b) and Ag L;-edge/As K-edge u-XANES investigations (Figure S7c-g:
pts 0155-03ag, pts 014s-04,) reveal that a-Ag,S and As,0; are localized in the uppermost darkened
areas of the Orp-Aguva.is paint stratigraphy. Ag® and As,S; remain instead the main components of

the innermost side of the paint (Figure S7f,g: pt 044g; pts. 05as-114s).
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Figure S7. Photomicrographs of a) Orp-Aguvavis (ker) @nd ¢) Orp-Aguvavis (resiny Cross-sections. b) y-Raman spectrum (black)
recorded from the spot shown in a) and compared to that of a-As,S; reference compound (red). d) RGB composite SR u-
XRF images of d) S"/SV/Ag-L [map size (vxh): 130x100 um?; step size (vxh): 0.97x1.1 um?; exp. time: 100 ms/pixel; ;
energy (S)=2.473 keV, energy (SV')= 2.482 keV] and e) As"' (xa-As,S3)/ As'!' (cca-As,03) [map size (vxh): 58.1x5.4 ymz;
step size (vxh): 0.1x0.1 pm?; exp. time: 100 ms/pixel; energy (As'', xa-As,S;)= 11.870 keV, energy (As'!, xa-As,03)=
11.8754 keV] recorded from the areas reported in c). u-XANES spectra (black) recorded at the f) Ag Ls-edge and g) As K-
edge obtained from the spots shown in d,e) and compared to those of a set of Ag/As reference compounds (gray). In f,g),
numbers in brackets refer to the spectra showing similar features to those reported.
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Figure S8. SR y-XRD patterns obtained from (top) the uppermost dark layer and (bottom) the yellow bulk paint of
Orp-Aguva-is (ker) (see Figure 5d (main paper) for the corresponding u-XRD maps].



S3. Ag° paint mock-ups

SR u-XRD mapping acquired from Ag and Aguva.is paint cross-sections (Figure S9) show in both
cases the presence of Ag® and AgCI (the latter present as impurity of the powder). The fact that the
exposure to UVA-visible light did not promote the formation of a-Ag,S is in line with the smaller total
color change of the paint surface [Table 2: AE=5+1 (main paper)] with respect to that of the Orp-
Aguvauis paint (AE=32+2); furthermore, it provides evidence that in Orp-Ag paint mock-ups, the main
responsible for the formation of a-Ag,S are S? ions arising from the degradation of As,S;.
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Figure S9. Photomicrographs of a) Agesiny @and ¢) Aguvawisgesiny Cross-sections and b,d) corresponding SR p-XRD
distribution of Ag® and AgCl [Panel b): map size (vxh): 180x50 um?; step size (vxh): 1.5x2.0 um?; exp. time: 1 s/pixel;
energy: 21 keV. Panel d): map size (vxh): 105x100 um? step size (vxh): 1.0x2.0 ym?; exp. time: 0.5 s/pixel; energy: 21
keV].
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