Microchannel measurements of viscosity for both gases and liquids

Kota Shiba,*ab Guangming Li,bc Emmanuel Virot,b* Genki Yoshikawa,ad and David A. Weitz*b

- a. Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States.
- c. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 5625 Renmin Street, Changchun 130022, P. R. China.
- d. Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.

‡ Present address: hap2U, 75 Avenue Gabriel Péri, 38400 Saint Martin d'Hères, France.

E-mail: SHIBA.Kota@nims.go.jp, kshiba@seas.harvard.edu, weitz@seas.harvard.edu

If $\Delta h \ll w$,

$$\sim \int_{l_0}^{l} \Delta h$$

$$l_0 (= w/2)$$

$$l^2 = l_0^2 + \Delta h^2$$

$$= l_0^2 \left(1 + \frac{\Delta h^2}{l_0^2}\right)$$

$$l = l_0 \left(1 + \frac{\Delta h^2}{l_0^2}\right)^{1/2}$$

$$\frac{l}{l_0} \sim 1 + \frac{1}{2} \cdot \frac{\Delta h^2}{l_0^2} \quad \cdots \text{(S1)}$$

Strain is given by

$$\varepsilon = \frac{l-l_0}{l_0} = \frac{l}{l_0} - 1 \quad \cdots \text{(S2)}$$

Equations (S1) and (S2) lead to

$$\varepsilon \sim 1 + \frac{1}{2} \cdot \frac{\Delta h^2}{l_0^2} - 1 = \frac{2}{w^2} \cdot \Delta h^2$$

Fig. S1 Schematic and analytic calculation for correlating ε with Δh .

Fig. S2 FEA-based deformation as a function of viscosity for 10 gases, C_3H_8 , H_2 , C_2H_6 , CH_4 , SO_2 , CO_2 , N_2 , Air, He, and Ar at flow rates ranging from 0.1 to 150 mL/min. Flow rates are: 0.1, 0.5, 1.0, 2.5, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, and 150 mL/min (from bottom to top). All the data points at each flow rate are fit with a power-law (dashed lines).

Fig. S3 Color map showing deformation under flow of Ar at a flow rate of 10 mL/min.

Fig. S4 Output voltages measured as a function of time for five gases, CO_2 , N_2 , Air, He, and Ar at flow rates of 6, 7, 8, and 9 mL/min (from left to right).

Fig. S5 Output voltages measured as a function of time for seven liquids, MeOH, water, IPA, and MeOH-aqueous solution with four different concentrations at a flow rate of 0.25 mL/min (from left to right).

 Table S1.
 Summary of all the parameters used for FEA simulation.

Parameters	Values
Thickness of top layer	1 mm
Thickness of bottom layer	6 mm
Young's modulus of PDMS	1.1 MPa ^[1]
Height of microchannel	27 µm
Width of microchannel	1.5 mm
Length of microchannel	20 mm
Gap between microchannel and strain gauge	1 µm
Thickness of strain gauge	30 µm
Width of strain gauge	1.4 mm
Length of strain gauge	4.3 mm
Young's modulus of epoxy	2.5 GPa ^[2]
Inner diameter of inlet	0.75 mm
Outer diameter of inlet	1.5 mm
Inner diameter of outlet	0.75 mm
Outer diameter of outlet	1.5 mm

[1] Gervais, T. et al., Lab Chip 6, 500-507 (2006).

[2] Ogasawara, T. et al., Compos. Sci. Technol. 71, 1826-1833 (2011).