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Numerical simulations

Herein, bold and plain fonts are used to represent vectors and scalars, respectively.  

The symbols  was used for the partial derivatives of a given function . ∂𝑡  𝐹(𝑡)

∂𝑡𝐹 ≡ ∂𝐹 ∂𝑡 (1)

In this study, we assumed the fluid is homogeneous and isotropic. The fluid response 

can be investigate by the compressible Navier–Stokes equations,

𝑝 = 𝑝(𝜌) (2)

∂𝑡𝜌 =‒ ∇ ∙ (𝜌𝑣) (3)

∂𝑡(𝜌𝑣) =‒ ∇𝑝 ‒ 𝜌(𝑣 ∙ ∇)𝑣 + (𝜁 + 1 3𝜂)·∇∇·𝑣 + 𝜂∇2𝑣 (4)

where , , , ζ, and η denote the mass density, velocity, pressure, bulk viscosity, and 𝜌 𝑣 𝑝

shear viscosity of the fluid, respectively. Due to the thermal diffusion length in liquids 

is much smaller than the momentum diffusion length, the isothermal case can be studied 

for simplicity without the heat transfer equation consideration. 

If the oscillation amplitude is small enough, the induced fluidic response can be 

expressed by a perturbation expansion, and the fields of the fluid density, pressure, and 

velocity, were expanded as follows [1],

𝜌 = 𝜌0 + 𝜀𝜌1 + 𝜀2𝜌2 +∙∙∙∙∙∙

𝑝 = 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 +∙∙∙∙∙∙

𝑣 = 𝜀𝑣1 + 𝜀2𝑣2 +∙∙∙∙∙∙

 

(5)

where the  represent a perturbation parameter, and the subscripts 0, 1, and 2 represent 𝜀

the static, first-order, and second-order quantities, respectively. Additionally, the 

relation between ρ and p is assumed to be linear [2],



𝑝 =  𝑐2
0𝜌 (6)

Substituting Eqn. (5) and (6) into Eqn. (1) and (2), we can obtain the first-order acoustic 

equations, 

∂𝑡𝜌1 =‒ 𝜌0∇ ∙ 𝑣1 (7)

𝜌0∂𝑡𝑣1 =‒ 𝑐2
0∇𝜌1 + (𝜁 + 4 3𝜂)∇∇·𝑣1 ‒ 𝜂∇ × ∇ × 𝑣1

(8)

The same procedure is repeated for all the second-order terms, and the resulting 

equations are averaged over a full oscillation period T, can be described as 

. According to this operation, the time-averaged, second-order 
〈𝑋〉 ≡ 1 𝑇

𝑇

∫
0

𝑋𝑑𝑡

perturbation can be shown in the follow form,

〈∂𝑡𝜌2〉 + 𝜌0∇ ∙ 〈𝑣2〉 = ‒ ∇ ∙ 〈𝜌1𝑣1〉 (9)

𝜌0〈∂𝑡𝑣2〉 + 〈𝜌1∂𝑡𝑣1〉 + 𝜌0〈(𝑣1 ∙ ∇)𝑣1〉 =‒ ∇〈𝑝2〉 + (𝜁 + 4 3𝜂)·〈𝑣2〉 ‒ 𝜂∇ × ∇ × 〈𝑣2〉(10)

Combining Eqn. (7)-(10) with appropriate boundary conditions, sound fields and 

acoustic streaming fields generated from vibrating bottom microcavity array can be 

solved numerically using COMSOL Multiphysics.


